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Abstract—System modeling and simulation plays a crucial role
in the engineering of large and complex systems from various
fields, such as industrial automation or power systems. In this
paper, we propose a method that can be used to easily deploy
high fidelity simulations at scale, onto various target platforms.
Out method is to approximate the behavior of the modeled
system using a recurrent neural network. We use artificial neural
networks as they easily lend themselves to high performance
execution, thus avoiding the need to (manually) translate system
models (typically a system of differential equations) to specialized
hardware architectures. Moreover, this approach is generic in the
sense that it is decoupled from typical modeling and simulation
tools, such as Matlab Simulink or Dymola. This paper presents
a proof-of-concept neural network architecture including the
methodology for training that we used to approximate the behav-
ior of different example systems originating from the electrical
power systems domain. We present our evaluation results mainly
regarding accuracy and to a certain extent performance on a
GPU-based testbed. Furthermore, we detail limitations of the
used approach and outline potential directions for research
regarding the general applicability of our method.

Index Terms—recurrent neural networks, differential equa-
tions, learning, simulation

I. INTRODUCTION

System modeling and simulation plays a crucial role in
the engineering of large and complex systems from various
fields, such as industrial automation or power systems. In such
domains, engineers and researchers make use of simulation
tools (such as Matlab [7], Dymola [8]) that simulate various
models often including systems of differential equations. De-
pending on the complexity and the required accuracy of the
models to be simulated, this process can be slow. Possibilities
exist to implement the models on FPGAs or GPUs in order
to accelerate the simulations and possibly even achieve real-
time performance. However, the translation from high-level
models into hardware-level programming is rather challenging,
error prone, and time consuming. Moreover, existing tools that
perform the translation are vendor specific and closed source.

In this paper, we propose a method that can be used to
easily deploy high fidelity simulations at scale on various
target platforms , e.g., [10], [11]. Our approach is thus generic
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and a step towards achieving efficient simulations without the
need to invest into (mainly manual) model transformations.

In order to enable efficient simulations, we distinguish
between the modeling of a system, typically done in feature-
rich tools, such as Matlab Simulink or Dymola, and its actual
simulation on a given computing platform that is not bound
to a specific modeling tool. One way to implement such
an approach would be to use Functional Mock-up Units (or
FMUs, [9]), which allow a model to be compiled into a library
and wrapped around a standard interface for interacting with it
(i.e., the Functional Mock-up Interface, or FMI). Nevertheless,
the FMU library offers rather limited options for efficient
simulations, e.g., on parallel hardware.

Our approach is to commoditize simulation models by
making them reusable and parameterizable. To this end, we
propose to use recurrent neural networks to approximate the
behavior of system models. This is beneficial for two reasons:
1) the resulting approximations of system models can easily
run in parallel (e.g., on GPUs or FPGAs), thus allowing
faster and more efficient simulations, and 2) the resulting
computation time is more predictable, thus making such a
method eligible even for real-time simulations.

With our method, the typical translation of a high-level
model into a corresponding hardware-level implementation is
replaced by the training phase of the neural network. The
challenges that we address here are to find the right set of
training data and the right hyper-parameter configuration for
the neural network. Once the neural network is trained, the
result of the actual simulation in each time-step is mimicked
by the outcome of the neural network inference process. The
challenge here is to have the right neural network architecture.

Lagaris et. al [1] presented a method to solve ordinary and
partial differential equations using artificial neural networks
for initial and boundary value problems. In their method, arti-
ficial neural networks are being trained to predict the solution
of differential equations based on the independent variables,
i.e., in most cases time. It is demonstrated that the proposed
method produces accurate results, and the solution obtained
by the resulting trained neural network is in differentiable and
closed-form. However, this method would not be applicable in
the presence of time-varying inputs in the models of physical
system components. This is actually the case in smart grids



where we have control inputs to the actual equipment (e.g.,
generator) or at different levels in the grid. This is indicative
of a non-autonomous system, whereas the proposed method
targets autonomous systems, i.e., the neural networks trained
with the proposed method are time-based (by taking the time
as input), and their prediction is based solely on time rather
than state values. Therefore, to be able to represent more
completely the model behavior, we need a time-independent
solution to approximate non-autonomous systems. To this end,
we introduce a novel type of recurrent neural network that is
based on a time-independent numerical solution, whereby the
neural network tries to learn the function that allows a system
to transition from one state to the next.

