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Abstract—The joint coordination of plug-in electric vehicles
(PEVs) charging and grid power control is to minimize both
PEVs’ charging cost and energy generation cost in meeting both
PEVs’ power demands and power grid operational constraints.
A bang-bang PEV charging strategy is adopted to exploit its
simple online implementation, which requires computation of
a mixed integer nonlinear programming problem (MINP) in
binary variables of the PEV charging and continuous variables
of the grid voltages. A novel solver for this challenging MINP
is proposed. Its efficiency is shown by numerical simulations.

Index Terms—Smart grid, plug-in electric vehicles, bang-
bang charging, online algorithm, mixed integer nonlinear
programming.

I. INTRODUCTION

In recent years, advancements in battery and smart grid

technology have drawn growing attention to electric vehicles

(EVs), which play an important role to mitigate the shortage

of fossil fuels and severe environment pollution problems

[1], [2]. It is expected that around 10% of new vehicles will

be EVs by 2020 [3]. However, the massive penetration of

plug-in electric vehicles (PEVs) can pose potential threats to

the stability of a power grid, which is not easily compensated

[4]. Unregulated charging of PEVs may cause overloading,

additional power loss and unacceptable voltage violation

[5]. Coordinating PEV charging is thus needed for cost-

saving services in meeting PEVs power demands and other

consumer power demand.

To address the coordination of the PEV charging prob-

lem, [6] proposed a mixed integer nonlinear programming

(MINP) model in an unbalanced system. This MINP model

was then linearized to a mixed integer linear programming

(MILP) model by applying the first order Taylor expansion

and piecewise linear approximation. As a result, the solution

of MILP is not necessarily feasible to the original MINP

problem. A similar MILP model was proposed in [7] by

integrating a vehicle-to-grid (V2G) charging strategy to the

grid. Nevertheless, the practicability of PEVs’ discharging

involving costs and technologies has raised continuous con-

cern [8]. In addition, the above references for coordinating

PEV charging are all based on the off-line strategy. In that

case, prior information of PEVs’ charging profiles including

the arrival time, departure time and state of charge (SoC) of

PEVs must be given beforehand. It is not practical to obtain

all of the information in advance. To deal with the online

PEV coordination, a model predictive control (MPC)-based

approach has been widely used in recent studies [9], [11].

In [9], PEV charging was scheduled in a finite horizon by

a MPC-based model while grid operational constraints were

ignored. A MILP model over a rolling horizon window for

energy storage control was developed in [10]. However, the

power balance constraints in [10] were not considered, which

may lead to power unbalance in the grid. Reference [11]

proposed a stochastic optimization algorithm to tackle the

MILP-based MPC model for various types of PEVs coordi-

nation problems, which may suffer from large computational

cost.

In this paper a bang-bang strategy is adopted for PEV

charging. At each time slot PEVs either charge at a maximal

power rate or do not charge at all. The obvious merit of

such bang-bang charging strategy is its easy and efficient

online implementation. At each time slot, it requires a joint

coordination of PEV charging and grid power control over

a time horizon, which is a MINP with binary PEV charging

variables and continuous bus voltage variables of the grid. A

new two-stage approach is developed to handle this MINP.

At the first stage, the MINP is equivalently reformulated to

a mixed integer convex programming (MICP) and multiple

matrix rank constraints. By relaxing the nonconvex rank

constraints, we develop a new path-following algorithm for

computation of this MICP. At the second stage, the found

binary value of the PEV charging variables is then substi-

tuted into the original MINP for optimizing the bus voltage

variables, for which our previously developed nonsmooth

optimization algorithm [12]–[14] is ready for the solution.

Simulations show that the proposed approach is capable of

locating the optimal solution of this MINP.

The rest of the paper is structured as follows. Section II

is devoted to an MINP-based model for the joint coordi-

nation of bang-bang PEV charging and grid power control



with analysis on its computational challenges. Section III

develops a solver for this MINP. Simulations are provided

in Section IV. Section V concludes the paper.

