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Abstract

The increased penetration of renewable resources poses a challenge to reliable operation of power systems. In particular,
operators face the risk of not scheduling enough traditional generators in the times when renewable generation becomes lower
than expected. This paper studies the optimal trade-off between system risk and the cost of scheduling reserve generators. The
problem is modeled as a multi-period stochastic control problem, and in particular explicitly considering the ramping constraints on
the generators. The structure of the optimal dispatch control is identified. Dispatch is efficiently computed utilizing two methods:
(i) solving a surrogate chance constrained program, (ii) a MPC-type look ahead controller. Utilizing real system data, the chance
constrained dispatch is shown to outperform the MPC controller and to be robust to changes in the probability distribution of the
uncertainties involved in the problem.

I. INTRODUCTION

Renewable resources are starting to play increasingly prominent roles in electric systems around the world. Major efforts
are under way to integrate new renewable resources with existing infrastructure, and this has proven to be a non-trivial task.
The main challenge is in the difference between the time-scale of significant changes in renewable generation output and the
time-scale at which traditional generators can ramp up or down. For example, independent system operators (ISOs) typically
schedule generators in hourly blocks, and have limited ramping capabilities. On the other hand, renewable generation can
change significantly on intra-hour time-scales, and under high penetration levels, the system may become ramp-limited and
incapable of adapting to the real time renewable output.

Uncertainties have an asymmetric effect on system operations in power networks [1]. For example, if the predicted wind
power output is lower than the actual realization, the system may not have enough ramp down capability, and excessive wind
needs to be curtailed, resulting in wasted energy and increased cost. Thus the uncertainty has an effect on the operation cost
of the system. On the other hand, if the predicted wind power output is higher than the actual realization, then the system may
not have enough ramp up capability and some load needs to be shed. This is a much worse outcome than curtailing generation,
and we call this the operation risk in the system. Presently, system operators are predominately concerned with the risk, and
would purchase enough reserve energy in advance so that the risk that demand cannot be satisfied is negligible.

The current strategy is viable because uncertainties are fairly small (on the order of 1 − 2% of total demand). However,
as the penetration of renewables increases, the strategy of procuring enough energy for all possible scenarios is becoming
prohibitively expensive [2]. For example, consider an day ahead of scheduling generators in a system with wind power. Since
there is always some possibility that there would be no wind in the next day, to operate at zero risk, the operator would
essentially schedule as if there was no wind. The resulting operation process is neither economical nor sustainable as the
required reserves incur in significant emissions. Instead, the operator could accept a tolerable level in system risk obtaining in
return significant reduction in required reserves. One contribution of this paper is to address the problem of how to optimal
schedule generation considering the trade-off between operation risk and cost in a ramp-constrained system.

The second contribution of this paper is to model ramping constrained dispatch as a multi-stage stochastic control problem
that attempts to minimize the expected cost of procuring energy, constrained to a desired probability of loss of load and
explicit ramping constraints in the generation. The sequential nature of forecast error updates along time is explicitly modeled
to accurately capture the information and risk tradeoff. This results in successive dispatch with ramp constraints. Figure 1
shows a typical error curve for wind forecasting [3]. As expected, the forecast error decreases as the forecast horizon shortens.
We can interpret the improvement as errors being successively revealed as the system moves closer to real time. Therefore as
each a decision is made, the operator should take advantage of the new information and perform a recourse action. This type of
problem has been studied in inventory control as the newsvendor (or newsboy) problem [4]. However, an important difference
is that in power systems a decision is made after the renewable realization is observed for the current period, where as in
inventory control a decision is made before the randomness is known. As we will show, the solution is far more complicated
when the decision can be based on the current period realization.

Prior work mostly consider independent and identically distributed errors over time, or relaxes the ramping constraints. A
two-stage version of the dispatch problem was proposed in [1] and has been extended to include storage [5] and network
effects [6]. Multi-stage stage formulations have mainly been studied under the context of price uncertainty (see e.g. [7], [8])
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Fig. 1: Percentage forecast error v.s. forecast horizon. Data from Iberdrola Renewables.

and sequential reserve calculations [9].This paper focuses on the inter-temporal behavior introduced by ramping constraints on
the generators. In existing ISO operations, this is the most frequently limiting constraint. The paper is organized as follows.
Sec. II describes the problem formulation. Sec. III develops the optimal control structure and practical algorithms. Sec. IV
shows the performance of the dispatch algorithms and Sec V concludes the paper.

