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Abstract—The optimal power flow (OPF) problem is funda-
mental to power system planing and operation. It is a non-
convex optimization problem and the semidefinite programing
(SDP) relaxation has been proposed recently. However, the SDP
relaxation may give an infeasible solution to the original OPF
problem. In this paper, we apply the alternating direction method
of multiplier method to recover a feasible solution when the
solution of the SDP relaxation is infeasible to the OPF problem.
Specifically, the proposed procedure iterates between a convex
optimization problem, and a non-convex optimization with the
rank constraint. By exploiting the special structure of the rank
constraint, we obtain a closed form solution of the non-convex
optimization based on the singular value decomposition. As a
result, we obtain a computationally tractable heuristic for the
OPF problem. Although the convergence of the algorithm is not
theoretically guaranteed, our simulations show that a feasible
solution can be recovered using our method.

NOTATION

i is the imaginary unit. W ∗ is the Hermitian of W , Tr (W )
is a trace of W , and ‖W‖F =

√
Tr (WW ∗) is the Frobenius

norm of W . The generalized inequality, W � 0, means W is
a positive semidefinite matrix.

The projection operator ΠS(W ) = argmin
Z∈S

‖W − Z‖2F , is

the projection of W onto the set S.

I. INTRODUCTION

The optimal power flow (OPF) problem optimizes certain
objective such as power loss and generation cost subject
to power flow equations and operational constraints. It is a
fundamental problem because it underlies many power system
operations and planning problems such as economic dispatch,
unit commitment, state estimation, stability and reliability
assessment, volt/var control, demand response.

The OPF problem is hard to solve due to its nonconvex
feasible set. Recently, convex relaxations of the OPF problem
have been proposed. In [1], semidefinite programming (SDP)
relaxation is proposed and the non-convex, rank 1 constraint
is dropped such that the resulting problem becomes convex.
If the solution of the SDP relaxation is feasible for the OPF
problem, which means its rank is 1, then a global optimum
of the OPF problem can be recovered. The SDP relaxation
is called exact in this case. In [2], Lavaei, et. al numerically
show that the SDP relaxation is exact for all the IEEE standard
test networks and sufficient conditions have been derived in
[3], [4] that guarantees the exactness of the SDP relaxation.

On the other hand, second order cone (SOCP) relaxation [5]
is proposed to solve the nonconvex OPF problem for radial
network that is more efficient and numerically stable than SDP
relaxation. In [6], [7], sufficient conditions are derived that
guarantee the exactness of the SOCP relaxation under mild
conditions for radial network. These convex relaxation based
approaches attain much of research interest, see [8], [9] and
references therein.

However, SDP/SOCP relaxation is not always exact, espe-
cially when the underlying network is not radial. Especially,
[10] points out the semidefinite relaxation may fail to recover
the rank one optimal solution in the distribution network which
implies we can’t extract the feasible solution of the OPF.

To obtain a feasible optimal solution of the OPF, the poly-
nomial optimization approach based on the moment relaxation
has been proposed in [11] and [12], and the branch and
bound method for OPF has been investigated in [13]. Although
these global optimization approaches guarantee the global
optimal solution which is also a feasible solution of OPF, but
these algorithms may not be computationally tractable. For
example, in the worst case, the moment relaxation requires
the exponentially many decision variable which makes the
optimization computationally intractable.

To keep the computational complexity tractable, while en-
joying convexity of the problem, the convex heuristics for
recovering the rank one solution has been proposed in [14],
and [15]. In [14], the authors perturbed the objective function,
and this technique is guaranteed to work in some cases, but in
general case we still do not have a rank one feasible solution.
In [15], the authors successively solve the approximate convex
program to promote rank sparsity in the solution, but still there
is no guarantee on the rank one recovery.

