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Abstract—Global warming is endangering the earth’s ecosys-
tem. It is imperative for us to limit green house gas emissions
in order to combat rising global average temperatures. One
way to move forward is the integration of renewable energy
resources on all levels of the power system, i.e. from large-scale
energy producers to individual households. The future smart grid
provides the technology for this.
In this paper, a novel demand-side management concept is
proposed. It is implemented by a utility company which focuses
on renewable energy. Through a specific billing mechanism,
prosumers are encouraged to balance load and supply. A game-
theoretic approach models households as self-determined rational
energy users, that want to reduce their individual electricity costs.
To achieve this, they selfishly share energy with their neighbours
and also schedule their energy storage systems. The scheme is
designed such that monetary transactions between households
are not necessary. Thus, it provides an alternative approach to
energy trading schemes from the literature.

Index Terms—Energy Sharing, Game Theory, Smart Grid,
Battery Scheduling, Prosumer

I. INTRODUCTION

Climate change is threatening planet earth, its species and
people’s livelihoods. In an attempt to slow down global warm-
ing, greenhouse gas emissions have to be reduced drastically.
For instance, instead of burning fossil fuels, energy demands
should be fulfiled by renewable energy (RE) resources. This is
a challenging task as the intermittent nature of these resources
might cause grid instabilities.

One opportunity to integrate RE into the system is provided
by the implementation of smart grids. A smart grid can be
described as the combination of a legacy power grid with
an additional information technology layer. It is this two-way
communication which allows to execute sophisticated energy
management systems that can guarantee the stability of the
grid.

Furthermore, the smart grid introduces the possibility of
a two-way energy exchange. Recently, energy trading has
become a buzzword in both industry and academia [1]–[10].
The idea to sell excess energy from a private RE resource to
a neighbour which is in need, makes the investment in these
resources more viable.

The author wants to thank the Doctoral Training Alliance (DTA) Energy
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Lee et al. [1] investigate the relation between small scale
(local) producers and end-users. They use a game-theoretic ap-
proach to derive a pricing model for direct energy transactions.
Their paper belongs to the category of studies (e.g. [2]–[5])
which are concerned with a single trading event, i.e. without
a notion of time. Thus, energy storage does not play a role in
their analysis.

An auction mechanism is used in [2] to determine the buyer
(and the price) of a certain amount of electricity from an
individual seller. Their work mainly focuses on the utilisation
of smart contracts to automate the process.

In contrast to [2], [3], [5], Park et al. [4] do not use a game-
theoretic concept for price determination. Instead, households
are ‘sorted’ when they require electricity from their peers,
based on historical contributions to the community and the
amount they requested. Unfortunately, they do not give insight
into how contribution values are influenced by household’s
decisions. Thus, their idea remains a theoretical concept.

Research combining storage technology and trading of
renewable energies began to take shape in 2018 (e.g. [7]–[10]).
The interest shifted from a one-off trade between households
(or microgrids [3]), to a planning-oriented approach. Given
forecasts for demand and generation (usually for the upcoming
day), battery usage and trading activities are scheduled.

For instance, references [8] and [10] describe a scenario
in which a central operator/platform determines the optimal
battery and trading decisions of a community such that the
consumption from the external grid is minimised. This does
not take into account the preferences of the utility company
(UC). While the batteries in these examples are owned by
individual households, [7] and [9] each employ a single
centralised energy storage.

We expect that the most efficient system will have to
combine energy exchange between households as well as the
utilisation of energy storage. A fully decentralised smart grid
might be advertised as the pinnacle of power systems, but it is
not the most probable future scenario. We have to acknowledge
the role of the UC within the system as they are already
investing in large scale RE resources, e.g. [11]–[13].

Furthermore, the energy trading scenarios proposed in the
literature assume the willingness of people to initiate monetary
transactions every time they exchange energy with one another.
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We believe that this is overwhelming for the customer. A
modern billing scheme needs to be simple and still remain
familiar to the existing system to find large scale adoption.

This paper overcomes these shortcomings by proposing
a novel demand-side management concept, which has the
following advantages:

1) The scheme directly features the generation of energy
from the UC and incentivises the community to follow
this production.

2) Each household is treated as an individual and rational
entity that wants to minimise their electricity bill. They
can do so by scheduling their energy storage system as
well as sharing energy with the community.

3) There are no monetary transactions connected to sharing
energy. Nevertheless, it is beneficial for users to offer
their excess RE generation.

The paper is structured as follows: In Section II, the models
for the community and its constituents, i.e. households with
battery and RE resource, are introduced. The decisions that
can be taken by each household are explained in Section III.
Section IV gives details about the billing function, while
Section V defines the game in which households aim to
minimise their electricity bill. The paper is concluded in
Section VI.