In this paper, we present the benefits and trade-offs of
approximating system models using neural networks in terms
of simulation error vs. neural network size and training set
size. We have chosen three types of use-cases to test our
method for general applicability. The first focuses on solving
nonlinear differential equations. The second is taken from the
electrical domain and involves a transient model of a linear
circuit. Finally, in the third use case our method tries to
simulate a grid-connected PV (photo-voltaic) array. We have
obtained very promising results in terms of the first two cases,
while for the latter, the generalization potential of the neural
network was found to be hindered by the scale of the model.

The remainder of the paper is structured as follows: Sec-
tion II provides details of our time-independent numeric
solution. The architecture of the recurrent neural network is
described in Section III. Section IV presents details of the
training method. The achieved results are shown in Section V
using an initial GPU-based implementation, although our
solution is general and applicable to various hardware setups.
The paper ends with a summary and outlook in Section VI.

II. TIME-INDEPENDENT NUMERIC SOLUTION

The mathematical models of system components usually
include time-varying input variables, which correspond to wu(t)
in Equation 1. For example, the voltage level of a voltage
source in a circuit, or the torque of a mechanical load attached
to a motor are externally controlled variables. Their values
do not depend on the solutions. Thus, the solutions to these
differential equations vary with different values of w(t).

= A7+ a(t) (1)

In order to have a complete representation of a system
model, our approximation needs to be input-agnostic; i.e for
any set of inputs, the approximated behavior should be an
accurate estimation of the actual solution. Supposing that a
system model has a set of inputs, its approximation should
produce an accurate solution regardless of the input values.
This can be achieved by discretizing the solutions, and learning
the state-update functions that predict the future state values
based on the past state and input values, which is formulated
in Equation 2.

k] = h(Z]k — 1), @[k — 1), T[k]) 2)

The purpose of this work is to train neural networks
that estimate these state-update functions. As a state-update
function works in a recurrent fashion, i.e it calculates the new
state values based on their past values as well as the input
values, it is best to utilize recurrent neural networks. Our
proposed neural network is formulated in Equation 3, where
z[k] € RY is a vector of N states, and u[k] € RM is a vector
of M inputs at the step , and V., 5, is a multi-layer feedforward
neural network with optimized weights w and biases b. Note
that the output of the neural network corresponds to the
difference in the state values between subsequent steps. During
the training phase, this has proven to be numerically more
stable in comparison to predicting the next values directly.

III. RNN ARCHITECTURE

Our recurrent neural network architecture, which satisfies
Equation 3, is depicted in Figure 1. The input nodes store the
values of the n'" state in (k—1)™ time-step, i.e., z,,[k—1], and
the values of the m™" external input in k—1 and k" time-steps,
i.e., um,[k — 1] and w,,[k], respectively. These nodes are con-
nected to a set of fully-connected neural network layers with
different number of neurons. The number of layers and their
dimensions are problem-specific, and need to be determined
case by case by taking the size and complexity of the model
into account. The activation function of the neurons in these
layers except the final one is the Leaky Rectified Linear Units
(Leaky ReLu), whose output is h(x) = max(z, ax), where
x is the input of the activation function, and o € (R \ {1})
is the slope of the activation function in the negative domain.
For our experiments, we have arbitrarily chosen o = 0.2. The
output of the final layer, Az[k], corresponds to the difference
of the state values between time-steps. The delta of the state
values enable the amplification of the difference in the post-
processing for the training.

The simulation of a system model with the proposed ar-
chitecture starts from the initial conditions of the states and
inputs, based on which we conduct one forward propagation
with the set of our fully-connected layers to predict the delta
values of the states. For the next time step, we first post-
process the state delta values, and write them back to the input
nodes. Then we shift the input values u[k] into u[k — 1], and
fetch the new wu[k] values from the external source. Finally,
we repeat the forward propagation for the new time step. The
process repeats until the simulation is stopped.

