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Abstract— This paper considers power distribution networks
with distributed energy resources and designs an incentive-based
algorithm that allows the network operator and customers to
pursue given operational and economic objectives while con-
currently ensuring that voltages are within prescribed limits.
Heterogeneous DERs with continuous and discrete control com-
mands are considered. We address four major challenges: discrete
decision variables, non-convexity due to a Stackelberg game
structure, unavailability of private information from customers,
and asynchronous operation. Starting from a non-convex setting,
we develop a distributed stochastic dual algorithm that solves
a relaxed problem, and prove that the proposed algorithm
achieves the global optimal solution of the original problem on
average. Feasible values for discrete decision variables are also
recovered. Stability of the algorithm is analytically established
and numerically corroborated.

Index Terms— Discrete variables, distributed stochastic dual
algorithm, convex relaxation, voltage regulation.

I. INTRODUCTION

Market-based mechanisms to control distributed energy
assets have been recently developed with the objective of in-
centivizing customers to provide ancillary services to the grid
while maximizing their own economic benefits; see, e.g., [1]–
[3] and pertinent references therein. However, demand-
response and market-based problem formulations (e.g., [1],
[4]) do not generally consider power flows in the distribution
network (hence, they are oblivious to the voltage fluctuations
that emerge from adjustments in the DER output power gen-
erated/consumed) and, oftentimes, stability is not analytically
proven. The frameworks proposed in, e.g., [5], [6] offer a
way to account for the nonlinear power flows, but either
their applicability is limited to a restricted class of network
topologies or they consider only controllability of real powers.

In our previous work [7], we proposed an incentive-based
algorithm that allows the network operator and customers to
pursue given social welfare optimization while ensuring that
voltage magnitudes are within the prescribed limits. We for-
mulated a social-welfare maximization problem that captures
a variety of optimization objectives, hardware constraints, and
the nonlinear power-flow equations governing the physics of
distribution systems; for the latter, a linear approximation of
the nonlinear power-flow equations (see e.g., [8], [9]) is used to
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enable the development of a computationally-tractable optimal
coordination method. To solve a well-defined but non-convex
social-welfare maximization problem, we addressed two major
challenges in [7]: 1) We reformulated the non-convex social-
welfare maximization problem into a convex problem, which
is proved to be an exact convex relaxation; and 2) We proposed
an iterative distributed algorithm wherein customers and the
network operator achieve consensus on a set of net real and
reactive power that optimizes the objectives of both parties
while ensuring that voltages are within the prescribed limits.
In our design, customers are not required to share private
information regarding their cost functions and the operating
region of their loads/generators with the network operator.

However, [7] only considers continuous decision variables
(i.e., continuous DER commands), whereas in practice many
appliances operate with discrete decision variables—e.g., ca-
pacity banks, thermostatically controlled loads (TCLs), and
electric vehicles (EVs). In this work, we extend the incentive-
based framework developed in [7] to include discrete decision
variables. In literature of power system, discrete variables are
dealt with either in a deterministic way [10], [11] which
usually generates suboptimal solutions, or in a stochastic
way, e.g., [12], [13] which often lacks rigorous analytical
performance characterization.

In this paper we address discrete decision variables with
a stochastic algorithm, and we establish analytical results
for its convergence. Specifically, we first relax the discrete
feasible sets to their convex hull. We then propose a distributed
stochastic dual algorithm to solve the relaxed problem while
recovering feasible power set points for discrete devices at ev-
ery iteration, where two timescales are considered for devices
of different updating frequencies. Eventually, we prove that
the proposed algorithm converges to a random variable whose
mean value coincides with the optimal solution of the relaxed
problem. We also characterize the variance of the resultant
voltage due to the stochastic process of discrete power rate
recovering, and design a robust implementation for the voltage
bounds accordingly. For completeness, notice that alternative
ways to deal with discrete variables can be found in, e.g., [10]
and [12] (with other types of optimality claims, if any).

The rest of this paper is organized as follows. Section II
models the system and formulates the problem. Section III
relaxes the problem, and proposes a distributed algorithm
together with convergence analysis and performance char-
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acterization. Section IV provides numerical examples, and
Section V concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

Consider a distribution network with N `1 nodes collected
in the set NYt0u with N :“ t1, ..., Nu. Let pi P R and qi P R
denote the aggregated real and reactive power injections at
node i P N , Vi P C the phasor for the line-to-ground voltage at
node i, and define vi :“ |Vi|. We consider a general linearized
relationship between approximated voltage magnitudes v̂ and
injected powers as:

v « v̂ “ Rp`Xq ` a, (1)

where matrices R,X P RNˆN and the vector a P RN can be
formed as described in, e.g., [8], [9], [14].