In this paper, we propose another heuristic to obtain a rank
one solution of the OPF based on the alternating direction
method of multipliers (ADMM) [16]. The ADMM method
when applied to a convex program, generates a sequence
of the convex programs combined with the dual update that
approximately solves the targeting optimization. For a convex
problem, it is guaranteed to converge to a global optimal
solution and has been used to develop distributed algorithm
for the OPF problem in [17], [18], [19]. In contrast, for a non-
convex problem, each step requires the non-convex program
which is hard to solve, and there is no convergence result,
so it is not an interesting algorithm for a general non-convex



optimization. However, the rank one constraint in the OPF
makes the ADMM particularly interesting.

When we separate the rank one constraint in the OPF
problem by defining auxiliary variable and apply ADMM to
solve this modified, but equivalent version of the OPF, then
there exists a closed form solution to handle non-convexity in
the OPF problem through the singular value decomposition.
In other words, in each step, we need to solve a convex
program without the rank constraint, and the polishing step
tries to satisfy the rank one requirement through singular
value decomposition. Therefore we still keep the convexity of
the problem, but unlike other convex heuristics, we explicitly
enforce the rank one requirement. If it converges, a rank one
feasible solution can be obtained.

The main advantage is that we keep the convexity of the
problem, and guaranteed to recover the feasible solution of
the OPF, but the main drawback is no guarantee on the
convergence. In this sense, our method can be seen as a local
optimization heuristic for the OPF.

This paper is organized as follows. Section II introduces the
bus injection model of the optimal power flow problem, and
the alternating direction method of multipliers method. Section
III proposes the ADMM based heuristic for the OPF, section
IV contains a numerical simulation of our proposed algorithm
and section V concludes the paper.

II. PROBLEM FORMULATION

A. Bus Injection Model

Consider a power network consist of a set of buses N
and a set of lines E connecting those buses. For each bus
i ∈ N , let Vi and Ii represent the complex voltage and current
respectively. Let Si := ViI

∗
i = Pi + iQi denote the net com-

plex power injection, which is defined the generation minus
demand. Denote a variable without subscript as a column vec-
tor, e.g. V = (V1, V2, · · · , VN )T and I = (I1, I2, · · · , IN )T .
For each line (i, j) ∈ E , let yij = gij + ibij represent its
admittance. Let Ni := {j | (i, j) ∈ E} represent the set of
neighbors of i. The admittance matrix Y ∈ C|N |×|N| then is
defined as

Yij =


∑
i∈Ni

yij if i = j
−yij if (i, j) ∈ E
0 otherwise.

The Kirchoff’s law says that

Ii =
∑
j∈Ni

(Vi − Vj)yij i ∈ N ,

which is equivalent to I = Y V . The bus injection model
captures the relation between the power injection Si and the
voltage Vi at each bus i:

Si = ViI
∗
i =

∑
j∈Ni

Vi(Vi − Vj)∗y∗ij i ∈ N . (1)

B. OPF and SDP relaxation

The OPF problem seeks to optimize certain objective, e.g.
total line loss, or generation cost, subject to power flow
equations (1) and various operational constraints. We consider
an objective function of the following form:∑

k∈N

fk(|Vi|, Pi).

For instance,
• To minimize total line loss, we can set fk(|Vi|, Pi) = Pi

for each i ∈ N .
• To minimize generation cost, we can set fk(|Vi|, Pi) =
ci2P

2
i +ci1Pi+ci0 for each i ∈ N , where ci2 > 0, ci1, ci0

are given.1

or weighted sum of these functions.
From the operational requirement, the power injection at

each bus i ∈ N is also restricted to some prescribed region:

Pmin
i ≤ Pi ≤ Pmax

i , Qmin
i ≤ Qi ≤ Qmax

i i ∈ N . (2)

For example, if the ith bus does not have generators, and the
demand power is P di , then the constraint becomes −P di ≤
Pi ≤ −P di , which implies the net power injection at the ith
bus should match the demand. If the ith bus has a generator
with operational constraint P gi ≤ P gi ≤ P

g

i , where P gi is the
generation, then the constraint becomes P gi − P di ≤ Pi ≤
P
g

i − P di .
The voltage magnitude at each load bus i ∈ N needs to be

maintained within a prescribed region, i.e.