II. MODEL AND PROBLEM FORMULATION

We consider a multi-period stochastic dispatch problem. For simplicity and due to space constraints, we assume that the
network can be approximated as a single bus. We note the approach in [6] can be used to include the network effects. Let there
be T total time periods, and at each time t = 0, 1, . . . , T − 1, a dispatch decision gt is made. An additional terminal stage,
i.e., the T th stage, is included for notational convenience. At each stage t, the information available to the operator includes
(i) all the past dispatches, (ii) all the past realization of load (ls : 0 ≤ s ≤ t) and wind power generation (ws : 0 ≤ s ≤ t),
and (iii) a forecast of the future load (l̂t,s : t < s ≤ T ) and wind power generation (ŵt,s : t < s ≤ T ). Assuming wind power
generation is taken at zero cost, we model the wind as negative load, and consider net demand defined as dt = lt − wt.

A. Statistical Model

An important feature of our approach is to model the information update process. In multi-period dispatch problems, the
operator obtains better forecasts about the wind and load at fixed future time points as the forecast horizons become shorter.
To incorporate this notion, we consider the forecast update model of the form

dt = d̂s,t +

t−1∑
τ=s

ẽτ,t, (1)

where the forecast vector d̂s ∈ RT+1 available at time s is defined as

d̂s,t =

{
dt if t ≤ s,
d̂s,t if t > s,

with d̂s,t being the net demand at time t forecasted at stage s, and ẽτ ∈ RT+1 is a vector containing marginal forecast errors,
i.e., the forecast error of net demand dt of the forecast made at time s is

εs,t = εs+1,t + ẽs,t =εs+2,t + ẽs+1,t + ẽs,t = . . .

= εt,t +

t−1∑
τ=s

ẽτ,t =

t−1∑
τ=s

ẽτ,t.

Note ẽs,t = 0 for t ≤ s, for convenience, we work with the reduced error vector et ∈ RT−t, such that ẽᵀ
t = [0ᵀ, eᵀ

t ]ᵀ. It
follows that the forecast vector d̂t is updated according to

d̂t+1 = d̂t + Ctet,

where
Ct =

[
0(t+1)×(T−t)
I(T−t)×(T−t)

]
∈ R(T+1)×(T−t)



is a zero-one matrix that ensures only coordinates of d̂t that corresponding to future periods will be updated. Note a subtle
but important difference between our model and a standard inventory model (see, e.g. [10]) is that we allow the operator to
observe the current error (et) before the current dispatch (gt) is made.

Empirical studies (e.g., [11]) suggests that the forecast error for wind power generation, which is the major source of the
uncertainty, follows a (truncated) Gaussian distribution. Here we assume et, for each t, is zero mean normal random vector with
prescribed covariance Σt. In numerical example, we also validate our approach against forecast errors that are not Gaussian.

B. Problem Formulation

For each unit of conventional generation dispatched, a constant cost c is incurred. We want to control the probability of the
error event of excess demand compared to available generation, i.e. {dt > gt}. The constraint in the system are the ramping
constraints of the form

r ≤ gt − gt−1 ≤ r, (2)

where r < 0 and r > 0 are constants representing the maximum ramping down and ramping up rate of generation. For
convenience, denote the feasible set as

G(g) = {g′ ≥ 0 : −r ≤ g′ − g ≤ r},

where dispatched generation is naturally required to be positive. The main optimization problem is

minimize E

[
T−1∑
t=0

cgt + ψ(dt, gt)

]
(3a)

subject to d̂t+1 = d̂t + Ctet, (3b)
gt ∈ G(gt−1) (3c)

gt = ft(d̂0, . . . , d̂t, g0, . . . , gt−1) (3d)

where ψ(dt, gt) is a risk measure that is convex in gt. In particular, we consider LOLP, which takes the form