Remark 1 The linear model (1) is utilized to facilitate the
design of computationally-affordable algorithms. Such ap-
proximation usually introduces a bounded error in voltages
(see e.g., [15], [16]), which further results in a bounded
discrepancy between the generated and the optimal operating
points. In Section IV, we will however utilize nonlinear power
flow model for numerical examples.

B. Node and Device Model

1) Nodal power aggregation: At node i P N , assume
that the aggregated power is from two kinds of devices:
non-controllable and controllable. Denote by pi,0 P R and
qi,0 P R the total real and reactive power from non-controllable
devices. Meanwhile, assume a customer i controls the devices
collected in a set Di. Denote by pi,d P R and qi,d P R
the real and reactive power injections of controllable device
d P Di. Then the power aggregation at node i is cast as
pi “ pi,0 `

ř

dPDi pi,d and qi “ qi,0 `
ř

dPDi qi,d.
2) Devices: At node i, we consider the following two

types of controllable devices: (i) continuous-rate fast-updating
devices (fast devices), e.g., PV inverters, collected in a subset
DFi Ď Di, and (ii) discrete-rate slow-updating devices (slow
devices), e.g., TCLs, collected in a subset DSi Ď Di. We also
assume that the slow devices only consume real power without
loosing generality.

Let ZFi,d denote the feasible power injection set of fast
devices d P DFi , e.g., ZFi,d of a PV system has the form of:

ZFi,d “
 

ppi,d, qi,dq: 0 ď pi,d ď pav
i,d, p

2
i,d ` q

2
i,d ď η2i,d

(

,

where pav
i,d denotes the available real power from a PV system,

and ηi,d is the rated apparent power capacity.
Meanwhile, considering that the slow devices d P DSi have

discrete power rates, and possibly some temporal dynamics
and constraints that can be modeled as affine equalities and
inequalities (e.g., temperature requirement of TCLs, state of
charge of battery, etc.), we denote by ZSi,d the convex hull
of the feasible sets of slow devices. For example, an air
conditioner follows the temperature dynamics with constraints:

T in`
i,d “ T in

i,d ` θ1pT
out
i,d ´ T

in
i,dq ` θ2pi,d, (2)

T in
i,d ď T in`

i,d ď T
in
i,d, (3)

where the room temperature in the next considered moment
(e.g., 15 minutes ahead) T in`

i,d is a linear function of power
consumption rate pi,d given current room temperature T in

i,d and
ambient temperature T out

i,d with constants θ1 and θ2 related to

thermal properties and time interval length, and T in
i,d and T

in
i,d

being customized temperature bounds. Now assume the air
conditioner has three power consumption rates 0 ă plow ă

phigh. Then its set ZSi,d is computed as:

ZSi,d “ tpi,d|p2q–p3q and pi,d P r0, phighsu.

Overall, ZFi,d and ZSi,d are assumed to be convex and
compact, and so are the following sets (the symbol

Ś

denotes
the Cartesian product):

ZFi :“
ą

dPDFi

ZFi,d, ZSi :“
ą

dPDSi

ZSi,d;

ZF :“
ą

iPN
ZFi , ZS :“

ą

iPN
ZSi ;

Zi:“ZFi
ą

ZSi , Z :“ ZF
ą

ZS .
Further, for simplicity, we introduce the following notation:

z
Fi
“ tpi,d, qi,dudPDFi PZFi , z

Si
“ tpi,d, qi,dudPDSi PZSi ;

z
F
“ tz

Fi
uiPN PZF , z

S
“ tz

Si
uiPN PZS ;

zi “ tpi,d, qi,dudPDi PZi, z “ tziuiPN PZ.
Consider a cost function Cipziq that captures well-defined

performance objectives of all devices at node i. The following
assumption is made.

Assumption 1 Functions Cipziq, @i P N are continuously
differentiable and strongly convex in zi. Moreover, the first-
order derivative of Cipziq is bounded in Zi.

C. Problem Formulation

The overall objective is to design a strategy where the net-
work operator and the customers pursue their own operational
goals and economic objectives, while also achieving global
coordination to enforce voltage regulation. In our design,
incentive signals are designed to achieve this goal.