V min
i ≤ |Vi| ≤ V max

i . (3)

Typically the voltage magnitude is allowed to deviate by 5%
from its nominal value, i.e. V min

i = 0.95 and V max
i = 1.05.

Finally, we can also include the line capacity constraint,

|Iij | = |(Vi − Vj)yij | = |Vi − Vj ||yij | ≤ Iij
which is equivalent to

|Vi − Vj | ≤ ∆V max
ij ,

where ∆V max
ij = Iij/|yij |.

The OPF problem can be written as

min
P,Q

∑
k

fk(|Vi|, Pi)

s.t. Si = Pi + iQi =
∑
j∈Ni

Vi(Vi − Vj)∗y∗ij i ∈ N ,

Pmin
i ≤ Pi ≤ Pmax

i i ∈ N ,
Qmin
i ≤ Qi ≤ Qmax

i i ∈ N ,
V min
i ≤ |Vi| ≤ V max

i i ∈ N ,
|Vi − Vj | ≤ ∆V max

ij (i, j) ∈ E .

(4)

1In principle, we formulate the quadratic cost as a function of generation,
say ci2(P

g
i )

2 + ci1(P
g
i ) + ci0, where P g

i is the generation at the ith bus.
However, since the demand P d

i is known, and Pi = P g
i − P d

i , we can
manipulate the coefficient ci2, ci1, and ci0 to find an equivalent quadratic
cost in terms of the net power injection Pi.



Note that this formulation is non-convex due to the first
quadratic equality. To reformulate this problem as a rank
constrained optimization, we need to express Si in terms of
the node voltage Vi. Denote ei =

[
0, · · · , 1, · · · , 0

]T
is the

standard basis of Cn, of which entries are zero except ith
entry.

From the definition of the admittance matrix Y , we have

Si = e∗i V (Y V ei)
∗ = Tr (V V ∗Y ∗eie

∗
i )

|Vi|2 = (V V ∗)ii,

|Vi − Vj |2 = (V V ∗)ii + (V V ∗)jj − (V V ∗)ij − (V V ∗)ji.

Therefore, by defining Φi := Y ∗eie
∗
i , and W = V V ∗, we

arrive at

min
W

f0(W ) =
∑
k

fk(Tr (Wii) ,Re {Tr (WΦi)})

s.t. Pmin
i ≤ Re {Tr (WΦi)} ≤ Pmax

i i ∈ N ,
Qmin
i ≤ Im {Tr (WΦi)} ≤ Qmax

i i ∈ N ,
(V min
i )2 ≤Wii ≤ (V max

i )2 i ∈ N ,
Wii +Wjj −Wij −Wji ≤ (∆V max

ij )2 (i, j) ∈ E ,
W � 0, rankW ≤ 1.

(5)
Here the last requirement W � 0, rankW ≤ 1 is

equivalent to W = V V ∗.
Notice that this optimization is non-convex because of the

rank constraint rankW ≤ 1. The SDP relaxation [1] removes
this rank one requirement to make the problem convex.

C. The alternating direction of the method of multiplier

ADMM blends the decomposability of dual decomposition
with the superior convergence properties of the method of
multipliers [16]. It solves optimization problem of the form:

min
x∈Kx,z∈Kz

f(x) + g(z)

s.t. Ax+Bz = c

where Kx,Kz are convex sets. Let λ denote the Lagrange
multiplier for the constraint Ax+Bz = c. Then the augmented
Lagrangian is defined as

Lρ(x, z, λ) := f(x) + g(z) + λT (Ax+Bz − c)
+
ρ

2
‖Ax+Bz − c‖2,

where ρ ≥ 0 is a constant. ADMM consists of the iterations:

xk+1 ∈ arg min
x∈Kx

Lρ(x, z
k, λk) (6a)

zk+1 ∈ arg min
z∈Kz

Lρ(x
k+1, z, λk) (6b)