ψ(dt, gt) =

{
∞ if P(dt > gt) > β0,

0 otherwise,

where β0 is the tolerance for the chance that the demand is more than the scheduled generation. The penalty function is also
mathematically equivalent to the constraint

P(dt − gt ≤ 0) ≥ 1− β0. (4)

This constraint is convex in current scaler form. In more general cases when net demands at multiple buses or periods are
involved, it is convex if the underlying probability distribution is log-concave (e.g. Gaussian, Laplace and see [12]). In practice,
we set β0 according to the probability that reserves would be needed. The constraint (3d) states that the dispatch decision is
causal, since gt is restricted to be a function of all the information that is available up to the current period. Since gt−1 and
d̂t completely capture the state of the system at time t, it turns out that gt only depend on gt−1, d̂t, and the statistics of the
future errors.1

III. DISPATCH SOLUTIONS

In this section, we study the optimal solution to the dynamic program (3). The results only depend on the convexity of ψ
(so various type of convex risk measures can be used). Define the cost-to-go function as

Jt(d̂t, gt−1) = min
gt∈G(gt−1)

Qt(d̂t, gt),

where Qt(d̂t, gt) is the state-action Q function

Qt(d̂t, gt) = cgt + ψ(d̂t,t, gt) + E
[
Jt+1(d̂t + Ctet, gt)

]
,

with JT (d̂T , gT−1) = 0. Regarding the property of functions Jt and Qt, the following convexity result follows from standard
arguments in [10].

Proposition III.1. For time periods t = 0, . . . , T , the Q function Qt(d̂t, gt) and cost-to-go function Jt(d̂t, gt−1) are both
convex in their arguments.

1This constraint is equivalent to requiring the function of control to be adapted to the sigma algebra generated by the current information set. We also
assume the statistics of future errors is available to the controller.



Let an unconstrained minimizer of the Q function with respect to action be St(d̂t) ∈ argmingt∈RQt(d̂t, gt), then we have
the following structural result about the optimal policy.

Theorem III.2. The threshold rule

µ?t (d̂t, gt−1)

=


St(d̂t) if (gt−1 − r)+ ≤ St(d̂t) ≤ gt−1 + r,

(gt−1 − r)+ if St(d̂t) < (gt−1 − r)+,

gt−1 + r if St(d̂t) > gt−1 + r,

is an optimal policy to problem (3).

Remark III.3. The threshold rule in Theorem III.2 follows from the convexity of the sequences of functions Jt and Qt, and
is proved by induction similar to threshold rules for celebrated inventory control models. [10].

The problem of identifying an optimal target function St(d̂t) is a hard one since the dimension of the search space, i.e., all
functions of d̂t, is infinite. As it is common practice in stochastic control literature, by restricting to the class of functions that
are linear in d̂t, the problem is reduced to a finite dimensional optimization which are usually easier to solve. However, as
demonstrated in appendix, the optimization problem for coefficients of the linear function involves minimizing an expectation
which cannot be evaluated without sampling. Other standard approximation approach is based on discretizing the state space
(e.g., the potential values d̂t can take) and using a Bellman recursion to compute the cost-to-go value for each state [10].
Since d̂t is a multiple dimension vector, discretization suffers from the curse of dimensionality. Furthermore, this approach is
entirely numerical, in the sense that other than reporting the target values, the approach gives no intuition and/or insight why
such a target value is optimal. It is also difficult to implement in existing dispatch systems as it requires a significant departure
from the current practice.

In the rest of this section, we present two methods of approximating St.