1) Customer’s problem: Let αi P R and βi P R be the
pricing/reward signals sent by the network operator (e.g.,
distribution system operator or aggregator) to customer i for
real and reactive power injections, respectively. Customers are
assumed to be rational and self-interested, aiming to minimize
their own cost, by solving the following problem pP1,iq given
signals pαi, βiq:

min
zi

Cipziq ´
ÿ

dPDi

pαipi,d ` βiqi,dq, (4a)

s.t. zi P Zi, (4b)

where αipi,d and βiqi,d represent payment to/reward from the
network operator owing to device d P Di.

Because (4a) is strongly convex in zi, and Zi is convex and
compact, a unique solution z˚i exists. For future developments,
consider a “best-response” strategy bi of customer i as the
following function of pαi, βiq:

z˚i “ bipαi, βiq :“ argmin
ziPZi

Cipziq ´
ÿ

dPDi

pαipi,d ` βiqi,dq.



2) Recover feasible power rates: Given p˚i,d solved from
the relaxed feasible set for slow device d, we randomly select
a feasible power rate pi,d based on the probability distribution
such that Erpi,ds “ p˚i,d, where Er¨s denotes the expectation.

While there are multiple ways to determine the probability
distribution of feasible setpoints based on p˚i,d, we exemplify
the procedure with two-point distribution for illustrative pur-
pose. We select two feasible power rates and denote them
as p

i,d
and pi,d, such that p

i,d
ď p˚i,d ď pi,d. Then the

related probability of the corresponding two-point distribution
is calculated as:

#

Pppti,d “ p
i,d
q “ ppi,d ´ p

t˚
i,dq{ppi,d ´ pi,dq,

Pppti,d “ pi,dq “ ppt˚i,d ´ pi,dq{ppi,d ´ pi,dq,
(5)

according to which pi,d is randomly chosen.
3) Social-welfare problem: Consider the following opti-

mization problem pP2q capturing both social welfare and
voltage constraints of a distribution feeder:

min
z,v̂,α,β

ÿ

iPN
Cipziq, (6a)

s.t. pi “ p0i `
ÿ

dPDi

pi,d, qi “ q0i `
ÿ

dPDi

qi,d, (6b)

v̂ “ Rp`Xq ` a, (6c)
v ď v̂ ď v, (6d)
zi “ bipαi, βiq, i P N , (6e)

where vectors v and v are prescribed minimum and max-
imum voltage magnitude limits (e.g., ANSI C84.1 limits)
enforced by the network operator. Notice that the total payment
from/reward to the customers cancels out the total payment
received/reward paid by the network operator; thus, it is
not in the social welfare objective function (6a). Notice that
the problem formulation naturally extends to the case where
multiple customers are located at node i, but we outline the
problem in this way to limit the complexity of the notation.

The best-response strategy of pP1,iq is embedded in pP2q

through the constraint (6e)—i.e., the network operator has
knowledge of the reaction of the customers toward any signals
and takes it into consideration when making decisions. This
constitutes a Stackelberg game wherein the network operator
solves pP2q and sends the signals pα˚, β˚q to customers;
subsequently, each customer responds with computed power
injections z˚i from pP1,iq based on the received signals. By
design, z˚i coincides with the optimal solution of pP2q.

However, it is impractical to solve problem pP2q not
only because of its non-convexity introduced by constraints
(6e), but also because of its requirement for customers’ full
information, which is usually private. In the following section,
we first reformulate pP2q as a convex optimization problem
with a signal design strategy; they together bypass the problem
of non-convexity, while achieving the global optimal solution
of pP2q. Then, based on the stochastic dual algorithm, we
propose a distributed algorithm that prevents any exposure
of private information from the customers while solving a
convex optimization problem where devices admits discrete
power levels.

III. DISTRIBUTED ALGORITHM DESIGN

A. Convex Reformulation and Signal Design

Consider the following convex optimization problem pP3q:
min
z,v̂

ÿ

iPN
Cipziq, (7a)

s.t. pi “ p0i `
ÿ

dPDi

pi,d, qi “ q0i `
ÿ

dPDi

qi,d, (7b)

v̂ “ Rp`Xq ` a, (7c)
v ď v̂ ď v, (7d)
zi P Zi,@i P N , (7e)

with non-convex constraint (6e) replaced with (7e), and α, β
to be determined later. We assume pP3q is feasible:

Assumption 2 Slater’s condition holds for pP3q.