II. THE SYSTEM MODEL

In this section, the model for the community is presented.
This includes the overall representation of the households
and their connections, the demand-side management (DSM)
scheme organised by the utility company (UC), the model for
the batteries and renewable energy (RE) resources, as well
as a detailed description of the decisions each participant can
choose from.

A. The Community and DSM scheme

The households in the community are represented as a set
M. There are M = |M| individual houses. Each household
m ∈ M is a participant of a DSM scheme which is imple-
mented by the UC serving the community. Furthermore, they
are all equipped with an RE resource, e.g. a solar photovoltaic
system or a wind turbine, and a lithium-ion battery to store
electric energy. Since these households are both producing and
consuming energy they are often referred to as prosumers in
the literature.

The DSM scheme is a process which is repeated once
per day. It relies on the two-way communication and power
exchange-infrastructure provided by the underlying smart grid.
Note that the DSM protocol is automatically executed by the
smart meters that are installed in each household. Smart meters
are able to measure consumption and generation data of the
respective households in discrete intervals t. In addition, they
also initiate the charging/discharging of batteries as well as
the exchange of electricity between the households. The set
of all time intervals of the upcoming day is denoted by T and
has T = |T | elements. Thus the length of a time interval is
given by ∆t = 24/T h.

1. Demand and generation forecast is sent to the UC 

2. UC broadcasts aggregated data and own generation forecast 

3. Non-cooperative game between households resulting in schedules 

4. Following equilibrium schedules over whole period 

5. Electricity bill according to individual and aggregated load 

3 

2 

1 

5 4 

Fig. 1: Demand-side management (DSM) scheme. The steps
that constitute the DSM process are shown schematically.
The dashed line indicates the beginning and ending of the
scheduling/sharing period.

The DSM process performs the following steps (cf. Fig. 1):
• The smart meter of each household executes a forecasting

algorithm1 to estimate the demand and generation of their
respective RE resource. This data is sent to the UC via
the communication layer of the smart grid.

• The UC aggregates the demand and generation data and
broadcasts them to each household. Furthermore, they
broadcast their expected electricity generation. Since a
considerable amount of their generation also stems from
RE resources, these are as well forecasted data.

• Based on these information, the households play a non-
cooperative dynamic game with the aim to reduce their
individual electricity bill2. The outcome of the game,
i.e. the equilibrium solution, is a collection of instruc-
tions. For each interval of the upcoming day it details
how to make use of the energy storage system and how
energy is exchanged between the households.

• During the day, the smart meter of each household
follows the equilibrium strategy. Any unilateral deviation
from the equilibrium would result in increased costs for
the particular user.

• The households are billed for each interval according to
their individual load as well as the aggregated load of all
households. Details on the explicit pricing function are
presented in Section IV.

B. The Household Model

Households that take part in the DSM scheme own their
individual RE resource and a energy storage system.

1) Lithium-Ion Battery Model: We assume that all storage
systems are lithium-ion batteries and implement a detailed
model for this technology. The model has been introduced
in [14] and was also used in [15], [16]. Most notably, the

1The forecasting is performed based on historical data collected by the
smart meter and weather forecasts. The specific algorithm is out of the scope
of this paper. In the following it is assumed that this forecast is provided
reliably.

2The billing mechanism implemented by the UC is known to all households
in advance.
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Fig. 2: Characteristic charging and discharging behaviour of
lithium-ion batteries. The distinctive charging (discharging)
curve is shown on the left (right). At time t′ the state-of-charge
is given as s′. The grey area illustrates the achievable state-
of-charge within the following time interval of length ∆t. The
left-hand axis denotes the state-of-charge, whereas the right-
hand axis represents the charging (discharging) decision with
the possible decision interval. The discrepancy between the
achievable state-of-charge and the decision interval are due
to imperfect efficiencies while charging (discharging). Similar
to [16].

specific charging and discharging characteristics of lithium-
ion batteries are considered as shown in Fig. 2.

Charging these type of batteries is done in a two-stage
process [17]. The first stage is called the ‘constant current’
(CC) stage. In this stage the state-of-charge (SOC) increases
linearly with the charging rate limited to ρ+ > 0. During
the second stage, i.e. the ‘constant voltage’ (CV) stage, the
effective charging rate decreases and eventually levels off
towards the maximum capacity smax of the battery. The upper
bound φ+(s′) of how much can be charged within a given
time interval of length ∆t (given an initial value s′ for the
SOC) is described by

φ+ (s′) =

{
ρ+∆t if CC charged

smaxγ1 exp
[
−∆t
γ2

]
if CV charged

,

with γ1, γ2 defined such that the charging curve at the
transition point point between the two stages is smooth.