λk+1 = λk + ρ(Axk+1 +Bzk+1 − c) (6c)

Compared to dual decomposition, ADMM is guaranteed to
converge to an optimal solution under less restrictive condi-
tions. Let

rk := ‖Axk +Bzk − c‖ (7a)
sk := ρ‖ATB(zk − zk−1)‖ (7b)

They can be viewed as the residuals for primal and dual
feasibility. Assume:
• A1: f and g are closed proper and convex.
• A2: The unaugmented Lagrangian L0 has a saddle point.

The correctness of ADMM is guaranteed by the following
result in [16, Chapter 3].

Proposition 1 ([16]). Suppose A1 and A2 hold. Let p∗ be the
optimal objective value. Then

lim
k→∞

rk = 0, lim
k→∞

sk = 0

implying

lim
k→∞

f(xk) + g(zk) = p∗

III. AN ADMM HEURISTIC FOR THE OPF

In this section, we apply the ADMM method to derive a
heuristic for the nonconvex OPF problem (5). Unlike ADMM
for the convex problem, here we don’t have a global conver-
gence nor a convergence to a global optimum.

Let C be the feasible set of (5) without the rank constraint.
To apply an ADMM heuristic, we transfer the rank constraint
to another variable:

minimize
W,Z

f0(W )

subject to W ∈ C
Rank(Z) ≤ 1

W = Z.

(8)

Since W = Z, this formulation is exactly equivalent to (5).
ADMM tries to solve (5) using the Augmented Lagrangian:

L(W,Z,U) := f0(W ) + Tr (Λ∗(W − Z)) +
ρ

2
‖W − Z‖2F .

Here ρ is a tuning parameter, and Λ is a dual variable
corresponding to the equality constraint W = Z. To find a
saddle point of L, ADMM iterates following steps:

1) W -minimization: W k+1 = argmin
W∈C

L(W,Zk,Λk),

2) Z-minimization: Zk+1 = argmin
Rank(Z)≤1

L(W k+1, Z,Λk),

3) Λ-update: Λk+1 = Λk + ρ(W k+1 − Zk+1),

until some stopping criterion (which we will describe later) is
satisfied.

Notice that the W -minimization step is a convex program,
but the Z-minimization step is not a convex problem due to the
rank constraint. This is the reason why we usually don’t apply
the ADMM method to a non-convex problem. It increases
the problem complexity since we are required to solve a
sequence of a non-convex problem, but we can’t get any
benefit from this procedure. However, the rank constraint helps
us to come up with the tractable non-convex minimization,
hence the ADMM provides a sequence of convex program
which approximately solves the original non-convex OPF.



Let us formulate Z-minimization step explicitly. Since the
objective function is given by,

L(W k+1, Z,Λk) =
ρ

2
‖Z −W k+1 − 1

ρ
Λk‖2F + f0(W k+1)

+Tr
(
(Λk)∗W k+1

)
− 1

2ρ
‖Λk‖2F ,

and only the first term depends on Z. Therefore Z-
minimization is equivalent to the following minimization:

minimize
Z

‖Z − (W k+1 +
1

ρ
Λk)‖2F

subject to Rank(Z) ≤ 1.
(9)

This is precisely the projection of W k+1 + 1
ρΛk onto a rank

constrained set. The projection of a point onto a non-convex set
is usually NP-hard, but in this case, the Eckart-Young theorem
provides an analytical solution for this projection.

Theorem 2 (Eckart-Young theorem). Let the singular value
decomposition of X =

∑
i σiuiv

∗
i , where σ1 ≥ σ2 ≥ · · · .

Then, the projection, ΠrankZ≤1(X) = σ1u1v
∗
1 .

