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Abstract—In order to schedule the virtual power plant and
corresponding energy market operation, a two-scenario Stackel-
berg game-theoretic model is proposed to describe interactions
between market operator and VPP operator. During market
operation, the market operator is a leader of the game to decide
market cleaning prices, considering the power loss minimization
of VPP operator, whereas during VPP operation, the VPP oper-
ator becomes a leader to facilitate the demand side management
(DSM) through proper monetary compensation, considering the
market trading balance between power sellers and power buyers.
An optimal scheduling strategy including power dispatch and
market balance will be realised. Case studies prove the effective-
ness of the proposed Stackelberg game-theoretic model through
IEEE 30-bus test system. The market scheduling promotes the
power exchange among VPPs. The VPP scheduling evaluates
the optimal monetary compensation rate to motivate the DSM
including load shifting and load curtailment.

Index Terms—demand side management (DSM), game theory,
virtual power plant (VPP), distributed energy resources (DERs).

I. INTRODUCTION

THE advantages of smart grids enable sophisticated com-
munication technologies, sensing technologies, and con-

trol methodologies to be integrated into power systems [1].
These technologies contribute to the improvement of smart
control and management for the purpose of efficient operation
of power newtworks and associated markets [2]. Compared
with traditional power systems, the smart grid system becomes
complex with the introduction of renewable energy resources
(DERs), distributed generators (DG), demand side manage-
ment (DSM), and energy market strategies. Hence, designing a
virtual power plant (VPP) to aggregate the capacities of diverse
DERs and flexible demands becomes essential. The operations
of power system and associated market are scheduled through
those smart grid communication technologies.

Compared with the unit commitment problem, the concep-
tion of VPP pays more attention to market participation, which
means that it is capable of involving more DERs into power
networks scheduling and energy market trading [3]. Hence, a
scheduling strategy for both energy market and power system
is required to help the distribution system operator (DSO)
coordinate between market operator and VPP operator. This

provides an opportunity for the application of game-theoretic
model to analyse the interactions between market operator
and VPP operator and optimize these scheduling problems.
Depending on whether participants work together with com-
mon interests, the game theory consists of cooperation game
and non-cooperation game. Cournot model and Stackelberg
model are two typical models of non-cooperation game. In the
Cournot model, each player makes its decision independently
and simultaneously [4]. However, during operations of power
network and energy market, the VPP operator and market
operator normally make decisions by sequential order, which
is suitable for applying the Stackelberg game-theoretic model
into scheduling process. The Stackelberg model features on
two-level hierarchical decision-making process. The leader in
the first level announces its strategy in the first place, and has
an idea about the responding action of follower. The follower
in the second level subsequently makes responsive strategy to
reply to the leader. Received this responsive strategy, the leader
finalizes its strategy. Involving the Stackelberg game theoretic
model into both market scheduling and VPP scheduling,
however, has seldom been studied.

With respect to power generation scheduling, the day-ahead
market financially schedules biding and offering for balancing
energy supply and demand one day before system settlement.
A sophisticated day-ahead scheduling pursues the power sys-
tem reliability and fair market trading. The reliability can be
realised through optimizing power flow and delivering the
DSM as proposed in [5]–[7]. Meanwhile, a fair market trading
can be guaranteed by considering the interests in both power
buyers and power sellers. A stochastic environmental and
economic dispatch of VPP was proposed in [8] for generation
scheduling, but the market operation was not considered. The
research in [9] sought to strike a balance among carbon
reduction, payment bills, and costs through multiobjective
optimization scheduling. Based on these researches, price
signals formulated by market operator and power allocation
performed by VPP operator are further investigated to explore
mechanisms of system coordination. Both of these functions
build on smart grid communication technologies and attribute
to the market scheduling and VPP scheduling through Stack-



elberg game-theoretic models. The market operator and VPP
operator are included into the DSO.

Therefore, a dedicated study regarding VPP and market
scheduling will be conducted through two-scenario Stackel-
berg game-theoretic model, under the circumstance of smart
grid communication. The proposed model contributes to attract
and optimise DERs to participate in power grids scheduling
and energy market trading. On one hand, different from the
conventional unit commitment problem, in which schedules
are limited by the coverage area and reliability due to regional
integration of microgrid, VPP processes the scheduling and
makes decisions through central control system and informa-
tion agent unit. Thus, the VPP breaks geographic restrictions
to transmit power and minimize power loss. The supply-
demand balance can therefore be guaranteed for the whole
power networks. On the other hand, with the optimization of
the costs for power sellers and the payment bills for power
buyers, the economic benefit can be improved and reallocated
to participants of energy market.