IV. TRAINING METHODOLOGY

A. Data Generation and Processing

First of all, we make an assumption that the model has
already been programmed in a modeling language such as
Modelica, or built in a software such as Dymola or Simulink.
This equivalent implementation of the models is used for
generating training and testing data. Also, in the scope of this
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Fig. 1: Proposed RNN Architecture for a system model that consists of N states and M external inputs. x[k] and u[k] represent
the state and input values at the time step k. Black solid lines show the data flow within a simulation step, whereas the red
dashed lines depict the data transfer between the simulation steps.

paper, we assume that all the states of a model can be accessed,
and their values can be recorded during a simulation.

The system models usually take a number of input data from
external sources. For instance, a power grid model can take
the voltage level of a generator, or a circuit breaker model
can take a binary signal to simulate switching on/off a line.
These inputs affect the behavior of the system, and change
the values of the states. Thus, every different combination of
the input sequence results in a different simulation outcome.
Consequently, as many input combinations as possible need
to be included in the training data.

Another important factor for the training is the simulation
step size. Choosing a large step size would reduce the accuracy
of the simulation, and the result may become unstable. On the
other hand, a large step size will reduce the size of the training
data set, and will make both the training and the simulations
faster. In contrast, choosing a small step size will increase the
accuracy, at the expense of slower training and simulation.
Therefore, it is important to choose a problem specific step
size for a model while generating the training data.

Once the simulation data is generated, we process the state
and input values to mitigate some numerical issues that might
happen in the training phase. We first linearly map the states
and input values to the range of [0, 1]. Then, for the state values
in the training dataset, we take the difference in consecutive
samples, normalize them with their Frobenius norm, and
finally amplify them with a scalar factor. The purpose of
mapping the values between 0 and 1 is to prevent the ‘dying
ReLu’ problem during the training, in which the gradient of
a neuron is always stuck to zero due to the negative output
value in the beginning. The reason for taking the difference of

the state values is that, when the difference in two consecutive
values is near zero, the neural network takes the two values as
identical, and does not infer the actual state-update function.
This is why we also need to amplify the difference after they
are being normalized.

B. Training

We have used the Adam optimizer [2] to optimize the
weights and biases due to its faster and better convergence.
We found that different learning rates lead to the best results
for different models. For the training, we have chosen our cost
function as Lo-loss between the ground-truth and predicted
state values.

The optimization starts with a randomly-selected batch of
training samples. The batch size of 200 is chosen arbitrarily.
First, we optimize the parameters with the selected samples
using the Adam optimizer. Then, instead of taking a new batch
of samples from the training dataset, we take the predictions
for the next timestep made by the recently-optimized network,
and use them to train the network in the next training iteration.
This way, we train the networks not only with the ground-truth
data obtained from another simulation tool, but also with the
noisy data that accumulates the network’s self-induced simu-
lation error. Consequently, the network learns giving accurate
results in the presence of its self-induced simulation errors.
This is inspired by the unrolling concept of LSTM training [3].
We observed that this also helps to prevent overfitting during
the training. After a number of training iterations, we take
fresh ground-truth data from the training dataset, and repeat
this sequence until the training is stopped. Algorithm 1 shows
the training schema.



Algorithm 1: Training of the Proposed RNN Archi-
tecture

Parameter: Learning rate «, Batch size B, Max.
number of iterations I, Number of
unrollings U, Number of iterations per
full-simulation P

Input : Training input x4, and output ¢,
Validation input x,,; and output 1,
Scale values s

QOutput : Optimized Weights w, Biases b

Initialize w and b ;

Gnn < Build the neural network graph from w, b, s ;

Worst-error: €,,i, < 00 ;

Iteration counter: ¢ < 0

while Max. number of iterations has not been reached:
1< I do

B W N =

6 if © mod U is equal to 0 then

7 Zk, Ui < Randomly selected B samples from
z,9

8 Optimize gy, with z, i w.r.t w and b ;

9 else

10 ZTr+1 < Calculate next input from gy, ;

11 Jk+1 < Retrieve next output from 7 ;

12 Optimize ¢, with 541, Jr+1 Wr.t w and b ;

13 end

14 if i + 1 mod P is equal to 0 then

15 y < full-simulation with x,4; ;

16 e <— compute error from ,,; and y ;

17 if e < e;,in, then

18 Save w, b ;

19 Emin & €

20 end

21 end

22 Increment 7 ;

23 end

V. EXPERIMENTAL EVALUATION

We have evaluated our proposed method for three cases:
First, solving nonlinear differential equations; then simulating
two models provided by Simulink, namely Transient model
of a linear circuit! (TLC), and 100-kW grid-connected PV
array’ (PVA). We have chosen these models to try different
sizes and complexities, and cover as much variety as possible
such as continuous/binary inputs, existence of discrete events,
and nonlinear behavior. Also, the models TLC and PVA are
included in microgrid models, which remain as a future goal.