Given the strong convexity of the objective function (7a) in
z, a unique optimal solution exists for problem pP3q. Notice
that a solution pz˚, v̂˚q of pP3q might not be feasible for
pP2q, because there might not exist a pα˚, β˚q such that z˚i “
bipα

˚
i , β

˚
i q. We will, however, show next that such pα˚, β˚q

exists; thus, the solution of pP3q gives the solution of pP2q.
Substitute (7c) into (7d), and denote by µ and µ the dual

variables associated with the constraints (7d). Let v̂˚ be the
optimal voltage magnitudes produced by pP3q, and denote the
optimal dual variables associated with (7d) as µ˚, µ˚. Then,
we design the signals as:

α˚ “ R
“

µ˚ ´ µ˚
‰

, β˚ “ X
“

µ˚ ´ µ˚
‰

. (8)

Note that α˚ and β˚ are composed of dual prices µ˚ and µ˚

with R,X characterizing the network structure. We can prove
that the above signals are bounded, precluding the possibility
of infinitely large signals.

Theorem 1 (Theorem 1 of [7]) Under Assumptions 1–2, the
signals pα˚, β˚q defined by (8) are bounded.

By examining the optimality conditions of pP2q and pP3q,
we have the following result.

Theorem 2 (Theorem 2 of [7]) The solution of problem
pP3q along with the signals pα˚, β˚q defined in (8) is a global
optimal solution of problem pP2q; i.e., problem pP3q is an
exact convex relaxation of problem pP2q.

From now on, we will use the optima of pP3q and
pP2q interchangeably depending on the context. Next, based
on Theorem 2, we will develop an iterative algorithm that
achieves the optimum of pP3q (and hence that of pP2q)
without exposing any private information of the customers to
the network operator.

B. Two Timescales and Iterative Algorithm

In this part, we design an iterative algorithm to solve pP3q.
As mentioned, we have two types of devices with two different
update frequencies. Assume that slow devices update M times
slower than fast devices with integer M ě 1. We index by
k P Z`` the iterations when fast devices update. Then slow
devices updates when k “ tM with index t P Z``. We put



the two timescales update in Algorithm 1 for easy reference
later. Based on this strategy, we next propose a stochastic dual
algorithm to solve pP3q while recovering feasible power rates
for slow devices.

Algorithm 1 Two-timescale update

if iteration k “ tM then
Customer i solves z˚i pk ` 1q

“ argmin
ziPZi

Cipziq ´
ÿ

dPDi

`

αipkqpi,d ` βipkqqi,d
˘

,

recovers zi,dpk`1q with Erzi,dpk`1qs “ z˚i,dpk`1q for
d P DSi , and sets zi,dpk ` 1q “ z˚i,dpk ` 1q for d P DFi .

else if iteration k “ tM `m, m “ 1, . . . ,M ´ 1 then
Customer i keeps zi,dpk` 1q “ zi,dpkq for d P DSi , and
gets zi,dpk ` 1q for d P DFi by solving:

argmin
z
Fi
PZFi

CipzFi |zSi q ´
ÿ

dPDFi

pαipkqpi,d ` βipkqqi,dq,

end if

Denote by µ :“ rµᵀ, µᵀsᵀ P R2N
` the vector of stacked dual

variables, and denote gpzq “

„

v ´Rp´Xq ´ a
Rp`Xq ` a´ v



. We can

write the Lagrangian of pP3q as:

Lpz, µq “ Lpz
S
, z
F
, µq “

ÿ

iPN
Cipziq ` µ

ᵀgpzq, (9)

which is obtained by keeping the constraints z P Z and µ P
R2N
` implicit. Fix the value of z

S
, and define the resultant

form as a “reduced” Lagrangian LF pzF , µ|zS q.
We will implement a dual algorithm with two timescales to

solve the following minimax problems based on Lpz, µq and
LF pzF , µ|zS q:

max
µPR2N

`

min
zPZ

Lpz, µq, and max
µPR2N

`

min
z
F
PZF

Lpz
F
, µ|z

S
q. (10)

To this end, we define two concave dual functions for L
and LF , respectively:
hpµq :“ min

zPZ
Lpz, µq, and hF pµ|zS q :“ min

z
F
PZF

LF pzF , µ|zS q,

with corresponding dual problems:
max
µPR2N

`

hpµq, and max
µPR2N

`

hF pµ|zS q.