Proof. Since rank(Z) ≤ 1, there exists a vector u, v ∈ Cn
such that Z = uv∗, where ‖u‖2 = 1. Since σ1 is the largest
singular value, we have, ‖Xu‖22 ≤ σ2

1‖u‖22 = σ1. Therefore,

‖X − Z‖2F = Tr ((X − uv∗)(X − uv∗)∗)
= Tr (XX∗) + (v −X∗u)∗(v −X∗u)− u∗X∗Xu
≥

∑
i=1

σi − ‖Xu‖22 ≥
∑
i=1

σi − σ1 =
∑
i=2

σi,

for all Z such that rankZ ≤ 1. Now it is routine to check
that this lower bound is achieved by Zopt = σ1u1v

∗
1 .

Therefore, the hard, non-convex optimization can be done
exactly. As we point out, this is not the usual case, and the
special structure in the rank constraint helps us to solve the
non-convex minimization step exactly.

Another important property of our algorithm is that if
the initial iterates Z0,Λ0 are Hermitian matrices, then all
W k, Zk,Λk are Hermitian matrices:

Proposition 3. Suppose Z0,Λ0 are Hermitian matrices. Then
for all k ≥ 0, (W k, Zk,Λk) are Hermitian matrices.

Proof. We can prove this by induction. Suppose Zk,Λk are
Hermitian matrices. Since the feasible set C requires W k+1 �
0, W k+1 is Hermitian. Since W k+1 + Λk/ρ is Hermitian,
its singular value decomposition has the form

∑
i σiuiu

∗
i .

Therefore the Zk+1 is also Hermitian. Since Λk+1 is a sum
of Hermitian matrices, it is also Hermitian.

Since we will choose Z0 = Λ0 = 0 as an initial iterate,
we will assume that every matrices are Hermitian from now
on. This implies the singular value decomposition becomes an
eigenvalue decomposition.

A. Feasible point
The convergence of the ADMM heuristic for a non-convex

problem is still an open question [16]. However, if it con-
verges, then we are guaranteed to have a rank one feasible
point of the OPF.

Proposition 4. Let (W ∗, Z∗,Λ∗) be the equilibrium point of
the ADMM. Then W ∗ is a rank one feasible point of the OPF.

Proof. By definition, the (W ∗, Z∗,Λ∗) is an equilibrium point
if and only if,

W ∗ = argmin
W∈C

L(W,Z∗,Λ∗)

Z∗ = argmin
rank(Z)≤1

L(W ∗, Z,Λ∗)

Λ∗ = Λ∗ + ρ(W ∗ − Z∗).

From the third equation, we can immediately conclude that
W ∗ = Z∗. Since rank(Z∗) ≤ 1, so as rank(W ∗) ≤ 1.
Finally, since W ∗ ∈ C, we can conclude that W ∗ is a rank
one feasible point in the optimal power flow problem.

B. Stopping criterion and ρ
For the stopping criterion, we use the one from [16]. Let us

define the primal, and dual residual:

Rk = W k − Zk

Sk = ρ(Zk+1 − Zk).

The primal residual Rk measures the difference between
W k and the rank one solution Zk, and the dual residual
Sk measures the progress on the Zk+1 and Zk. When the
algorithm converges, Rk and Sk should be zero. This gives
rise to the following stopping criterion:

‖Rk‖F ≤ εpri,

‖Sk‖F ≤ εdual.
(10)

In other words, we terminate our algorithm when the above
two stopping criterions are satisfied.

Lastly, the choice of ρ can be automated based on these
residuals. For the details, refer [16].

C. Overall algorithm
By completing the square, we can summarize the W -

minimization as follows:

min
W

f0(W ) +
ρ

2
‖W − (Zk − 1

ρ
Λk)‖2F

s.t. Pmin
i ≤ Re {Tr (WΦi)} ≤ Pmax

i i ∈ N ,
Qmin
i ≤ Im {Tr (WΦi)} ≤ Qmax

i i ∈ N , (11)

(V min
i )2 ≤Wii ≤ (V max

i )2 i ∈ N ,
Wii +Wjj −Wij −Wji ≤ (∆V max

ij )2 (i, j) ∈ E ,
W � 0.