Building on existing work, contributions of this research
are as follows:1) Instead of scheduling the VPP output in
a single model, the market operation and VPP operation are
separated into two-scenario Stackelberg game-theoretic strate-
gies, according to different functions performed by market
operator and VPP operator; 2) Regional difference of power
prices and time difference of monetary compensation rates for
DSM are considered depending on VPP output , so that market
mechanism can be applied into power trading among VPPs.

The remaining paper is organized as follows. Section II
formulates the two-scenario Stackelberg-game theoretic frame-
work and the inside components of the VPP. Section III and
Section IV mathematically describe the game-theoretic model
for market scheduling and VPP scheduling, respectively. Sec-
tion V presents the results of case studies for daily VPP
scheduling. Finally, Section VI draws the conclusion.

II. SYSTEM FRAMEWORK

This section illustrates the system model of two-scenario
Stackelberg game-theoretic scheduling for market operation
and VPP operation. The inside components of VPP and power
trading mechanism are also introduced.

A. Two-Scenario Stackelberg Game-theoretic Framework

Intelligent communication technology and software archi-
tecture enable the globally DERs and flexible demand to be
aggregated and optimized as a VPP [10]. The VPP is subse-
quently conceptualized as a real power plant to participate in
both power and market schedules. A two-scenario Stackelberg
game-theoretic model is formulated for VPP schedules as
presented in Fig.1. This model is performed hourly by the
DSO in day-ahead energy market to schedule both market
operation and power allocation. The corresponding schedules
are managed by market operator and VPP operator, respec-
tively. During market scheduling, the leader (market operator)
forecasts the power demand for next 24 hours. This forecasting
information enables the follower (VPP operator) to perform

Fig. 1. Illustration of two-scenario Stackelberg game-theoretic model .

power flow analysis and find a proper generation dispatch
for each VPP with minimal power loss. With this power
generation dispatch, VPPs provide their bids to the wholesale
market to sell extra power based on market operation mecha-
nisms. The market cleaning price is subsequently decided in
balancing supply and demand.

During the VPP scheduling, VPP operator and market oper-
ator exchange their roles, which means that the VPP operator
becomes a leader to take the first mover’s advantage [11]. To
help stimulate the DSM scheme, the VPP operator formulates
a set of hourly monetary compensation rates for consumers to
reshape their consumption behaviours. The market operator
subsequently balances the interests for the participants of
energy market, i.e. minimizing costs of power sellers and
payments of power buyers. VPP operator therefore finalises
the power dispatch in supply and demand sides.

B. Virtual Power Plant Components

Advanced smart meter enables bidirectional communica-
tions to be realised between consumers and power grids, which
supports the communication infrastructure of the VPP [12].
Hence, the VPP gathers scattered DSM, DG, and electric
vehicle (EV) to coordinate and optimize aggregated power
output, because the scattering distribution of consumers limits
their negotiation power in energy markets. The DSO also
faces challenges of managing the large-scale consumers. This
research considers the DSM, DG, and EV as components
of VPP. For the DSM, the incentive signal or price signal
help the realisation of load curtailment or load shifting [13].
The VPP is capable of gathering scattered distributed DSM
resources by proper contracts. The consumers can conversely
sell the DSM output as the VPP output [14]. Similarly, the VPP
organises the DGs, and sells the extra output to other VPPs
through microgrids [15]. Furthermore, the communication
infrastructure of the VPP supports a platform between EV
users and microgrids. The EV is not only taken as a power
load when it needs to be charged from microgrids [16], but
taken as a storage system when the extra power sells back to
the microgrids.



III. GAME THEORY FOR MARKET SCHEDULING

During the market scheduling, interactions between market
operator and VPP operator are considered to provide a se-
quential game formulation including two players. Firstly, the
leader (market operator) announces leader’s strategy i.e. the
prediction of hourly demand over next 24 hours. Secondly,
received this strategy, the follower (VPP operator) minimizes
the power loss of power networks and maintains technical
constraints. They schedule the operation of VPPs through the
decision variables of power dispatch. Thirdly, according to
the follower’s responses, the leader obtains the power driving
pricing vector, before finalizing the schedules based on market
cleaning mechanisms. This game theory model is designed to
run in one hour interval to optimise the market scheduling.