Considering the dual algorithm to solve (10) while recover-
ing implementable feasible power rates for discrete devices at
each iteration, we have the following stochastic dual algorithm:

zpk ` 1q set by Algorithm 1, (11a)
µpk ` 1q “

“

µpkq ` εkgpzpk ` 1qq
‰

`
, (11b)

where r s` is a projection operator onto the nonnegative
orthant, and the stepsize εk (we will show how to select εk
shortly). Also notice that gpzpk`1qq is subgradient of hpµpkqq
when k “ tM and that of hF pµpkqq when k “ tM`m, m “

1, . . . ,M ´ 1.
Because Z is compact and gpzq is linear in z, there exists

some constant G ą 0 such that Er}gpzpkqq}s ď G for all k.
We next show the stability of dynamics (11) with diminishing
stepsize in the following subsection.

C. Performance Analysis with Diminishing Stepsize

In this part, we choose stepsize εk to be square summable
but not summable, i.e.:

8
ÿ

k“1

ε2k ă 8,
8
ÿ

k“1

εk “ 8, (12)

e.g., εk “ 1{t at iteration k “ tM `m, m “ 0, . . . ,M ´ 1.
With such diminishing stepsize, we will prove the convergence
of the sequence tµku generated by (11) to a random vector.
Moreover, we characterize the variance of voltage due to the
randomness, and we propose a robust design.

1) Convergence: To show the convergence of dynam-
ics (11), we utilize the next lemma [17].

Lemma 1 Consider a sequence of random variables
ωp1q, . . . , ωpkq ě 0, Erωp1qs ă 8 and Erωpk `
1q|ωp1q, . . . , ωpkqs ď p1` xkqωpkq ` yk, with

ř8

k“1 xk ă
8,

ř8

k“1 yk ă 8, xk ě 0, yk ě 0. Then ωpkq Ñ ωp8q
almost surely, where ωp8q ě 0 is some random variable.

We then have the following convergence result, the proof
of which is referred to the Appendix.

Theorem 3 If the stepsize εk is chosen as in (12), the se-
quence tµpkqu generated by (11) converges to certain random
vector µp8q almost surely.

Denote µ̃pkq :“ Erµpkqs. By Theorem 3, limkÑ8 µ̃pkq “
µ̃p8q, where µ̃p8q is the mean value of random variable µp8q
to which tµpkqu converges. We next show that µ̃p8q “ µ˚.
The proof is also referred to the Appendix.

Theorem 4 Select the stepsize εk as in (12). The sequence
tµ̃pkqu generated by (11) converges to µ˚. Meanwhile, the
running average of hpµpkqq approaches hpµ˚q as k Ñ 8;
i.e.:

lim
kÑ8

hpµ˚q ´
k
ÿ

κ“1

hpµpκqq{k “ 0. (13)

Remark 2 With strongly convex cost functions Ci, tµpkqu
generated by (11) usually converges to a random vector even
with constant stepsize, where all the properties we obtain
in Theorem 3–4 hold. This will be shown with numerical
examples in Section IV.

2) Variance and Robust Design: The randomness in the
power rate selection for discrete devices of DS leads to volatil-
ity of voltages. Let DS be the number of all discrete devices.
We next characterize the variance of the voltage (the result
is tailored to the variable (5), but can be straightforwardly
generalized).

Proposition 1 Using the randomized selection strategy (5),
the voltage variance V arpviq at node i P N is bounded as:

V arpv̂iq ď DS{4
ÿ

jPN
R2
ij ¨max

j,d
ppj,d ´ pj,dq

2. (14)

The proof is referred to the Appendix.
The result of Proposition 1 motivates us to propose the

following robust design. We choose tighter voltage bounds



rv1, v1s with v ă v1 ă vnom ă v1 ă v, and replace the
original bounds with the tighter bounds in the algorithm so
that the resultant voltage falls within the original bounds with
required probability. We design the tighter bounds based on
Chebyshev’s inequality [18] as shown next.

Proposition 2 (robust implementation) Given δ ą 0, if the
voltage upper and lower bounds are set as: v1i ď vi ´ δ and
v1i ě vi ` δ, then:

Prv̂i ě vis ď V arpv̂iq{2δ
2, and Prv̂i ď vis ď V arpv̂iq{2δ

2.

Please see the proof in the Appendix.

