
ar
X

iv
:1

90
7.

00
76

6v
1

 [
ee

ss
.S

P]
 1

 J
ul

 2
01

9

Design and Implementation of a Neural Network

Based Predistorter for Enhanced Mobile Broadband

Chance Tarver∗, Alexios Balatsoukas-Stimming†‡, and Joseph R. Cavallaro∗

∗Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
†Department of Electrical Engineering, Ecole polytechnique fédérale de Lausanne Lausanne, Switzerland
‡Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract—Digital predistortion is the process of correcting for
nonlinearities in the analog RF front-end of a wireless transmit-
ter. These nonlinearities contribute to adjacent channel leakage,

degrade the error vector magnitude of transmitted signals, and
often force the transmitter to reduce its transmission power into
a more linear but less power-efficient region of the device. Most
predistortion techniques are based on polynomial models with
an indirect learning architecture which have been shown to be
overly sensitive to noise. In this work, we use neural network
based predistortion with a novel neural network training method
that avoids the indirect learning architecture and that shows
significant improvements in both the adjacent channel leakage
ratio and error vector magnitude. Moreover, we show that, by
using a neural network based predistorter, we are able to achieve
a 42% reduction in latency and 9.6% increase in throughput on
an FPGA accelerator with 15% fewer multiplications per sample
when compared to a similarly performing memory-polynomial
implementation.

Index Terms—Digital predistortion, neural networks, FPGA.

I. INTRODUCTION

Efficiently correcting nonlinearities in power amplifiers

(PAs) through digital predistortion (DPD) is critical for en-

abling next-generation mobile broadband where there may be

multiple radio frequency (RF) transmit (TX) chains arranged

to form a massive multiple-input multiple-output (MIMO)

system [1], as well as new waveforms with bandwidths on the

order of 100 MHz in the case of mmWave communications [2].

Traditional DPDs use variations of the Volterra series [3], such

as memory polynomials [4, 5]. These models consist of sums

of various order polynomials and finite impule responce (FIR)

filters to model the nonlinearities and the memory effects in a

PA, respectively.

To learn the values of the parameters in a polynomial based

model, an indirect learning architecture (ILA) is typically used

in conjunction with some variation of a least squares (LS) fit

of the data to the model [5]. In an ILA, a postinverse model

of the predistorter is fitted based on the output of the PA [6,

7]. After learning the postinverter, the coefficients are copied

to the predistorter. Although this simplifies the learning of

DPD coefficients, it has been shown to converge to a biased

solution due to noise in the PA output [8, 9]. Moreover, the

LS problem is often poorly conditioned [4]. In [10], a mobile

graphics processing units (GPU) was used to implement the

polynomial DPD with I/Q imbalance correction from [4]. This

GPU implementation used floating-point and was able to avoid

the challenges associated with the dynamic range requirements

for memory polynomials. When implemented on an FPGA, a

memory polynomial can be challenging due to the bit-widths

that are necessary to perform the high-order exponentiation in

fixed-point precision [11].

The overall DPD challenge has strong similarities to the

problems encountered in in-band full-duplex (IBFD) commu-

nications [12–14], where a transceiver simultaneously trans-

mits and receives on the same frequency, increasing the

spectral efficiency of the communication system. However,

this requires (among other techniques) digitally removing the

significant self-interference from the received signal which

not only consists of the intended transmission but also the

nonlinearities added by the imperfections in the transmit chain

including the PA. In [15], the authors used neural networks

(NNs) to perform the self-interference cancellation and found

that it could achieve similar performance to polynomial based

self-interference cancellation. They later extended the work to

create both FPGA and ASIC implementations of the NN-based

self-interference canceller and found that, due to the regular

structure of the NN and the lower bit-width requirements, it

can be implemented to have both a higher throughput and

lower resource utilization [16].

Inspired by the full-duplex NN work and the known prob-

lems of polynomial based predistortion with an ILAs, we

recently proposed in [17] to use NNs for the forward DPD

application. The NNs are a natural choice for such application

as they are able to approximate any nonlinear function [18],

making them a reasonable candidate for predistortion. The idea

of using various NNs for predistortion has been explored in

many works [19, 20]. However, the training method is unclear

in [19], and their implementations require over ten thousand

parameters. In [20], the training of the NN is done using an

ILA which can subject the learned predistorter to the same

problems seen with all ILAs.