Discharging a lithium-ion battery can be modelled as a
linear decrease of the SOC. The slope of this process is
defined by the discharging rate ρ− < 0. The sharp drop
off of the discharging rate, which is usually observed at low
capacities [17], is accounted for by prohibiting discharging
below a minimum SOC smin. We express the limit φ−(s′) of
how much discharged energy can be used by

φ− (s′) = ρ−∆t ηinv η
− ,

which considers the efficiency of the discharging process η−

and the efficiency of the DC/AC power inverter ηinv. The

dependency on the current state of charge s′ is implicitly
considered due to the minimum SOC smin.

The battery model also includes self-discharging, whenever
the battery remains idle for an interval ∆t. This process is
characterised by the self-discharging rate ρ̄ < 0.

2) Renewable Energy Resource Model: For simplicity, we
only consider local installations of wind turbines and solar
photovoltaic (PV) panels; one of the two for every household.
The smart meters have the capability to forecast the output of
the respective energy resource for the upcoming day (cf. [18]–
[20] for suitable forecasting algorithms). For a time interval
t this output is denoted by wt. Within our model, there are
three possibilities how this energy can be used:
• Direct usage by household appliances
• Charging the battery of the respective household
• Sharing the energy with other households
When the energy is used directly by household appliances

it needs to be converted from DC to AC with an efficiency
of ηinv. This conversion is not necessary when the energy is
used to charge the battery. In the case of sharing the energy
with other users, we consider DC/AC conversion as well as
line losses.

Note that direct usage is always prioritised. This means that
charging one’s own battery or sharing energy can only be
performed if the produced amount exceeds the demand during
the respective time interval. More explicitly, we consider the
net-demand dtm of household m at time interval t as an
indicator for the available usage options:

dtm = d̄tm − ηinv w
t
m , (1)

where d̄tm is the actual demand caused by the household
appliances.

III. DECISION VARIABLES

In this section, we introduce the decisions that can be taken
by the households. It will become clear how the battery and
renewable energy (RE) resource model (cf. Section II) limit
these choices.

In general, there are two types of decisions to make for
each household m ∈ M during each interval t ∈ T of the
upcoming day:
• how to use the battery (denoted by atm)
• how to share energy (denoted by etm)

For simplicity we combine these into a single decision vector
xtm = (atm, e

t
m). A collection of these decisions over the entire

time period xm = (x1
m, x

2
m, . . . , x

T
m) is called a schedule.

For each time interval, households are categorised as giver
or taker of energy based on their net-demand (1). The classi-
fication in giver and taker introduces different boundaries to
the decisions xtm.

A. Definitions of Giver and Taker

If dtm > 0 it means that the demand of the household cannot
be satisfied from their own RE production. Thus they require
further electricity from either the grid or other households. We
call such a household taker.
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Fig. 3: Electricity flows. The potential electricity flows for an
individual household of the prosumer community is shown.
Dotted lines refer to flows of a ‘taking’ household, while
solid lines reference a ‘giving’ household. These flows are
also valid for all the other households in the community and
summarised in the dashed line between the utility company
and the community.

If dtm ≤ 0 it means that there is an excess of RE which
can be used to charge their own battery or be shared with
the other households. During such an interval the household
is categorised as a giver.

The load ltm of a user is defined as the amount of energy
drawn from the grid, i.e. from the utility company. In the
following section (Section IV), the explicit billing mechanism
highlights how the electricity costs depend on the aggregated
load of all households as well as their individual load. Here,
we explain how the decisions taken by a household affect the
load.

B. Decision Space for ‘Taking’ Households

The load of a taking household m ∈M at time t ∈ T is

ltm = dtm + atm + etm . (2)

The battery decision atm and sharing decision etm have to fulfil
the following constraints:

stm − smin < φ−
(
stm
)
≤ atm ≤ φ+

(
stm
)
< smax − stm (3a)

− dtm − atm ≤ etm ≤ 0 (3b)∣∣etm∣∣ ≤ Et . (3c)

Equation (3a) describes the discharging and charging restric-
tions from left to right, respectively. Discharging cannot be
done below the minimum SOC smin and also the charging
rate and efficiency are respected. The right hand side makes a
similar statement for the charging process (cf. Section II-B).
Note that discharging refers to using energy from the battery
to fulfil demand, while charging the battery explicitly refers
to charging the battery from the grid.