Remark 3 These bounds are admittedly conservative; how-
ever, reasonable values can be obtained in realistic settings.
For example, scenario 2) in Section IV-A with variance esti-
mated by upper-bound (14) leads to robust bounds v1i “ 1.035
p.u. and v1i “ 0.965 p.u., with V arpv̂iq{2δ

2 ď 5% and
vi “ 1.05 p.u. and vi “ 0.95 p.u. Tighter bounds can be
obtained empirically.

D. Distributed Stochastic Dual Algorithm
The decomposable structure of (11) naturally enables the

following iterative distributed algorithm:
zpk ` 1q set by Algorithm 1, (15a)
v̂pk ` 1q “ Rppk ` 1q `Xqpk ` 1q ` a (15b)
µpk ` 1q “

“

µpkq ` εk
`

v ´ v̂pk ` 1q
˘‰

`
, (15c)

µpk ` 1q “
“

µpkq ` εk
`

v̂pk ` 1q ´ v
˘‰

`
, (15d)

αpk ` 1q “ R
“

µpk ` 1q ´ µpk ` 1q
‰

, (15e)

βpk ` 1q “ X
“

µpk ` 1q ´ µpk ` 1q
‰

, (15f)

where the power set points of the devices are computed
and implemented locally through (15a), and (15b)–(15f) are
performed at the network operator. Notice that each customer
i does not share its cost function Ci or its feasible set Zi
with the network operator; rather, the customer transmits to
the network operator only the resultant power injections zipkq.
Indeed,(11) and (15) are equivalent and the results of Theorem
3–4 apply to (15).

IV. APPLICATION SCENARIOS

Consider a modified version of the IEEE 37-node test feeder
shown in Figure 1. The modified network is obtained by
considering a single-phase equivalent, and by replacing the
loads specified in the original data set with real load data
measured from feeders in Anatolia, California during the week
of August 2012 [19]. Line impedances, shunt admittances,
as well as active and reactive loads are adopted from the
respective data set. It is assumed that 18 PV systems are
located at nodes 4, 7, 10, 13, 17, 20, 22, 23, 26, 28, 29,
30, 31, 32, 33, 34, 35, and 36, constituting the set DF , and
their generation profile is simulated based on the real solar
irradiance data available in [19]. The rating of these inverters
are 300 kVA for i “ 3, 350 kVA for i “ 15, 16, and 200 kVA
for the remaining inverters. With this setup, when no actions
are taken to prevent overvoltages, one would obtain the voltage
snapshot at noon illustrated in Figure 4 (blue dots).
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Fig. 1: Modified IEEE 37-node feeder. The boxed nodes
represent the location of PV systems.
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Fig. 2: The running average of the voltage converges to the
optimal voltage of the relaxed problem.

The objective functions of PV are set uniformly as
Ci,dppi,d, qi,dq “ 3ppav

i,d ´ pi,dq
2 ` q2i,d, where pav

i,d is the
generated real power, in an effort to minimize the amount of
real power curtailed and the amount of reactive power injected
or absorbed. We then install 15 identical TCLs at each of the
following 25 nodes: 2, 5, 6, 7, 9, 10, 11, 13, 14, 16, 18, 19,
20, 21, 22, 24, 26, 27, 28, 29, 30, 32, 33, 35, and 36, totaling
375 TCLs that comprise the set DS . We set a uniform cost
function for all TCLs as Ci,dpT

in`
i,d q “ 20pT in`

i,d ´ T nom
i,d q

2,
where T nom

i,d is a preferred room temperture set at 75˝F, and
the room temperature 15 minutes later is modeled as T in`

i,d “

T in
i,d`0.1pT out

i,d´T
in
i,dq´0.001pi,d. Also, T in`

i,d should be within
r70˝F, 80˝Fs. For each TCL, there are two possible power
rates: 0 and 4 kW. The cost function of customer i sums the
cost functions of all its devices Cipziq “

ř

dPDi Ci,dpzi,dq.
The voltage limits are vi “ 1.05p.u. and vi “ 0.95p.u., and

robust voltage limits are set to v1i “ 1.04 p.u. and v1i “ 0.96
p.u. for @iPN . Stepsize ε “ 0.1 is constant, which enables us
to achieve all the results proved under diminishing stepsize.

A. Convergence and Variance

We update PV every iteration, and TCLs every 60 iterations,
with the following scenarios:

1) All 15 TCLs at each node are combined to be controlled
together with two power rates of 0 kW and 60 kW.

2) 15 TCLs at each node are controlled independently.
3) All 15 TCLs at each node are combined to be controlled

together with 16 power rates: 0 kW, 4 kW, ... , 60 kW.