Contribution: In our previous work [17], we avoided the

standard ILA and we improved the overall performance by

using a novel training algorithm where we first modeled the

PA with a NN and then backpropagated through it to train a

DPD NN. We extend that work here to show that not only do

we improve performance when compared to polynomial based

DPD, but we do so with reduced implementation complexity.

Furthermore, to realize the gains of the NN DPD, we design

a custom FPGA accelerator for the task and compare it to our

own polynomial DPD accelerator.

http://arxiv.org/abs/1907.00766v1

x[n] NN DPD, Ĥ−1

x̂[n]
PA, H y[n]

1

G

PA NN Model, Ĥ

Training

Figure 1. Architecture of the NN DPD system. The signal processing
is done in the digital baseband and focuses on PA effects. The DAC,
up/downconverters, and ADC are not shown in this figure, though their
impairments are also captured.

Outline: The rest of the paper is organized as follows. In

Section II, we give an overview of our DPD architecture and

methods. In Section III, we compare performance/complexity

tradeoffs for the DPD NN to polynomial based predistorters. In

Section IV, we compare FPGA implementations for memory

polynomial and NN predistortion. Finally, in Section V we

conclude the paper.

II. NEURAL NETWORK DPD ALGORITHM OVERVIEW

For the NN DPD system, we seek to place a NN based

predistorter inline with the PA so that the cascade of the two

is a linear system, as shown in Fig. 1. However, to train a

NN, it is necessary to have training data, and in this scenario

the ideal NN output is unknown; only the ideal PA output is

known. To overcome this problem, we train a PA NN model to

emulate the PA. We then backpropagate the mean squared error

(MSE) through the PA NN model to update the parameters in

the NN DPD [17].

A. Neural Network Architecture

We use a feed-forward NN that is fully-connected with

K hidden layers, and N neurons per hidden layer. The

nonlinear activation applied in hidden layers is chosen to be

a rectified linear unit (ReLU), shown in (1), which can easily

be implemented with a single multiplexer in hardware.

ReLU(x) = max(0, x) (1)

The input and output data to the predistorter is complex-

valued, while NNs typically operate on real-valued data. To

accommodate this, we split the real and imaginary parts of

each time-domain input sample, x(n), on to separate neurons.

Although PA-induced nonlinearities are present in the trans-

mitted signal, the relationship between the input and output

data is still mostly linear. Although in principle, a NN can

learn this relationship given training data, this turns out to

be difficult in practice [15]. As such, we implement a linear

bypass in our NN that directly passes the inputs to the output

neurons where they are added in with the output from the

final hidden layer, as can be seen in Fig. 2. This way, the NN

entirely focuses on the nonlinear portion of the signal.

ℜ(x)

ℑ(x)

..
.

N

ℜ(y)

ℑ(y)

Hidden

layers

Input

layer

Output

layer

Figure 2. General structure of the DPD and PA neural networks. There are
two input and output neurons for the real and imaginary parts of the signal, N
neurons per hidden layer, and K hidden layers. The inputs are directly added
to the output neurons so that the hidden layers concentrate on the nonlinear
portion of the signal.

B. Training

This work primarily focuses on the implementation and

running complexity of the DPD application, which consists of

inference on a pre-trained NN. The training is assumed to be

able to run offline and, once the model is learned, significant

updates will not be necessary and occasional offline re-training

to account for long-term variations would be sufficient.

In [17], we first use input/output data of the PA to train

a NN to model the PA behavior. We then connect a second

DPD NN to the PA NN model. We treat the combined DPD

NN and PA NN as one large NN. However, during the second

training phase, we only update the weights corresponding to

the DPD NN. We then connect the DPD NN to the real PA

and use it to predistort for the actual device.