Equation (3b) guarantees ltm ≥ 0, meaning that the house-
holds can neither sell energy from their battery nor the energy
they receive from their neighbours to the grid. Furthermore,
the amount of energy they can obtain from the neighbours is
restricted to the excess production of them at that time interval
(cf. (3c)). Note that charging the battery can effectively be
done from shared energy.

The interaction with the battery directly influences the SOC.
To reflect the correct state st+1

m of the upcoming interval we
calculate

st+1
m =


stm + ηinv η

+atm , if atm > 0

stm + atm/(ηinv η
−) , if atm < 0

stm · (1 + ρ̄)
∆t

, if atm = 0

.

C. Decision Space for ‘Giving’ Households

The load of a giving household m ∈M at time t ∈ T is

ltm = atm . (4)

All the demand d̄tm is already fulfilled from their RE resource.
Nevertheless, there is also a sharing decision to make: The
household can offer (part of) their excess production dtm to
the community, i.e.

Et ← Et + η̄ · etm , with 0 ≤ etm ≤ −dtm ,

where 0 < η̄ ≤ 1 denotes the line losses of the network. The
remaining part, i.e. −dtm−etm, is automatically used to charge
the battery. This gives a further restriction to the amount to
be charged from the grid as follows:

0 ≤ atm − dtm − etm ≤ φ+(stm) < smax
m − stm .

In the case that the effective charging amount is exactly 0, the
self-discharging process of the battery st+1

m = stm · (1 + ρ̄)
∆t

is considered (cf. Section III-B). Otherwise the SOC for the
upcoming interval is calculated to be

st+1
m = stm + ηinv η

+atm + η+ · (−dtm − etm) .

When charging the battery directly from locally produced RE
resources, only the battery efficiency η+ has to be considered,
whereas charging from the grid also requires conversion from
AC to DC with the respective conversion efficiency ηinv.

D. The Aggregated Load

The aggregated load Lt at time interval t is the total amount
of electricity requested by the community. With respect to the
non-cooperative game (cf. Section V) the following definition
is used:

Lt = ltm + lt−m , (5)

where ltm is the load of a specific household m ∈M and lt−m
is the load of all households except for m.

In the previous subsections it was shown how each house-
hold is able to directly influence their own load, i.e. Equa-
tions (2) and (4). Furthermore, it became clear that by means
of the sharing ability they can also (indirectly) affect the load
of other households in the community.



Fig. 4: Generation and demand. The exemplary energy generation of the utility company and demand of four households is
shown on the left and right, respectively. Furthermore, the sum of the individual components are shown as lines.
gt refers to the dashed line in the left-hand plot. The dotted line in the right-hand plot can be seen as the aggregated load Lt

in a scenario where batteries are not used and energy is not shared.

IV. THE UTILITY FUNCTION

In this section, the novel utility function, i.e. the electricity
bill, for each participant of the game is presented.

Households are incentivised to follow the forecasted pro-
duction pattern gt of the utility company (cf. Fig. 4) by
implementing the following price per energy unit for a given
interval t ∈ T of the upcoming day:

pt =
(
Lt − gt

)2
+ p0 ,

where p0 > 0 is constant and Lt is the aggregated load of all
users as defined in (5). The closer the aggregated load Lt is to
the generated electricity gt, the smaller the price per energy
unit for this particular interval t ∈ T . The electricity bill for
a particular household m ∈M for one day is then calculated
to be:

Um =

T∑
t=1

ltm · pt . (6)

In the non-cooperative game between the households, each
user strives to minimise their individual electricity bill (6). In
the interest of showing how the electricity bill for household
m ∈M depends on their own sharing/charging decisions xm
(cf. Section III) and the decisions x−m of all the other house-
holds let us rewrite (6) explicitly with these dependencies:

Um (xm, x−m) =

T∑
t=1

{
ltm(xm) · p0 (7)

+ ltm(xm) ·
[
ltm(xm) + lt−m(x−m)− gt

]2}
.

V. THE NON-COOPERATIVE GAME

In this section, we define the non-cooperative game and ex-
plain the solution approach that leads to equilibrium schedules
for the individual households.

The non-cooperative game is defined by G = {M,X , U}
with
• M as the set of participants of the game.
• X = X1 × · · · × XM , where Xm is the set of all actions
xm that fulfil the restrictions detailed in Section III.

• U = (U1, . . . , UM ), with the utility function (7)
Um : X → IR for player m.

An iterative best-response algorithm [21] is used to solve the
game. The solution is a vector of battery/sharing-schedules
x̂ = (x̂m, x̂−m), i.e. one for each participant3.