A. Chance Constrained Linear Dispatch

We replace the problem in (3) with a surrogate chance constrained problem2 as

minimize E

[
T−1∑
t=0

cgt

]
(5a)

subject to d̂t+1 = d̂t + Ctet, (5b)

P(d̂t,t − gt ≤ 0) ≥ 1− β0, (5c)
P(gt ≥ 0) ≥ 1− β1, (5d)
P(gt − gt−1 ≥ −r) ≥ 1− β2, (5e)
P(gt − gt−1 ≤ r) ≥ 1− β3, (5f)

gt = ft(d̂0, . . . , d̂t, g0, . . . , gt−1) (5g)

Comparing (3) and (5), we replaced inequalities in the hard constraint (3c) by probabilistic constraints (5d), (5e), and (5f),
respectively. There are two motivations for using a chance constrained surrogate: i) the constraint (4) is already in the form of
a chance constraint, and without the ramping constraints Eqs. (5) and (3) are equivalent if we let βk → 0 for k = 1, 2, 3 [3];
ii) we can derive a linear dispatch solution to (5) via a second order cone program.

Let d̂ =
[
d̂ᵀ

0 . . . d̂ᵀ
T

]ᵀ
, and e =

[
eᵀ

0 . . . eᵀ
T−1

]ᵀ
. Then the forecast update can be summarized as

d̂ = Ad̂0 + Ce,

where A =
[
I(T+1)×(T+1) . . . I(T+1)×(T+1)

]ᵀ
,

C =


0(T+1)×n0

0(T+1)×n1
. . . 0(T+1)×nT−1

C0 0(T+1)×n1
. . . 0(T+1)×nT−1

C0 C1 . . . 0(T+1)×nT−1

...
...

. . .
...

C0 C1 . . . CT−1

 ,
2For more information on chance constraint programming see, e.g. [13]



with nt = T − t. Affine policies are of the form

gt =

t−1∑
τ=0

Gt,τeτ + at, (6)

where Gt,τ and at are parameters to be decided. Let g =
[
gᵀ

0 . . . gᵀ
T−1

]ᵀ
, then g = Ge+a, where a =

[
a0 a1 . . . aT−1

]ᵀ
,

and

G =


01×n0 01×n1 . . . 01×nT−2

01×nT−1

G1,0 01×n1
. . . 01×nT−2

01×nT−1

G2,0 G2,1 . . . 01×nT−2
01×nT−1

...
...

. . .
...

...
GT−1,0 GT−1,1 . . . GT−1,T−2 01×nT−1

 ,

The objective function can be written as E
[∑T−1

t=0 cgt

]
= c1ᵀa. To summarize the linear inequality constraints (before taking

the probability), let

Hd
1 =


δᵀ0 01×(T+1)

δᵀ1 01×(T+1)

. . .
...

δᵀT−1 01×(T+1)

 ,
where δi ∈ R1×(T+1) is the ith coordinate vector, and

Hg
3 =

1 −1
. . . . . .

1 −1

 , Hg
4 = −Hg

3.

Then the feasible region for the original program can be written as

Hdd̂ + Hgg − y ≤ 0,

where

Hd =


Hd

1

0T×(T+1)2

0(T−1)×(T+1)2

0(T−1)×(T+12)

 ,Hg =


−IT×T
−IT×T

Hg
3

Hg
4

 ,y =


0T×1

0T×1

r1(T−1)×1

r1(T−1)×1

 .
Plugging in expressions for d̂ and g yields

Hdd̂ + Hgg − y = h + Pe ≤ 0,

where
h = HdAd̂0 − y + Hga, P = HdC + HgG.

Let Pᵀ
i be the ith row of P, then Pᵀ

i e is a Gaussian random variable with zero mean and standard deviation ‖Σ 1
2 Pi‖2. Here Σ

is the covariance matrix of e, which can be obtained from the covariance of et. The chance constraints then can be expressed
as

hi + αi‖Σ
1
2 Pi‖2 ≤ 0

where
αi =

√
2 erf−1(1− 2β′i),

with β′i equals the corresponding βk, k = 0, 1, 2, 3, according to the chance one allows constraint i to be violated. Thus the
chance constrained program can be posed as a second order cone program of parameters G and a

minimize c1ᵀa (7a)

subject to hi + αi‖Σ
1
2 Pi‖2 ≤ 0, (7b)

and solved efficiently with standard convex optimization solver.