100 200 300 400 500 600 700 800 900 1000

iteration index

1.035

1.04

1.045

1.05

v
o
lt
a
g
e
 m

a
g
n
it
u
d
e
, 
p
.u

.

v
35

 of scenario (1)

v
35

 of scenario (2)

v
35

 of scenario (3)

Fig. 3: Different voltage variance of three different scenarios.

5 10 15 20 25 30 35

node index

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

v
o
lt
a
g
e
 m

a
g
n
it
u
d
e
, 
p
.u

.

Uncontrolled voltage

Controlled voltage w/ 95% confidence interval

Voltage upper limit
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scenario 2) with 95% confidence interval.

Without loss of generality, we use scenario 2) to show
convergence. The results are plotted in Fig. 2. Though the
resultant voltage (red line) is changing randomly, it fluctuates
around the solution of the relaxed problem (blue line). Also,
the running average of the fluctuating voltage (green line)
approaches the solution of the relaxed problem as iteration
number increases, verifying Theorem 3–4 even with constant
stepsize. Moreover, in between updates of TCLs, their random
consequence is absorbed by the PV’s faster updates.

Next, we compare the variance of the resultant voltages
among scenarios 1)–3). Based on design, these three scenarios
have the same optimality on average. By Proposition 1, the
voltage variance stems from the number of random variables
and the control granularity. We compare scenario 1) and 3)
to illustrate that finer granularity generates less variance, and
scenario 2) and 3) to show that less random variables results
in less variance. The results are presented in Fig. 3, where
three scenarios are marked with different colors.

B. Voltage Regulation

In this part, we use scenario 2) to compare the resultant
voltages at all nodes to those without any voltage regulation.
We record 25,000 random processes since convergence, and
we plot the mean values of the voltages together with their
95% confidence intervals in Fig. 4. Because of the robust
bounds as well as the small variance of the resultant voltages,
the controlled voltages are all less than the original voltage
upper-limit of 1.05 p.u.

V. CONCLUSION

We have proposed an iterative distributed stochastic dual
algorithm that allows the distribution network operator and
the customers to coordinate with private information preserved
to optimize the social welfare while concurrently recovering
feasible power rates for discrete devices and ensuring that
the voltage magnitudes are within the prescribed limits. We
prove its convergence and analyze its performance. Numerical
examples are provided to support the theoretical results.
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APPENDIX

A. Proof of Theorem 3

The convergence of sequence tµpkqu is equivalent to that
of sequence t}µpkq ´ µ˚}2u, where µ˚ is an optimal dual of
pP3q. Then, at iteration k “ tM with some t ą 0:

E
“

}µptM ` 1q ´ µ˚}2|µp1q, . . . , µppt´ 1qM ` 1q
‰

ď E
“

}µptMq ` ε
tM
gpzptMqq ´ µ˚}2|µppt´ 1qM ` 1q

‰

ď E
“

}µptMq ´ µ˚}2|µppt´ 1qM ` 1q
‰

` ε2
tM
G2

` 2ε
tM
pµptMq ´ µ˚qᵀgpz˚ptMqq

ď }µppt´ 1qM ` 1q ´ µ˚}2 `
tM
ÿ

k“pt´1qM`1

ε2kG
2

`

M´1
ÿ

m“0

2ε
tM´m

pµptM ´mq ´ µ˚qᵀgpz˚ptM ´mqq

ď }µppt´ 1qM ` 1q ´ µ˚}2 `
tM
ÿ

k“pt´1qM`1

ε2kG
2

` 2ε
tM
phpµptMqq ´ hpµ˚qq

`

M´1
ÿ

m“1

2ε
tM´m

phF pµptM ´mqq ´ hF pµ
˚qq

ď }µppt´ 1qM ` 1q ´ µ˚}2 `
tM
ÿ

k“pt´1qM`1

ε2kG
2,

where the first inequality comes from the non-expansiveness
of projection operator, the third from repeating previous steps,
the fourth from the definition of the subgradient, and the last
from the definition of optimality of concave functions h and
hF .

Because
ř8

t“1

řtM
k“pt´1qM`1 ε

2
kG

2 ă 8, by Lemma 1 the
sequence t}µpkq ´ µ˚}2u converges to some random variable
t}µp8q ´ µ˚}2u almost surely, and therefore the sequence
tµpkqu converges to some random vector µp8q almost surely.