During each step of the iteration, the households determine
their best strategy by solving the minimisation problem:

x̂m = arg min
xm∈Xm

Um (xm, x−m) . (8)

A summary of the algorithm can be found in Algorithm 1.
When this iteration procedure terminates, each household has

Algorithm 1: Best-response algorithm for finding a pure
NE based on [21]
Input: gt, wt, d̄t

initialise random vector of schedules x = (xm, x−m)
while there exists a player m for whom xm is not a best

response to x−m do
for each m ∈M do

x̂m ← best response to x−m based on (8)
x ← (x̂m, x−m)

end
end

Output: x̂ = x

determined a schedule xm which is in equilibrium with all
the other households. This means that there is no incentive to
deviate from this strategy. Any unilateral deviation can only
ever result in a worse outcome, i.e. a more expensive electricity
bill.

Fig. 5 illustrates the potential effect of the scheme if it were
to be applied on the data shown in Fig. 4. By scheduling their
batteries and sharing energy among each other, they are able
to adapt to the forecasted generation of the UC.

3Equivalently, we can write the solution as x̂ = (x̂1, . . . , x̂M ) to emphasis
the contribution of all households.



Fig. 5: Outcome of the game. The dashed and dotted lines are
directly taken from Fig. 4 and refer to the generation of the
utility and the demand of the community, respectively. The
utility function (6) is designed such that it is most beneficial
for the households to make use of the energy storage systems
and share energy in a way that the aggregated load matches
the forecasted supply. The solid line indicates the potential
aggregated load of the households after playing the game.

VI. CONCLUSIONS

The adoption of renewable energy resources helps to limit
greenhouse gas emissions. This paper proposed a demand-
side management scheme which allows the integration of
renewable energy resources on both the utility company’s
level (large scale) and the customer’s level (small scale).
Within the scheme, households are financially incentivised to
adjust their load to the forecasted electricity production of the
utility company. They can accomplish this by scheduling their
locally installed energy storage systems and by sharing energy
with the community. The underlying process to organise the
scheduling and sharing is based on a non-cooperative game in
which every participant is only interested in achieving the best
for themselves. We thus established a mechanism for selfish
energy sharing which does not require direct monetary transac-
tions between the prosumers. This makes it more approachable
for the user, fostering wide-spread adoption.

Future research will quantify the gains of our approach
in terms of renewable energy self-consumption, how closely
the utility’s production curve can be followed, and financial
rewards for the prosumers. Furthermore, a detailed comparison
to energy trading schemes will be necessary to demonstrate the
competitiveness of our proposition. It is worth noting that since
the optimal size of storage and generation for each household
is derived using the billing scheme and energy trading model,
their optimality has to be revisited for all of these demand-side
management concepts.

REFERENCES

[1] W. Lee, L. Xiang, R. Schober, and V. W. Wong, “Direct Electricity
Trading in Smart Grid: A Coalitional Game Analysis,” IEEE Journal
on Selected Areas in Communications, vol. 32, no. 7, pp. 1398–1411,
2014.

[2] S. Myung and J.-H. Lee, “Ethereum Smart Contract-Based Automated
Power Trading Algorithm in a Microgrid Environment,” The Journal of
Supercomputing, 2018.

[3] J. Lee, J. Guo, J. K. Choi, and M. Zukerman, “Distributed Energy
Trading in Microgrids: A Game Theoretic Model and Its Equilibrium
Analysis,” IEEE Transactions on Industrial Electronics, vol. 62, no. 6,
pp. 3524–3533, 2015.

[4] S. Park, J. Lee, S. Bae, G. Hwang, and J. Choi, “Contribution Based
Energy Trading Mechanism in Micro-Grids for Future Smart Grid: A
Game Theoretic Approach,” IEEE Transactions on Industrial Electron-
ics, vol. 0046, no. c, pp. 4255–4265, 2016.

[5] S. Park, J. Lee, G. Hwang, and J. K. Choi, “Event-Driven Energy Trading
System in Microgrids: Aperiodic Market Model Analysis with a Game
Theoretic Approach,” IEEE Access, vol. 5, pp. 26 291–26 302, 2017.

[6] M. Pilz and L. Al-Fagih, “Recent Advances in Local Energy Trading in
the Smart Grid Based on Game–Theoretic Approaches,” IEEE Transac-
tions on Smart Grid, vol. 10, no. 2, pp. 1363–1371, 2019.

[7] C. P. Mediwaththe, E. R. Stephens, D. B. Smith, and A. Mahanti,
“Competitive Energy Trading Framework for Demand-Side Management
in Neighborhood Area Networks,” IEEE Transactions on Smart Grid,
vol. 9, no. 5, pp. 4313–4322, 2018.
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