A. Power Driving Pricing

Considering a power network consisting of N power buses,
indexed by integer i, i = 1, ..., N . Each VPP covers a certain
amount of buses and DG to supply the power demand or
perform the DSM. In our model, there are M VPPs, indexed
by j, j = 1...M . Let load(j) denote the power load that
belongs to the jth VPP, and gen(j) denote the generator that
belongs to the jth VPP. Define P genj and P loadj are the total
power generation and consumption of jth VPP, respectively.
The power is generated by the DG within each VPP, which
can be described as:

P genj (t) =
∑

gen(j)=i

PGi(t), (1)

where PGi is the power generation of bus i at hour t.
Similarly, the power is consumed by the load connected to

that bus, which can be described as:

P loadj (t) =
∑

load(j)=i

PLi(t), (2)

where PLi is the power consumption in bus i at hour t.
Therefore, the power ejection of jth VPP is:

Pj(t) = P genj (t)−P loadj (t) =
∑

gen(j)=i

PGi(t)−
∑

load(j)=i

PLi(t),

(3)
where Pj(t) is power ejection of jth VPP at hour t.

During the day-ahead market, when the power generation
exceeds the demand in one VPP, i.e. the VPP ejection is
positive, this VPP can sell the power on power driving price
to other VPPs, in which power supply cannot support the
demand. Those VPP sellers announce their bids to form the
price signal vector over next 24 hours, defined by price(t),
which is dependent on the power ejection of each VPP seller.
Similar with [17], in which the unit energy price at each bus is
set as a linear function of power difference between generation
and consumption, the power price at the jth VPP is modelled
as a linear function of Pj(t):

pricej(t) = αPj(t) + β. (4)

Furthermore, according to the operational principle of the
energy market, when the demand of other VPPs is met by

the supply of total j VPPs, the price of jth VPP becomes a
market cleaning price of all the VPPs to sell their power.

B. Objective of Virtual Power Plant Operator

The power buses are interconnected with each other to
form the grid topology. The power and corresponding loss
are transmitted among buses through branches. Define Epq is
the power ejection from bus p to bus q over branch pq and
Ipq is the power injection from bus p to bus q over branch
pq, p, q = 1, ...N . Hence, the power loss caused by power
transmission can be described as the difference between power
ejection and injection over each branch:

Plosspq(t) = Epq(t)− Ipq(t), (5)

where Plosspq(t) is power loss over branch pq at hour t.
The power flow distribution can be obtained, after power flow
analysis is performed by Matpower [18]. Therefore, objective
function of VPP operator is to minimize the power loss of
power networks:

min
PGi

T∑
t=1

∑
p,qεN

Plosspq(t). (6)

C. Solution of Market Scheduling

The mathematical presentation of market scheduling is a
non-linear programming problem due to the power flow calcu-
lation. Hence, the conventional convex optimization solution
is unable to solve it. We design a solution by applying the
particle swarm optimization (PSO) algorithm [19] during the
power loss minimization. The steps of solving this problem
are described as follows.

Input: The IEEE bus test system, total VPP number:M , total
bus number:N , P loadj , P genj , population size POPsize

Step 1: For each particle m ∈ POPsize, initialize the veloc-
ity vm and position xm with a uniformly distributed random
vector vi ∼ U(−|bup−blo|, |bup−blo|): xm ∼ U(xmin, xmax)
and vm ∼ U(−|vmax − vmin|, |vmax − vmin|), respectively,
where blo and bup are the lower and upper limits of the
searching space, xmin and xmax are minimum and maximum
ranges of position, and vmin and vmax are minimum and
maximum ranges of velocity.

Step 2: Let PGi = xm, run power flow analysis through
Matpower for each xm to obtain Epq and Ipq , before calcu-
lating Plosspq through (6).

Step 3: Let pBestm be particle m’s best known position and
let gBest be the entire swarm’s best known position. Based on
step 2, evaluate the fitness of particle m and set pBestm = xm
to find the optimal solution with minimal power loss.

Step 4: If pBestm < gBest, update the entire swarm’s best
known position: gBest← pBestm.

Step 5: For each particle m ∈ POPsize, select random
numbers rp, rg ∼ U(0, 1) to update the velocity vm by (7)
and position xm by xm ← xm + vm, until the termination
criterion is met.

vm = vm+c1 ·rp ·(pBestm−xm)+c2 ·rg ·(gBest−xm), (7)



where c1 and c2 describe how much a particle trusts its
personal attractor and global attractor, respectively.

If f(xm) < f(pBestm), update the particle’s best known
position: pBestm ← xm; If f(pBestm) < f(gBest) , update
the swarm’s best known position: gBest← pBestm.

Step 6: Let PGi = gBest, allocate buses to corresponding
VPPs, before calculating the power ejection of each VPP Pj
by (3) and the price vector pricej by (4).

Step 7: Sort the price vector pricej in sequence order,
and match them with each VPP ejection vector Pj . While∑
jεM Pj = fdemand, Pricej = Price∗, where fdemand is

the total power demand of other power plan, and Price∗ is
the market cleaning price for the VPP power exchange.