A. Training Phase Implementation

We have chosen Tensorflow [4] for the training of the neural
networks, due to its easy-to-use API, support for both multi-

Uhttps://ch.mathworks.com/help/physmod/sps/examples/transient-analysis-
of-a-linear-circuit.html

Zhttps://ch.mathworks.com/help/physmod/sps/examples/average-model-of-
a-100-kw-grid-connected-pv-array.html

core CPU and GPU, and comprehensive documentation. For
the training, we have chosen Adam optimizer settings as 1 =
0.9, B> = 0.999, and ¢ = 10~8. We initialize the network’s
weights from a truncated normal distribution with a mean of
0 and a standard deviation of 0.1. These values are truncated
from two times the standard deviation to prevent starting the
training with saturated neurons. The biases are initialized to
0.1, which is chosen as an arbitrary positive number to help
in preventing the ‘dying ReLu’ problem. Experimentally, we
found that 20 unrollings yield the best results.

B. GPU Kernel for the Inference Phase

In order to run the simulations with the trained network on
a GPU, we developed our custom GPU kernel with the help
of cuBLAS? and CUDA* functions. This kernel is optimized
for our proposed RNN architecture and post-processing. It is
designed to minimize the communication overhead by keeping
neural network parameters on the GPU memory, and transfer-
ring only the necessary data between CPU and GPU across
simulation time steps. The matrix multiplication required for
each layer is implemented with cuBLAS cublasSgemyv func-
tion, whereas the addition of bias as well as calculating the
activations are implemented as a custom CUDA kernel in a
vector operation fashion. All simulations mentioned in this
section are carried out using this kernel.

C. Experiments

1) Use-case 1: Non-linear Differential Equations: We have
chosen the Problem 4 from Lagaris et. al [1] as an example
of non-linear ordinary differential equation, which is shown in
Equation 4.

% = cos(t) + 22 + x5 — (1 + 2 + sin?(t))
“)
% =2t — (1 +t%)sin(t) + 120

To generate training data, we solved this equation with the
default ODE solver ode45 in Matlab. We found that a step size
of 1073 is sufficient for the given equation. Unlike the original
work [1], we solved the equations for ¢ € [0,10] ([0, 3] in the
original work) to see more variance in the solution. The initial
conditions are set to x1[0] = 0 and x2[0] = 1, as in the original
work. Then, we trained a neural network with a single hidden
layer of 100 neurons. Figure 2 shows the solutions obtained
by both Matlab and the trained neural network. The solutions
are almost identical: the maximum mean-squared error is as
small as 4.49 x 107,

We trained several neural networks with varying sizes,
and measured their accuracies and GPU runtimes, which are
plotted in Figure 3. Larger networks result in more accurate
simulations but longer simulation runtimes. This shows that
we can trade-off accuracy and performance based on our
simulations needs and computation budget. This is not possible
with conventional ODE solvers.

3http://docs.nvidia.com/cuda/cublas/index.html
“https://developer.nvidia.com/gpu-accelerated-libraries
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Fig. 2: Solution of the ODE example. The plots are almost
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Fig. 3: Simulation error versus GPU run time. Each point in
the graph represents a neural network of a different size.

2) Use-case 2: Transient Model of a Linear Circuit: In this
experiment, we consider a model of an RLC circuit with a
circuit breaker, which introduces non-linearity in the behavior
of the model. It consists of five states, and two external inputs:
one sinusoidal signal as the voltage source, and one binary
signal for the circuit breaker to switch on or off. We trained
several neural networks with a single hidden layer of varying
number of neurons to approximate the behavior of this model.

During the training, we validated the accuracy of our networks
with an arbitrary binary waveform for the circuit breaker.