B. Lookahead Policies

In this section we analyze and develop lookahead policies similar to MPC controllers proposed in the literature [14], except
our error assumptions are distinct and closed form results are obtained for these controllers. We start by identifying the close-
form expressions for St(d̂t) for the last two periods of the problem, which in turn will lead to a one-step lookahead policy.
In addition to LOLP, we also develop results based on value of lost load (VOLL) penalty function of the form

ψ(dt, gt) = q(dt − gt)+,

where q is a positive constant which is typically much larger than c. The following results assume that q > 3c. The proofs of
the results in this section are in the appendix.

Lemma III.4. With LOLP penalty, the optimal target at period T − 2 is

ST−2 (8)

= max
{

d̂T−2,T−2, d̂T−2,T−1 − r + Φ−1
T−2,1(1− β0), S′T−2

}
,

where S′T−2 is the solution to the equation

1 + 1(gT−2 > r)ΦT−2,1(gT−2 − r) (9)

− 1(gT−2 > r)d̂T−2,T−1φT−2,1(gT−2 − r) = 0,

where ΦT−2,1(·) and φT−2,1(·) are the cdf and pdf of eT−2,1, respectively.

Lemma III.5. With VOLL penalty, the optimal target at period T − 2 is

ST−2 (10)

= max

{
d̂T−2,T−2, d̂T−2,T−1 − r + Φ−1

T−2,1

(
q − 2c

q

)
, S′T−2

}
,

where S′T−2 is the solution to the equation

(2c− q)
+ c1(gT−2 > r)ΦT−2,T−1(gT−2 − r − d̂T−2,T−1) (11)

+ (q − c)ΦT−2,T−1(gT−2 + r − d̂T−2,T−1) = 0.

Furthermore,
S̃T−2 = max

{
d̂T−2,T−2, d̂T−2,T−1 − r + Φ−1

T−2,1

(
q−2c
q−c

)}
, (12)

is a conservative approximate to ST−2 such that

0 ≤ S̃T−2 − ST−2 ≤ Φ−1
T−2,1

(
q − 2c

q − c

)
− Φ−1

T−2,1

(
q − 2c

q

)
. (13)

Note here “conservative” means potentially more energy is dispatched reducing the risk of shortfall.

Remark III.6 (One-step lookahead policy). Computing St using Eqn. (9) or Eqn. (11) gives the optimal one-step lookahead
policy for corresponding penalty function. For simplicity, in case of VOLL penalty is used, one may instead use Eqn. (12)
which gives an accurate conservative approximate to the optimal target when q is sufficiently larger than c.

Remark III.7 (Heuristic multi-step generalization of (12)). Formulae (12) gives a conservative approximate solution to (11)
and has a clear interpretation. Looking one step ahead, the target generation level St should be at least d̂t,t to meet the
demand at current stage, and d̂t,t+1 − r plus some uncertainty margin to be able to meet the demand at next stage. This
intuition has a simple multi-step generalization:

S̃t = max

{
d̂t,t,max

τ>t

{
Φ̃−1
t,τ−t

(
q − 2c

q − c

)
− (τ − t)r + d̂t,τ

}}
,

where Φ̃t,τ−t(·) is the cdf of εt,τ =
∑τ−1
m=t em,τ−m.

When LOLP penalty is used to compute the dispatch rule, it is clear that at the unfavor event that the dispatched generation
cannot supply the net demand, certain cost is incurred for the system operator to maintain the power balance. This cost may be
associated with dispatching fast generation like spinning reserve to cover the shortfall. The cost for each unit of such shortfall



is precisely the per unit VOLL penalty q. This suggests that the LOLP tolerance β0 may be selected according to generation
cost c and VOLL penalty q.

Remark III.8 (Relating LOLP and VOLL based targets). Comparing Eqn. (8) with Eqn. (10) and Eqn. (12) suggests that
one step lookahead policy derived from LOLP penalty with 1− β0 = (q − 2c)/(q − c) is at least as conservative as one step
lookahead policy derived from VOLL penalty function.

IV. CASE STUDIES

BPA 2011 [15] data set for wind and load sequences is used for the numerical experiment. The 5 minute data is aggregated
in each hour. We solve the problem for each day under consideration, thus the decision horizon T for the example is 24. In
the total 365 days of the year, 100 days are picked at random, whose net demand profile is depicted in Figure 2(a).