B. Proof of Theorem 4

Similar to the proof of Theorem 3, we have:

Er}µptM ` 1q ´ µ˚}2s

ď E
“

}µppt´ 1qM ` 1q ´ µ˚}2
‰

`

tM
ÿ

k“pt´1qM`1

ε2kG
2

` 2ε
tM
phpµptMqq ´ hpµ˚qq

`

M´1
ÿ

m“1

2ε
tM´m

phF pµptM ´mqq ´ hF pµ
˚qq

ď E
“

}µppt´ 1qM ` 1q ´ µ˚}2
‰

`

tM
ÿ

k“pt´1qM`1

ε2kG
2

` 2ε
tM
phpµptMqq ´ hpµ˚qq.

Apply the above steps recursively to obtain:

Er}µptM ` 1q ´ µ˚}2s ď Er}µp1q ´ µ˚}2s

`

tM
ÿ

k“1

ε2kG
2 `

t
ÿ

τ“1

2ε
τM
ErhpµpτMqq ´ hpµ˚qs.

Because Er}µptM ` 1q ´ µ˚}2s ě 0, the following holds:
t
ÿ

τ“1

2ε
τM
Erhpµ˚q ´ hpµpτMqqs

ď Er}µp1q ´ µ˚}2s `
tM
ÿ

k“1

ε2kG
2. (16)

By Jensen’s inequality:

Erhpµ˚q ´ hpµpτMqqs ě hpµ˚q ´ hpµ̃pτMqq. (17)

Therefore, by considering
ř8

k“1 ε
2
k ă 8 from (12), we have

from (16) and (17) that:

lim
tÑ8

t
ÿ

τ“1

2ε
τM

`

hpµ˚q ´ hpµ̃pτMqq
˘

ă 8. (18)

We next show hpµ˚q“hpµ̃p8qq by contradiction. Recalling
that hpµ˚qěhpµq for any feasible µ, assume there exists some
e ą 0 such that hpµ˚q́ hpµ̃p8qqěe. Because

ř8

τ“1 ετM “8,
we must have limτÑ8

řt
τ“1 2ετM

`

hpµ˚q ´ hpµ̃pτMqq
˘

“8,
which contradicts (18). Hence, hpµ˚q“hpµ̃p8qq.

Further, because µ is statistically stationary, its ensemble
average and time average are identical. (13) follows.

C. Proof of Proposition 1

The variance of v̂i can be written as:

V arpv̂iq “ Er|v̂i ´ v̂
˚
i |

2s “ E
“
ˇ

ˇ

ÿ

jPN
Rijppj ´ p

˚
j q
ˇ

ˇ

2‰

ď
ÿ

jPN
R2
ij ¨ E

“

ÿ

jPN
ppj ´ p

˚
j q

2
‰

ď
ÿ

jPN
R2
ij ¨

ÿ

jPN

ÿ

dPDSj

E
“

ppj,d ´ p
˚
j,dq

2
‰

“
ÿ

jPN
R2
ij ¨

ÿ

jPN

ÿ

dPDSj

pp˚j,d ´ pj,dqppj,d ´ p
˚
j,dq

ď
ÿ

jPN
R2
ij ¨

ÿ

jPN

ÿ

dPDSj

ppj,d ´ pj,dq
2{4,

ď DS{4
ÿ

jPN
R2
ij ¨max

j,d
ppj,d ´ pj,dq

2,

where we apply Cauchy-Schwarz inequality in the first in-
equality, Jensen’s inequality in the second, and the second
equality is based on the probability distribution (5).

D. Proof of Proposition 2

Let ˜̂vi “ Erv̂is. By Chebyshev’s inequality [18], given δ ą
0, we have

Pr|v̂i ´ ˜̂vi| ě δs ď
V arpv̂iq

δ2
.

Consider the upper bound first. Design the robust bound as
v1i ď vi´δ, so that we must have ˜̂vi ď v1i by Assumption 2 and
Theorem 4. And we write the probability of voltage violation
as follows:

Prv̂i ě vis “ Prv̂i ´ ˜̂vi ě vi ´ ˜̂vis

ď Prv̂i ´ ˜̂vi ě vi ´ v
1
is ď Prv̂i ´ ˜̂vi ě δs

“
1

2
¨ Pr|v̂i ´ ˜̂vi| ě δs ď

V arpv̂iq

2δ2
.

Similar process applies to Prv̂i ď vis.
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