The process of predistorting can excite a different region

of the PA than when predistortion is not used. To account

for this, it is not uncommon in other DPD methods to have

multiple training iterations. A similar idea is adopted in [17]

and in this work. Once training of the PA and the DPD is

performed, we then retransmit through the actual PA while

using the DPD NN. Using the new batch of input/output data,

we then can update the PA NN model and in turn refine the

DPD NN. An example of the iterative training procedure is

shown in Fig. 3, where the MSE training loss is shown for

the PA NN model and the combined DPD-PA is shown for

two training iterations.

III. COMPLEXITY COMPARISON

To evaluate the NN based predistortion, we present the

formulation of both a memory polynomial and the NN. We

then derive expressions for the number of multiplications as a

function of the number of parameters in the models. In most

implementations, multiplications are considered to be more

expensive as they typically have higher latency and require

more area and power. Additions typically have a minor impact

on these metrics when compared to multiplications, so we omit

them from this analysis.

A. Memory Polynomial Predistortion

An extension of a memory polynomial from [4] is shown

in (2). This form of memory polynomial predistorts the

complex baseband PA input x(n) to be x̂(n) by computing

x̂(n) =

P
∑

p=1,
p odd

M
∑

m=0

αp,mx(n−m)|x(n−m)|p−1 +

Q
∑

q=1,
q odd

L
∑

l=0

βq,lx
∗(n− l)|x∗(n− l)|q−1 + c (2)

0 10 20 30 40 50

0

0.01

0.01

0.02

0.02

Iteration 1 Iteration 2

Epoch

M
S

E

NN MSE Training Loss

PA NN Model

DPD–PA NN

Figure 3. Example of iterative NN-DPD training for two training iterations,
where 20 and 5 epochs are used in the first and second iteration, respectively.

nonlinearities of the form x(n)|x(n)|p and convolving them

with an FIR filter for both x(n) and its conjugate, x∗(n). This

conjugate processing gives the model the expressive power to

combat PA nonlinearities and any IQ imbalance in the system.

P and M are the highest nonlinearity order and memory depth

in the main branch, while Q and L are the highest order

and memory in the conjugate branch. The complex-valued

coefficients αp,m and βq,l represent the DPD coefficients that

need to be learned for nonlinearity orders p and q and memory

tap m and l. Finally, the DC term c accounts for any local

oscillator leakage in the system.

The total number of complex-valued parameters in (2) is

given as

nPAR, poly = M

(

P + 1

2

)

+ L

(

Q+ 1

2

)

+ 1. (3)

Assuming three real multiplications per complex multiplica-

tion, we get the following number of multiplications in the

system

nMUL, poly = 3nPAR, poly +
P
∑

p=3,
p odd

1

2
(p+ 5) +

Q
∑

q=3,
q odd

1

2
(q + 5)

(4)

Here, each complex coefficient accounts for three multipli-

cation. The expression, x(n)|x(n)|p−1 is computed once for

each n over a given p and delayed in the design to generate

the appropriate value for each m. We note that |x(n)|p−1 can

always be simplified to (ℜ(x(n))2 + ℑ(x(n)
2
)

p−1

2 since p is

odd. This accounts for (p−1

2
+1) multiplications before being

multiplied by the complex-valued x(n) which adds 2 more

multiplications. The same is true for the conjugate processing.

B. Neural Network Predistortion

The output of a densely connected NN is given by

h1(n) = f

(

W1

[

ℜ(x(n))
ℑ(x(n))

]

+ b1

)

, (5)

hi(n) = f (Wihi−1(n) + bi) , i = 2, . . . ,K, (6)

z(n) = WK+1hK(n) + bK+1 +Wlinear

[

ℜ(x(n))
ℑ(x(n))

]

, (7)

x̂(n) = z1(n) + 1j · z2(n), (8)

where f is a nonlinear activation function (such as the ReLU

from (1)), Wi and bi are weight matrices and bias vectors

corresponding to the ith layer in the NN, and j is the imaginary

unit. The final output of the network after hidden layer K

is given by (7) where the first element represents the real

part of the signal, and the second element represents the

imaginary part. In (7), Wlinear is a 2×2 matrix of the weights

corresponding to the linear bypass. In practice, we fix it to

be the identity matrix, I2, to reduce complexity though these

weights could also be learned in systems with significant IQ

imbalance.