We tested the accuracy of these networks as follows. We
switched off the circuit breaker at random times between
[0, 5] seconds for 100 times. We simulated the model with the
Matlab ode45 solver and with our trained neural networks, and
calculated the mean-squared errors between them. Figure 4
shows these test errors as well as the validation error for
different layer sizes. We can observe that both the training
and generalization errors are very small, especially for layer
sizes larger than 10. In fact, this number is not surprising,
and it can also be obtained intuitively. Since the model is a
linear circuit when the circuit breaker is on or off, one neuron
for each state should be sufficient to estimate its behavior for
each circuit breaker mode. Since there are five states, and two
different modes (circuit breaker on/off), one can expect that
a network with ten neurons is sufficiently large to estimate
this model. Unfortunately, it is not always the case that we
can find the optimal number of neurons intuitively as in this
example, especially when the model is non-linear.

In order to quantify the performance gain of a GPU, we
present the execution times of the Simulink model versus
the GPU based implementation, see Figure 5. We do not
observe any significant difference in runtimes between the
neural networks for a single implementation that we trained.
However, the GPU implementation leads to a 2.8x speedup.
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Fig. 4: Simulation error vs. the size of the single hidden layer.

3) Use-case 3: 100-kW Grid-connected PV Array Model:
In this experiment, we considered a PV array model, which
is connected to a 100-kW grid through DC/AC and AC/AC
converters. The complete model consists of 63 states, and it
takes 9 inputs, including sun irradiance, temperature signals
and control signals for converters.

We trained several networks with different sizes, and
measured their simulation accuracy on the training dataset.
Figure 6 plots the maximum and average MSEs out of 63
states. We observe that, as we increase the network size, the
simulation accuracy improves.

Although the trained networks perform well on the training
dataset, they fail at simulating test cases in which the input
waveforms are changed. We attribute this to the fact that the
state-space may be too large to be covered with the current
training data. When the simulation jumps to a value that is not
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Array model.

included in the training dataset, the simulation diverges. Since
the number of states, and the complexity of the model is higher
compared to previous examples, it is not possible to cover the
state-space with an exhaustive approach. Therefore, the trained
networks cannot generalize the behavior of the model, without
extending the training dataset.

VI. CONCLUSION AND FUTURE WORK

We proposed a novel method to solve ordinary differen-
tial equations and simulate system models with recurrent
neural networks, while leveraging parallel architectures such
as GPUs. We tested our proposed method and showed its
effectiveness in several use cases. We first showed that the
proposed method is capable of solving ordinary differential
equations with a very high accuracy. Then, we showed that our
trained neural networks successfully approximate the behavior
of two physical models, i.e., the transient model of an RLC
circuit, and the average model of a PV array. In the former
case, the trained networks showed excellent generalization
capabilities. However, in the latter case, which has many

more states and inputs, the trained networks were not able
to produce accurate simulation results against test cases that
were not included in the training dataset. That is, the state
coverage is potentially a problem of our current approach as
no state can be reached that was not part of the training data
set. The same applies to the validation of the trained system
as this would need to ensure that all possible system states
can be reached. Therefore, we conclude that the scalability of
this method for larger and more complex models should be
further investigated and improved.

In general, we see several possible future directions to ad-
dress the aforementioned limitations. First, an iterative training
approach can be adopted. Once a neural network is trained, it
can be tested with a number of test cases, and the network
can be re-trained with the failed test cases. When this is
repeated for a sufficient number of times, the accuracy and
the stability of the trained networks should improve, although
the reachability of all system states may still not be guaranteed.

Secondly, a more efficient approach for the generation of
training data can be adopted to overcome the difficulties in
covering as much state-space as possible. Our exhaustive
search approach is not applicable for large systems such as
the PV array example. A state-space explorer as presented
in [12] can be integrated into the training data generation
such that all reachable state values are included in the training
dataset. Besides, the state-space explorer can be used for the
verification of the trained networks as well.

Last but not least, the trained neural networks can be de-
ployed onto an FPGA to run the simulations much faster. Since
neural networks can be abstracted by only their weights and
biases, a trivial register-transfer level (RTL) implementation of
a fully-connected layer would be sufficient to translate highly
complex simulations into hardware accelerators.
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