Although the objective function is not linear in W , we can
make it linear by introducing slack variables. For f0, refer
[2], and for the Frobenius norm:

‖W − T‖2F ≤ t⇔
[

t vec(W − T )
(vec(W − T ))

∗
I

]
� 0,



where vec(·) is the vectorization of the matrix. Therefore the
optimization (11) is in fact a semidefinite program.

Notice that when ρ = 0, the optimization (11) is a SDP
relaxation of the OPF. When ρ > 0, at each iteration, we
reshape the objective function by adding ”damping” term
ρ
2‖W − (Zk − 1

ρΛk)‖2F to make W close enough to the
Zk − 1

ρΛk.
One can imagine that it would be more natural to enforce

W k close to Zk rather than Zk− 1
ρΛk, since rankZk ≤ 1. If

we do this, then the entire procedure looks like an alternating
projection which tries to find a point in the intersection of the
convex set and the non-convex set, and we can imagine that
it is highly likely to stuck at the point which is not in the
intersection because one of the alternating set is not convex.
The novelty in the ADMM method is the dual variable Λk

which forces W = Z in the limit. This helps us not to get
trapped, but the price we pay is a possible oscillation.

Now we summarize our heuristic for the non-convex OPF.

An ADMM heuristic:
1) Set Λ0 = Z0 = 0, ρ = ρ0, and k = 0.
2) Obtain W k+1 by solving SDP (11).
3) Zk+1 = σ1v1v

∗
1 , where σ1, v1 are the top singular

value/vector of W k+1 + 1
ρΛk.

4) Λk+1 = Λk + ρ(W k+1 − Zk+1).
5) Terminate if the stopping criterion (10) is satisfied.
6) Let k = k + 1, and go to the step 2.

IV. CASE STUDIES

For numerical calculation ,we use SDPT3 [20], combined
with the problem parser, YALMIP [21]

A. Two bus network

Fig. 1: Two Bus network

Consider the two bus network in Fig. 1, where
(p1, q1), (p2, q2) are the complex power injection, V1, V2 are
the complex voltage at bus 1 and 2 and Y12 is the line
impedance. For simplicity, assume |V1| = |V2| = 1 and then
the feasible power injections are constrained on a ellipse given
by

(p1 + p2 − 2g)2

4g2
+

(p1 − p2)2

4b2
= 1,

which is equivalent to the rank 1 constraint on W . In Fig. 2a,
the feasible ellipse is illustrated using blue doted lines. It is
shown in [3] that the feasible region becomes the two disjoint
regions under some reactive power constraints on q1, q2, as
shown by the black lines on the ellipse. Then the feasible set
after relaxing the rank 1 constraints on W becomes the red

(a) None-rank 1 solution (b) Rank 1 solution is recovered

Fig. 2: Illustration of two bus network.

Bus 1 2 3 4 5 6 7 8 9 10
Pmin −16 −14 −18 0 0 0 −20 −20 0 0
Pmax −16 −14 −18 ∞ ∞ ∞ −20 −20 20 ∞
Qmin −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
Qmax ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

TABLE I: Power constraint for the 10 bus ring network.

region. In this case, if the level set of the objective hits the
boundary of the feasible set as in Fig. 2a, we cannot obtain a
rank 1 solution and the SDP relaxation fails to work.

In Fig. 2b, we show how the feasible solution is recovered
by our heuristic algorithm. We begin with the solution with
ρ = 0, denoted by W . Then we project W onto the ellipse,
whose solution is Z. We find that the distance between W and
Z decrease as we proceed our algorithm and eventually they
coincide on the feasible power injection region on the ellipse,
denoted by the red star in Fig. 2b. Hence, a feasible power
injection (rank 1 solution) is received in this simple network.