Assuming N neurons per hidden layer and K hidden layers,

the number of multiplications is given by

nMUL, NN = 4N + (K − 1)N2. (9)

C. Results

The performance results for each predistorter as a func-

tion of the number of required multiplications are shown in

Figs. 4–6. These results were obtained using the RFWebLab

platform [21]. RFWebLab is a web-connected PA at Chalmers

University. This system uses a Cree CGH40006-TB GaN PA

with a peak output power of 6 W. The precision is 14 bits

for the feedback on the ADC and 16 bits for the DAC.

Using their MATLAB API, we test the NN predistorter using

a 10 MHz OFDM signal. This signal has random data on

600 subcarriers spaced apart by 15 kHz and is similar to LTE

signals commonly used in cellular deployments. It provides

an interesting test scenario in that it has a sufficiently high

peak-to-average power ratio (PAPR) to make predistortion

challenging. We train on 10 symbols then validate on 10

different symbols. The Adam optimizer is used with an MSE

0 20 40 60 80 100 120

−32

−31

−30

Number of Real Multiplications

A
C

L
R

(d
B

)

K = 1

K = 2

M = 1

M = 2

M = 4

Figure 4. ACLR vs. number of multiplications for NN DPD (shown with
diamonds) with up to K = 2 hidden layers and memory polynomial (shown
with circles) with up to M = 4 memory taps. This represents the out-of-
band performance of the predistorter. The stars represent design points that
we implement in FPGA in the next section.

loss function. ReLU activation functions are used in the hidden

layer neurons.

Specifically, we tested the following DPDs: 1) a NN DPD

with K = 1 with N = {1, ..., 20, 25, 31} (dark green). 2) a

NN DPD with K = 2 with N = {1, ..., 8} (light green). 3) a

polynomial DPD without memory and with P = 1 to P = 13
(dark blue), 2) a polynomial DPD with M = 2 memory taps

and with P = 1 to P = 13 (light blue), 3) a polynomial DPD

with M = 4 memory taps and with P = 1 to P = 13 (pink),

All DPDs were evaluated in terms of the adjacent channel

leakage ratio (ACLR), the error vector magnitude (EVM), and

the spectra of the post-PA pre-distorted signals. A predistorter

with M = 4 and Q = P was also evaluated. However, the

system did not have significant IQ imbalance, so the addition

of the conjugate processing to the memory polynomial only

had the effect of significantly increasing complexity.

1) Out-of-band performance: To measure the out-of-band

performance, which is often the metric of most interest given

by Federal Communications Commission (FCC) regulations

and 3GPP standards, we compute the ACLR shown below as

ACLR = 10 log10
Padjacent

Pchannel

, (10)

where Pchannel is the signal power in the main channel, and

Padjacent is the signal power in the remainder of the band.

In Fig. 4, we observe that the NN DPD offers similar perfor-

mance to the memoryless polynomial DPD for low numbers

of multiplications and it is able to significantly outperform all

polynomial DPDs as the number of multiplications increases.

2) In-band performance: Although the primary goal of

predistortion is to reduce spectral regrowth around the main

carrier, predistortion also reduces the EVM of the main signal.

0 20 40 60 80 100 120
1.8

2

2.2

2.4

2.6

2.8

3

Number of Real Multiplications

E
V

M
(%

)

K = 1

K = 2

M = 1

M = 2

M = 4

Figure 5. EVM vs. number of real multiplications for NN DPD (shown with
diamonds) with up to K = 2 hidden layers and memory polynomial (shown
with circles) with up to M = 4 memory taps. This represents the in-band
performance of the predistorter. The stars represent design points that we
implement in FPGA in the next section

−40 −20 0 20 40

−40

−20

0

Frequency (MHz)

P
S

D
(d

B
)

No DPD

P = 9

N = 20

Figure 6. Example spectrum for the M = 4 polynomial and K = 1 NN.
Each of these use around 80 multiplications per time-domain input sample to
the DPD.