The forecast errors have variances that are increasing with the forecast horizon. The empirical relation between forecast
error and forecast horizon is calculated using the empirical curve shown in Figure 1. Figure 2(b) demonstrates the forecast
vector d̂t available to the operator at different times of the day (8 a.m. and 16 p.m., at a particular day of the year). All the
previous realizations of the net demand have been observed, thus d̂t records exact net demand realized; the future net demand
is forecasted such that the forecast error has increasing variance with forecast horizon, resulting in the 95% confidence interval
increasing over time for each forecast.
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Fig. 2: Net demand data, forecast and forecast error.

To make a fair comparison for different policies, we use VOLL penalty to evaluate the performance of control. That is when
a loss of load event occurs, the additional cost according to per unit VOLL penalty q is accounted in the cost. Per unit costs
c = 50, q = 2000 are set following typical practice in CAISO. Wind generation is scaled such that total wind generation over
the day is p% of the total load, where p is the penetration level desired to simulate a scenario with penetration level p. The
ramping rates are set so that r = r and equal to 4/5 of the average of the sequence {|dt+1− dt|}T−1

t=0 to avoid trivial problem
instances where the ramping rate is too large (such that the constraint is never binding), or the ramping rate is too small (such
that the ramping constraint is always binding).



The performance of different control policies are compared against the oracle cost, which is obtained via solving a
deterministic convex optimization using the actual d sequence. Note that the oracle cost is a lower bound for the cost that
can be achieved by any policies that is derived from the partial information contained in the forecast and the distribution of
forecast error. In particular, this lower bound does not change while the forecast becomes less accurate, which is likely to be
the case when the wind penetration level increases.

Setting βk = 0.03 for each k, we evaluate the performance of lookahead and chance constrained policies using the metric of
cost ratio, i.e., the cost of using the specific policy under consideration divided by the oracle cost. For an efficient policy with
mild amount of uncertainty, we expect the cost ratio to be close to 1. The ratio should increase slowly when penetration level
increases. Figure 3 depicts the resulting average cost ratio for various policies. While the chance constrained policy is derived
assuming Gaussian forecast error, we also evaluate the cost of the policy using Laplace error (which may be the distribution
of the forecast error when certain simple predictor like persistence is used [16]) of the same standard deviation. The result
suggests that chance constrained program works well for the lower penetration range p ≤ 0.2. When the penetration level
increases, the cost ratio between chance constrained policy and the oracle cost increases slowly. The cost curves of chance
constrained policy against Gaussian and Laplace error almost overlap each other, which indicates the chance constrained policy
can be robust against different error distributions. One step lookahead policy (using target (12)3) performs poorly even when
the penetration level is low. The multi-step heuristic generalization derived in this paper has a much better performance and
somewhat closer to the chance constrained algorithm.
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V. CONCLUSION AND FUTURE WORK

This paper formulates and analyzes the problem of risk limiting dispatch with ramping constraints. We model explicitly
the forecast update and generation ramping constraints, which are two central elements of dispatch that couple the decision
problems for multiple time periods. With dynamic programming, structural results are obtained. Efficient algorithms are then
devised to solve the dispatch problem numerically. A case study with real wind data is conducted to illustrate the procedure and
the effectiveness of the proposed methods. In future work, we will generalize the framework to incorporate network constraints
and additional forward contract markets.

APPENDIX A
COMPUTE LINEAR TARGET WITH HARD CONSTRAINTS

Using a simple example, we illustrate the complexity of computing linear target with hard constraints in dynamic program-
ming. Suppose we have identified a linear function representing the optimal target for stage t+ 1, denoted as St+1(d̂t+1) =
`ᵀt+1d̂t+1 + bt+1, then the optimal control at stage t+ 1 is

g?t+1(d̂t+1, gt) = [`ᵀt+1d̂t+1 + bt+1]gt+r(gt−r)+ ,

where [x]ul = min(max(x, u), l). It follows that the state-action Q function at stage t is

Qt(d̂t, gt) = cgt + ψ(d̂t,t, gt) + EQt+1(d̂t + Ctet, g
?
t+1(d̂t+1, gt)),

and then the resulting optimization program for computing Jt involves minimizes Qt(d̂t, `
ᵀ
t d̂t+bt) over `t ∈ RT+1 and bt ∈ R.