Output: Power price Price∗, and Power dispatch Pj .

IV. GAME THEORY FOR VIRTUAL POWER PLANT
SCHEDULING

The VPP scheduling aims to allocate optimised VPP output
considering the DSM. Hence, the VPP operator becomes the
leader to take the first mover’s advantage of the Stackelberg
game-theoretic model [20]. First, the leader (VPP operator)
announces a leader’s strategy, i.e. the monetary compensation
rate for applying the DSM. Secondly, with this compensation
information, the follower (market operator) seeks to optimize
the interests for the market participants: power buyers and
power sellers. For the power sellers, the objective of them
is to minimize the operating cost of VPP. By contrast, for
the power buyers, the objective of them is to minimize
the total payment purchasing for the needed power. These
two opposing objectives lead to a multiobjective optimization
problem (MOP) for market operator.

A. Demand Side Management

The designed DSM technique including load shifting and
load curtailment schedules connecting moments of loads in
consumption side to realise objective demand curve. Load
shifting seeks to optimise the usage period of shiftable load,
because the running of them can be shifted from high-price pe-
riod to low price-period remaining the total energy consump-
tion unchanged. By contrast, load curtailment dynamically
decreases the consumption level of curtailable load. Customers
of VPP are assumed to be price-sensitive to participate the
DSM scheme with a proper monetary compensation. The
change of load consumption at each hour t = 1, 2, ..., T is
modelled as a linear function of monetary compensation.

fc(t) = γ · compe(t) + δ, (8)

where fc(t) is the shifted or curtailed load at each hour t
through DSM, compe(t) is monetary compensation in each
hour t, and γ and δ are DSM coefficients.

The load shifting technique of DSM controls the time period
of appliances connecting. During off-peak demand period,
compe(t) ≥ 0, because the load consumption would be
shifted to this period with incentive of monetary compensation.
Additionally, in order to remain the total consumption level of
shiftable appliances the same, we have:

∑T
t=1 fc(t) = 0; The

load curtailment is conducted to reduce the total power con-
sumption when it is necessary. The consumers subsequently
receive the monetary compensation for the inconvenience. The
maximum level of load curtailment is set considering the in-
terests and acceptance level of customers: 0 ≤ fc(t) ≤ fmaxcurt ,
where fmaxcurt is the maximum level of load curtailment.

B. Multiobjective Optimization Problem of Market Operator

1) Objective of Power Sellers: The objective of power
sellers is to minimize their cost. Cost functions are defined
to describe the cost of power ejection from VPP components:

Demand Side Management:

CostDSMj
(t) = aDSM ·fcj (t)2+bDSM ·fcj (t)+cDSM , (9)

where CostDSMj
(t) is overall cost of deploying DSM in the

jth VPP at time t, fcj (t) is the amount of load shifting or
load curtailment through DSM in the jth VPP at time t, and
aDSM , bDSM , and cDSM are cost coefficients of DSM unit.

Distributed Generation:

CostDGj
(t) = aDG ·DGj(t)2 + bDG ·DGj(t) + cDG, (10)

where CostDGj
(t) is the overall cost for DG operation in the

jth VPP at time t, DGj(t) is the power output of DG in the
jth VPP which is sold back to the microgrids at time t, and
aDG, bDG, and cDG are the cost coefficients of DG. There is
also a limitation for the maximal output of DG:

DGj(t) ≤ DGmaxj , (11)

where DGmaxj is maximum power output of DG in jth VPP.
Electric Vehicle:

CostEVj (t) = aEV EVj(t)
2 + bEV EVj(t) + cEV , (12)

where CostEVj
(t) is the overall cost of EV in the jth VPP

at time t, EVj(t) is the power output of EV in the jth VPP
at time t, and aEV , bEV , and cEV are cost coefficients of
EV. Considering the capacity limitation of microgrids, the
maximum power output of EV is set:

EVj(t) ≤ EV maxj , (13)

where EV maxj is the maximum power output of EV. Thus, the
objective function of power sellers is:
Objective of cost minimization :

min
fc(t),DG(t),EV (t)

T∑
t=1

No.seller∑
j=1

CostDSMj
(t) + CostDGj

(t)

+ CostEVj
(t).