Reducing EVM can improve reception quality and is hence a

desirable result. The EVM is computed as

EVM =
‖ŝ− s‖

‖s‖
× 100%, (11)

where s is the vector of all original symbols mapped onto

complex constellations on OFDM subcarriers in the frequency

domain, ŝ is the corresponding received vector after passing

through the PA, and ‖·‖ represents the ℓ2 norm.

In Fig. 5, we see the EVM versus the number of mul-

tiplications for each of the predistorters. As the number of

multiplications increases, the EVM decreases, as expected.

The memoryless polynomial DPD is able to achieve a low

EVM for the smallest number of multiplications. However,

the complexity is only slightly higher for the NN based DPD,

which is able to achieve an overall better performance than all

other examined polynomial DPDs.
3) Spectrum Comparison: The spectrum for both the mem-

ory polynomial and the NN DPDs are shown in Fig. 6. Here,

both predistorters have the same running complexity of 80

multiplications per time-domain input sample. However, the

NN is able to provide an additional 2.8 dB of suppression at

±20 MHz.

IV. FPGA ARCHITECTURE OVERVIEW

In this section, we compare a NN DPD accelerator with

a memory polynomial based implementation. We implement

both designs in Xilinx System Generator and target for the

Zynq UltraScale+ RFSoC ZCU1285 evaluation board. For the

sake of this architecture comparison, we implement each to

be fully parallelized and pipelined as to compare the highest

throughput implementations of each. Based on the previous

analysis, we implement both with 16-bit fixed point precision

throughout.

We synthesize FPGA designs targeting two separate

ACLRs. First, we target an ACLR of approximately -31.4 dB.

This target is achieved with a NN with N = 6 neurons and

K = 1 hidden layer and a 7th order memoryless polynomial.

Second, we target a more aggressive ACLR below -32 dB.

This is done with a NN with N = 14 neurons and K = 1
hidden layer. A memory polynomial with M = 2 and P = 11
is also used to achieve this.

A. Neural Network Accelerator

We implement the NN-DPD on FPGA with the goal of

realizing high throughput via maximum parallelization and

pipeling. The top-level overview of the design is shown in

Fig. 7. Here, each wire corresponds to a 16-bit bus. The real

and imaginary parts of the PA input signal stream in each clock

cycle. Weights are stored in a RAM which can be written to

from outside the FPGA design. After the RAM is loaded, the

weights and biases are written to individual registers in the

neuron processing elements (PEs) which cache them for fast

access during inference. A chain of pipeline registers pass the

inputs to the output to be added to the output of the final layer.

After the weights are loaded into RAM, the RAM controller

loads each of the weights into a weights cache in each PE.

To do this, a counter increments through each address in

the RAM. The current address and the value at that address

are broadcast to all neurons. Each address corresponds with

a specific weight or bias. Whenever the weights cache in

a neuron reads addresses corresponding to the weights and

biases for its neuron, it saves the data into a register dedicated

to that parameter. These registers output to the corresponding

multiplier or adder.

An example neuron PE is shown in Fig. 8. Each PE

is implemented with a sufficient number of multipliers for

performing the multiplication of the weights by the inputs in

parallel. The results from each multiplier are added together,

along with the bias and passed to the ReLU activation function,

which is implemented with a single multiplexer.

ℜ(x[n])

ℑ(x[n])

PE

PE

..
.

PE

Linear Bypass

Pipeline Registers

PE

PE

Add

Add

ℜ(x̂[n])

ℑ(x̂[n])

Weights and

Biases RAM

Figure 7. General structure of the NN FPGA implementation.

ℜ(x[n])

From RAM

ℑ(x[n])

Weights

Cache

Multiply

Multiply

Add

Add

ReLU

Mux
h1,i(n)

Figure 8. Example structure of a PE for the ith neuron in hidden layer 1.

B. Polynomial Accelerator

The memory polynomial is also implemented using 16 bits

throughout the design. We target the design for maximum

throughput by fully parallelizing and pipelining it so that a

new time-domain input sample can streamed in each clock

cycle. The main overall structure of the design is shown in

Fig. 9. Each polynomial “branch” of the memory polynomial

corresponding to nonlinear order p computes x(n)|x(n)|p−1

and there is a branch for each p in the design. This computation

from each branch is passed to an FIR filter with complex taps.