However, it is clear that the second term is a expectation of a function of a piecewise linear function of the optimization variables,
which in general cases cannot be evaluated without sampling.

3We have also evaluated the performance of other one step lookahead target formulas. Target derived from LOLP performs worse than VOLL as the cost
evaluation is based on VOLL. VOLL targets (10) and (12) produces indifferent cost curves in all our simulations because of the merit of (13).



APPENDIX B
LOOKAHEAD POLICIES

A. Derivation of lookahead policies for VOLL penalty

The cost-to-go function at the last stage is JT is JT (d̂T , gT−1) = 0. At stage T − 1, the state-action Q function is

QT−1(d̂T−1, gT−1) = q(d̂T−1,T−1 − gT−1)+ + cgT−1,

and the cost-to-go function is

JT−1(d̂T−1, gT−2) =


cd̂T−1,T−1 if (gT−2 − r)+ < d̂T−1,T−1 ≤ gT−2 + r,

c(gT−2 − r)+ if d̂T−1,T−1 ≤ (gT−2 − r)+,

qd̂T−1,T−1 + (c− q)(gT−2 + r) if d̂T−1,T−1 > gT−2 + r.

It follows that the state-action Q function at stage T − 2 is

QT−2(d̂T−2, gT−2)

=q(d̂T−2,T−2 − gT−2)+ + cgT−2

+ E
[
JT−1(d̂T−2 + CT−2eT−2, gT−2)

]
=q(d̂T−2,T−2 − gT−2)+ + cgT−2

+ cd̂T−2,T−1P
[
(gT−2 − r)+ − d̂T−2,T−1 < eT−2,1 ≤ gT−2 + r − d̂T−2,T−1

]
+ c(gT−2 − r)+P

[
eT−2,1 ≤ (gT−2 − r)+ − d̂T−2,T−1

]
+
[
qd̂T−2,T−1 + (c− q)(gT−2 + r)

]
P
[
eT−2,1 > gT−2 + r − d̂T−2,T−1

]
+ E

{
eT−2,1

{
c1
[
(gT−2 − r)+ − d̂T−2,T−1 < eT−2,1 ≤ gT−2 + r − d̂T−2,T−1

]
+ q1

[
eT−2,1 > gT−2 + r − d̂T−2,T−1

]}}
.

A subgradient with respect to gT−2 can be calculated

∇gQT−2(d̂T−2, gT−2) =

(2c− q)− q1(d̂T−2,T−2 > gT−2) + c1(gT−2 > r)ΦT−2,T−1(gT−2 − r − d̂T−2,T−1) + (q − c)ΦT−2,T−1(gt−2 + r − d̂T−2,T−1).

By setting the above expression to 0, we recover the optimal target ST−2 as the root of the corresponding equation.
We proceed to analyze the equation ∇gQT−2(d̂T−2, gT−2) = 0. Put

f(gT−2) = (2c−q)−q1(d̂T−2,T−2 > gT−2)+c1(gT−2 > r)ΦT−2,T−1(gT−2−r−d̂T−2,T−1)+(q−c)ΦT−2,T−1(gt−2+r−d̂T−2,T−1),

it is clear that f is nondecreasing in gT−2. We show ST−2 ≥ d̂T−2,T−2, and

d̂T−2,T−1 − r + Φ−1
T−2,1

(
q − 2c

q

)
≤ ST−2 ≤ d̂T−2,T−1 − r + Φ−1

T−2,1

(
q − 2c

q − c

)
.

First suppose ST−2 < d̂T−2,T−2, then4

f(ST−2) ≤ 2c− 2q + c+ (q − c) = 2c− q < 0,

if 2c < q. Now suppose ST−2 < d̂T−2,T−2 is in force, we have

f

(
d̂T−2,T−1 − r + Φ−1

T−2,1

(
q − 2c

q

))
< (2c− q) + c

q − 2c

q
+ (q − c)q − 2c

q
= 0,

and
f

(
d̂T−2,T−1 − r + Φ−1

T−2,1

(
q − 2c

q − c

))
> (2c− q) + (q − c)q − 2c

q − c
= 0,

which completes the proof.