(14)
2) Objective of Power Buyers: The objective of power

buyers is to minimize their payment bills for the power needed,
which can be described as the bill for power demand minus
the bill-saving due to the load shifting and load curtailment:
Objective of payment bill minimization :

min
fc(t)

T∑
t=1

fdemand(t) · Price∗(t)− fc(t) · compe(t), (15)



s.t.
T∑
t=1

fc(t) = 0 (For load shifting), (16)

0 ≤ fc(t) ≤ fmaxcurt (For load curtailment). (17)

C. Solution of Virtual Power Plant Scheduling

To solve the VPP scheduling problem, we introduce a
multiobjective immune algorithm (MOIA) to solve the MOP
included Stackelberg Game-theoretic as shown in Algorithm
1. Detailed MOIA is presented in previous research [21].

Algorithm 1
Input: Optimization objectives (14) (15); initial size of solu-

tion n; maximum time of iteration: tmax.
1: Create a set of 24 hours monetary compensation rates
compe(t), and calculate the change of power consump-
tions fc(t) as initial population.

2: Delete dominated antibodies, so as to remain non-
dominated antibodies.

3: Mutate remaining non-dominated antibodies to produce
new

4: repeat
5: Delete dominance antibodies.
6: Conduct evaluation for the rest antibodies through op-

timization constraints, before removing infeasible anti-
bodies.

7: if iteration population size exceeds the required size
then

8: Reduce population size for antibodies normalization.
9: end if

10: until Reach the maximum time of iteration.
Output: Power allocation ploadj , and pgenj .

V. CASE STUDIES

To demonstrate the performance and effectiveness of the
proposed two-scenario Stackelberg game-theoretic model, case
studies are conducted. The U.K. power supply and demand
data on the average output of all forms of generations is
adopted from Gridwatch [22] and applied into the IEEE
30 bus-test system through replacing the system data by
proportion [23]. This system consists of 6 generators, 30
buses including 21 buses with loads, and 41 branches [24].
Every 5 buses are allocated in one VPP in sequence order.
There are total 6 VPPs. With respect to the VPP components,
the maximum of 5% of load curtailment is assumed through
price incentive. The load curtailment is conducted during peak
demand period between 16 h and 22 h. The cost coefficients
are adopted from the U.K. average cost for projects commis-
sioning in 2016 [25].

A. Game Theory for Market Scheduling

The VPP 1, VPP 3, and VPP 4 generate extra power to
sell in the energy market as power sellers, after meeting their
own power demand. By contrast, the VPP 2, VPP 5, and VPP
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6 need to buy power from the wholesale market as power
buyers. The results of daily market scheduling is presented in
Fig. 2. It is clear that the VPP 4 becomes the marginal sellers
to decide the market cleaning price at most of time. Besides, it
is worth mentioning that during the 1, 10, 11, and 18 hours,
the total output of VPPs is unable to meet the total demand.
Therefore, they have to import the power from the main grids.
Furthermore, the comparison between original hourly power
loss and power loss after scheduling for the IEEE 30 bus-test
system is illustrated in Fig. 3. Through the market scheduling,
the total power loss has been reduced from 12.12 MW to
11.75 MW , reducing by 3.05 %. The power loss during the
peak demand period decreases more dramatically than that
during the off-peak demand period. This is because the power
loss is primarily driven by power demand.
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B. Game Theory for Virtual Power Plant Scheduling

The second scenario is performed for VPP scheduling. The
results of daily VPP scheduling in one hour interval are
presented in Fig.4. It is clear that with the proper monetary
compensation rate, the power consumption in peak demand
period (16 h to 22 h) is shifted to the off-peak demand period
(1 h to 16 h and 22 h to 24 h). The total 0.73 MW of
load curtailment is also realised. With respect to the specific
components inside the VPPs, the total daily DG output for
power trading among VPPs reaches 54.79 MW , and the total
daily EV output for power trading among VPPs reaches 41.46
MW . After VPP scheduling, these power exchanges create
total 36.98 GBP profits for power sellers, compared with 16.22
GBP before scheduling. Thus, the VPP scheduling creates the
additional economic benefit in energy market. The comparison
of optimization objectives including payment bills for power
buyers and costs for power sellers is shown in Fig. 5. With
the almost unchanged payment bills, the generation costs are
reduced. It is particularly for the peak demand period, when
7 GBP/ h cost-saving is realised.

VI. CONCLUSION

This paper proposes a two-scenario Stackelberg game-
theoretic model for both energy market and power system op-
erations. The first level Stackelberg game-theoretic model for
market scheduling manages the power trading between VPP
sellers and VPP buyers, which enables the supply-demand
balance to be maintained on a proper market cleaning price
for power trading. The market scheduling also contributes
to the reduction of power loss by 3.05 % to ensure system
reliability. Besides, the second scenario Stackelberg game-
theoretic model for VPP scheduling helps to motivate proposed
DSM scheme with optimal monetary compensation rate. 0.73
MW load curtailment during peak demand period is realised.
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