Three multiplications are used for each complex multiplication

in each filter. A RAM is implemented to interface with some

outside controller for receiving updated weights. Once the

coefficients α and β are loaded into the design, they can be

moved from the RAM to registers near each multiply similarly

to the cache implemented in the NN design.

C. Results

The Xilinx Vivado post-place-and-route utilization results

are shown in Table I. Overall, the NN-based design offers

numerous advantages over the memory polynomial. Specifi-

cally, for the target of an ACLR less than -32 dB, the NN

requires 48% of the lookup tables (LUTs), 42% of the flip-

flops (FFs), and 15% reduction in the number of digital signal

processors (DSPs). In terms of timing, there is a 9.6% increase

in throughput with a 46% decrease in latency. These reductions

in utilization occur while also seeing improved ACLR.

x[n] Pipeline Delays
FIR

Filter

x(n)|x(n)|2
FIR

Filter
..

.

..
.

x(n)|x(n)|P−1
FIR

Filter

Sum x̂[n]

DPD Coeffs.

RAM

Figure 9. General structure of the high-throughput, low-latency, memory
polynomial FPGA implementation.

Table I
COMPARISON OF PERFORMANCE AND FPGA UTILIZATION

ACLR: -31.4 dB ACLR: -32

Metric
N = 6

K = 1

P = 7

M = 1

N = 14

K = 1

P = 11

M = 2

Num. of Params. 32 8 72 24

LUT 379 539 688 1424
LUTRAM 16 120 16 224
FF 538 991 1170 2730
DSP 24 27 56 66

Worst Neg. Slack (ns) 8.72 8.68 8.49 8.34
Max. Freq. (MHz) 783 756 661 603
Max. T/P (MS/s) 783 756 661 603
Latency (CC) 12 21 14 26

V. CONCLUSIONS

In this paper, we explored the complexity/performance

tradeoffs for a novel, NN based DPD and found that the NN

could outperform memory polynomials and offered overall

unrivaled ACLR and EVM performance. Furthermore, we

implemented each on an FPGA and found that the regular

matrix multiply structure in the NN based predistorter led to

a lower latency design with less hardware utilization when

compared to a similarly performing polynomial-based DPD.

This work opens up many avenues for future work.

This work can be extended to also compare perfor-

mance/complexity tradeoffs for more devices with a wider

variety of signals, including different bandwidths and multiple

component carriers. It is also possible to include memory

cells such as recurrent neural networks (RNNs) in the NN to

account for memory effects. The NN is naturally well suited

for a GPU implementation which would be interesting in soft-

ware defined radio (SDR) systems. The NN complexity could

also be further reduced with pruning, and the accuracy could

potentially be improved with retraining after quantization and

pruning.

REFERENCES

[1] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, February 2014.

[2] W. Roh et al., “Millimeter-wave beamforming as an enabling technol.
for 5g cellular communications: Theoretical feasibility and prototype
results,” IEEE Commun. Mag., vol. 52, no. 2, pp. 106–113, February
2014.

[3] A. Zhu, M. Wren, and T. J. Brazil, “An efficient volterra-based be-
havioral bodel for wideband rf power amplifiers,” in IEEE MTT-S

International Microw. Symp. Digest, vol. 2, June 2003, pp. 787–790
vol.2.

[4] L. Anttila, P. Handel, and M. Valkama, “Joint mitigation of power
amplifier and I/Q modulator impairments in broadband direct-conversion
transmitters,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp.
730–739, April 2010.

[5] A. Katz, J. Wood, and D. Chokola, “The Evolution of PA Linearization:
From Classic Feedforward and Feedback Through Analog and Digital
Predistortion,” IEEE Microw. Mag., vol. 17, no. 2, pp. 32–40, Feb 2016.