4Note the following derivation holds actually for all subgradients.



B. Derivation of lookahead policies for LOLP penalty

For notational ease, we work with extended reals R = R ∪ {−∞,+∞} and write LOLP penalty as

ψ(dt, gt) =

{
M if P(dt > gt) > β,

0 otherwise,

where M = ∞. At the last stage, t = T , the cost-to-go function is JT (d̂T , gT−1) = 0. At stage T − 1, the state-action Q
function is

QT−1(d̂T−1, gT−1) = cgT−1 +M1(P(dT−1 > gT−1 > β)),

where given dT−1 is already observed at stage T − 1, i.e., dt = d̂T−1,T−1 is a deterministic quantity conditioning on the
current information, the last indicator is equivalent to 1(d̂T−1,T−1 > gT−1). The “complication” involved here will have a
clear value when we roll back one stage. The cost-to-go function is then

JT−1(d̂T−1, gT−2) = min
gT−1∈G(gT−2)

cgT−1 +M1(P(d̂T−1,T−1>gT−1
) > β)

= cmax(d̂T−1,T−1, (gT−2 − r)+) +M1(P(d̂T−1,T−1 > gT−2 + r) > β).

The next to last stage, T − 2, has associated state-action Q function

QT−2(d̂T−2, gT−2) = cgT−2 +M1(P(d̂T−2,T−2 > gT−2) > β) + EJT−1(d̂T−2 + CT−2eT−2, gT−2)

= cgT−2 +M1(P(d̂T−2,T−2 > gT−2) > β) +M1(P(d̂T−2,T−1 + eT−2,1 > gT−2 + r) > β)

+ Ecmax(d̂T−2,T−1 + eT−2,1, (gT−2 − r)+),

where we used the fact that

E1(P(d̂T−2,T−1 + eT−2,1 > gT−2 + r) > β) = 1(P(d̂T−2,T−1 + eT−2,1 > gT−2 + r) > β)

because the quantity inside the indicator is deterministic. Then the cost-to-go function is

JT−2(d̂T−2, gT−3) = min
gT−2∈G(gT−3)

{
cgT−2 +M1(P(d̂T−2,T−2 > gT−2) > β) +M1(P(d̂T−2,T−1 + eT−2,1 > gT−2 + r) > β)

+ Ecmax(d̂T−2,T−1 + eT−2,1, (gT−2 − r)+)

}

= min
gT−2∈G(gT−3)

gT−2>d̂T−2,T−2

P(d̂T−2,T−1+eT−2,1>gT−2+r)>β

{
cgT−2 + Ecmax(d̂T−2,T−1 + eT−2,1(gT−2 − r)+)

}

= min
gT−2∈G(gT−3)

gT−2>d̂T−2,T−2

gT−2≥d̂T−2,T−1−r+Φ−1
T−2,1(1−β)

{
cgT−2 + Ecmax(d̂T−2,T−1 + eT−2,1(gT−2 − r)+)

}
.

Put f(g) = cg + Ecmax(d̂T−2,T−1 + eT−2,1, (g − r)+), then

f(g) = cg + c

∫
R

max(d̂T−2,T−1 + e(g − r)+)φT−2,1(e)de

= cg + c(g − r)+

∫ (g−r)+

−∞
φT−2,1(e)de+ c

∫ ∞
(g−r)+

(d̂T−2,T−1 + e)φT−2,1(e)de

It follows that
∇gf(g) = c+ c1(g > r)ΦT−2,T−1(g − r)− c1(g > r)d̂T−2,T−1φT−2,1(g − r).

Thus S′T−2 is the root of ∇gf(g) = 0. The additional constraints involving LOLP implies the optimal target at stage T − 2 is

ST−2 = max
{

d̂T−2,T−2, d̂T−2,T−1 − r + Φ−1
T−2,1(1− β), S′T−2

}
.
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