B. 10 bus system

We consider the 10 bus system from [14]. Here the mesh
network is a ring with 10 nodes and 10 links. All units are
in 100 MVA. We assume 4,5,6,9, and 10 bus have generators,
and the corresponding cost function is a linear function of Pi,
fk(Pi) = ciPi, where

c4 = c5 = c10 = 1, c6 = c9 = 2.

The line admittance values are y1,2 = y3,4 = y4,5 = y10,1 =
−i, y2,3 = y6,7 = y9,10 = −2i, and y5,6 = −3i, y7,8 = −0.5i,
and y8,9 = −0.7i. The power demand at the load bus is given
by

P d1 = 16, P d2 = 14, P d3 = 18, P d7 = P d8 = 20.

The voltage constraint is V min
i = 0.95, and V max

i = 1.05. We
put the generator operating constraint at the 9th bus, P9 ≤ 20.
See the Table I for the summary of constraints on the power
injection.

Finally we put the line constraint on all lines: |Vi − Vj | ≤
∆V max for all (i, j) ∈ E . By changing ∆V max, we control
the size of the feasible set. In our simulation, we parameterize
∆V max = 2(1 − cos(θmax)), where θmax is the maximum
allowable phase difference between buses.



θmax rankW sdp f0(W sdp) rankW admm f0(W admm)
10◦ 10 110.6 N/A N/A
20◦ 10 88.0 1 88.0
30◦ 10 88.0 1 88.0
40◦ 10 88.0 1 88.0
50◦ 10 88.0 1 88.0

TABLE II: Simulation results, W sdp is the solution from the
SDP relaxation, and W admm is the solution from our method.
When θmax = 10◦, our method fails to converge.

θmax P4 P5 P6 P9 P10

10◦ 18.1 19.2 15.7 6.9 28.0
20◦ 24.1 31.9 0.0 0.0 32.0
30◦ 26.8 30.7 0.0 0.0 30.5
40◦ 27.7 30.1 0.0 0.0 30.3
50◦ 28.1 29.7 0.0 0.0 30.2

TABLE III: Generation profile from the SDP relaxation. This
profile is not implementable because the optimal solution is
not feasible (rank 10).

θmax P4 P5 P6 P9 P10

10◦ N/A N/A N/A N/A N/A
20◦ 25.1 33.1 0.0 0.0 29.8
30◦ 28.4 31.9 0.0 0.0 27.7
40◦ 31.8 31.1 0.0 0.0 25.1
50◦ 35.4 30.7 0.0 0.0 21.9

TABLE IV: Generation profile from our method. This profile
is implementable because the rank of the solution is 1

Table II shows the rank of the solution from the SDP
relaxation, and the solution from our heuristic method. In-
deed, when our heuristic converges, it recovers the rank one
solution although the SDP relaxation always generate a full
rank solution.2 Moreover, since our heuristic attains the lower
bound of the objective value, we can claim that it recovers the
global optimal solution of which rank is one.

This example shows that our heuristic can be used to find
a hidden rank one solution of the OPF where the semidefinite
relaxation fails to find an existing rank one optimal solution.

V. CONCLUSION

In this paper, we propose a non-convex ADMM heuristic
for the OPF. By introducing a redundant variable whose rank
is one, we can split the minimization into two steps, where the
first step is a convex optimization, and the second step is a rank
constrained minimization. Then, we show that the second step,
a non-convex optimization, can be carried out analytically. The
convergence is still an open question, but our numerical studies
show that the effectiveness of our method, that is the SDP
relaxation of the OPF returns a full rank solution whereas
our method returns a rank one solution when it converges.
Moreover, we observe the convergence of our heuristic under
the existence of hidden rank one solution in the SDP relaxation
of the OPF. Inspired by this, the convergence proof under this

2Minimum eigenvalue of the solution from the SDP relaxation is greater
than 0.01 in all cases.

assumption, the existence of rank one global optimal solution,
is currently investigated to show that our heuristic can be used
to recover the hidden rank one solution in the SDP relaxation.
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