[6] A. Balatsoukas-Stimming, A. C. M. Austin, P. Belanovic, and A. Burg.,
“Baseband and RF hardware impairments in full-duplex wireless sys-
tems: experimental characterisation and suppression,” EURASIP Journal

on Wireless Commun. and Networking, vol. 2015, no. 142, 2015.
[7] D. Korpi, L. Anttila, and M. Valkama, “Nonlinear self-interference can-

cellation in MIMO full-duplex transceivers under crosstalk,” EURASIP

Journal on Wireless Comm. and Netw., vol. 2017, no. 1, p. 24, Feb.
2017.

[8] D. Zhou and V. E. DeBrunner, “Novel adaptive nonlinear predistorters
based on the direct learning algorithm,” IEEE Trans. on Signal Process-

ing, vol. 55, no. 1, pp. 120–133, Jan 2007.
[9] R. N. Braithwaite, “A comparison of indirect learning and closed loop

estimators used in dgital predistortion of power amplifiers,” in IEEE

MTT-S International Microw. Symp., May 2015, pp. 1–4.
[10] K. Li et al., “Mobile GPU accelerated digital predistortion on a software-

defined mobile transmitter,” in IEEE Global Conf. on Signal and Inform.

Process. (GlobalSIP), Dec 2015, pp. 756–760.
[11] M. Younes, O. Hammi, A. Kwan, and F. M. Ghannouchi, “An accurate

complexity-reduced “PLUME” model for behavioral modeling and digi-
tal predistortion of RF power amplifiers,” IEEE Trans. on Ind. Electron.,
vol. 58, no. 4, pp. 1397–1405, April 2011.

[12] M. Jain et al., “Practical, real-time, full duplex wireless,” in Proc.

International Conf. on Mobile Computing and Networking. ACM, 2011,
pp. 301–312.

[13] M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven characteri-
zation of full-duplex wireless systems,” IEEE Trans. Wireless Commun.,
vol. 11, no. 12, pp. 4296–4307, Dec. 2012.

[14] D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” in ACM

SIGCOMM, 2013, pp. 375–386.
[15] A. Balatsoukas-Stimming, “Non-linear digital self-interference cancel-

lation for in-band full-duplex radios using neural networks,” in IEEE

International Workshop on Signal Processing Advances in Wireless

Commun. (SPAWC), June 2018, pp. 1–5.
[16] Y. Kurzo, A. Burg, and A. Balatsoukas-Stimming, “Design and im-

plementation of a neural network aided self-interference cancellation
scheme for full-duplex radios,” in Asilomar Conf. on Signals, Systems,

and Computers, Oct 2018, pp. 589–593.
[17] C. Tarver, L. Jiang, A. Sefidi, and J. Cavallaro, “Neural network dpd

via backpropagation through a neural network model of the PA,” in
Asilomar Conf. on Signals, Systems, and Computers, (submitted).

[18] K. Hornik, “Approximation capabilities of multi-
layer feedforward networks,” Neural Networks, vol. 4,
no. 2, pp. 251 – 257, 1991. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/089360809190009T

[19] R. Hongyo, Y. Egashira, T. M. Hone, and K. Yamaguchi, “Deep neural
network-based digital predistorter for doherty power amplifiers,” IEEE

Microw. and Wireless Components Letters, vol. 29, no. 2, pp. 146–148,
Feb 2019.

[20] M. Rawat and F. M. Ghannouchi, “Distributed spatiotemporal neural
network for nonlinear dynamic transmitter modeling and adaptive digital
predistortion,” IEEE Trans. Instrum. Meas., vol. 61, no. 3, pp. 595–608,
March 2012.

[21] “RF WebLab.” [Online]. Available: http://dpdcompetition.com/rfweblab/

http://www.sciencedirect.com/science/article/pii/089360809190009T
http://dpdcompetition.com/rfweblab/

	I Introduction
	II Neural Network DPD Algorithm Overview
	II-A Neural Network Architecture
	II-B Training

	III Complexity Comparison
	III-A Memory Polynomial Predistortion
	III-B Neural Network Predistortion
	III-C Results
	III-C1 Out-of-band performance
	III-C2 In-band performance
	III-C3 Spectrum Comparison

	IV FPGA Architecture Overview
	IV-A Neural Network Accelerator
	IV-B Polynomial Accelerator
	IV-C Results

	V Conclusions
	References