II. MPC FOR JOINT PEV BANG-BANG CHARGING

COORDINATION AND GRID POWER CONTROL

We consider an electric power grid with a set of buses

N := {1, 2, ..., N} connected through a set of flow lines

L ⊆ N × N , under which bus k is connected to bus m if

and only if (k,m) ∈ L. Denote by N (k) the set of other

buses connected to bus k. G ⊆ N is the set of those buses

that are connected to distributed generators (DGs). Bus k ∈
N \ G is not connected to DGs and bus k ∈ G also has

a function to serve PEVs and will be referred as charging

station (CS) k. Thus, there are M = |G| CSs in the grid.

The serving time period of the grid is divided into T time

slots T := {1, 2, . . . , T}.

Denote by Hk the set of those PEVs that arrive at CS

k. Accordingly, kn is the n-th PEV that arrives at CS k.

Each PEV kn arrives at ta,kn
∈ T and requires to be fully

charged by its departing time tkn,d ∈ T . Suppose that Ckn

and s0kn
are the battery capacity and initial SOC of PEV kn

while P̄kn
is the maximum power that its battery can charge

during one time slot. In this paper, we adopt the bang-bang

charging strategy, under which PEV kn either charges the

maximal power P̄kn
or does not charge at all at each time

slot. We use the binary variable

τkn
(t′) ∈ {0, 1} (1)

to implement this strategy, i.e. PEV kn charges the power

Pkn(t
′) = τkn(t

′)P̄kn during the time slot t′. Accordingly,

the following constraint enables PEV kn to be fully charged

at its departure:

tkn,d∑
t′=tkn,a

τkn
(t′) = τ̄kn

, (2)

where uh is the charging efficiency of the battery, τ̄kn
:=

�Ckn (1−s0kn
)

uhP̄kn
�. For ease of presentation, we set τkn(t

′) = 0

for t′ /∈ [tkn,a, tkn,b].
From the grid side, let ykm ∈ C be the admittance of line

(k,m) and Vk(t
′) represent the complex voltage at bus k

during the time slot t′. The total supply and demand energy

is balanced as:

Vk(t
′)[

∑
m∈N (k)

ykm(Vk − Vm)]∗ = [Pgk(t
′)− Plk(t

′)

−
∑

n∈Hk

P̄knτkn(t
′)] + j[Qgk(t

′)−Qlk(t
′)], k ∈ G, (3)

Vk(t)[
∑

m∈N (k)

ykm(Vk − Vm)]∗ =

−Plk(t
′)− jQlk(t

′), k ∈ N \ G, (4)

where Plk(t
′) and Qlk(t

′) are respectively known real and

reactive price-inelastic demands to express the residential

power demand, Pgk(t
′) and Qgk(t

′) are the real and reactive

powers generated by DG k.

The following standard constraints are also set.

• The range of generated powers by the DGs:

P gk
≤ Pgk(t

′) ≤ P gk , k ∈ G, (5)

Q
gk

≤ Qgk(t
′) ≤ Qgk

, k ∈ G, (6)

where P gk
, Q

gk
and P gk , Qgk

are respectively lower

and upper physical limits of the real generated and

reactive generated powers.

• Voltage range and phase balance:

V k ≤ |Vk(t
′)| ≤ V k, (7)

|arg(Vk(t
′))− arg(Vm(t′))| ≤ θmax

km , (8)

k ∈ N , (k,m) ∈ L, t′ ∈ T ,

where V k and V k are the lower limit and upper limit of

the voltage amplitude, while θmax
k,m are given to express

the voltage phase balance.

The cost function is defined as the sum of the energy cost

to DGs and charging cost for PEVs

F(R, τ) =
∑
t′∈T

∑
k∈G

f(Pgk(t
′))+

∑
t′∈T

∑
k∈N

∑
n∈Hk

βtτkn(t
′)P̄kn ,

(9)

where f(Pgk(t
′)) is the cost function of real power genera-

tion by DGs, which is linear or quadratic in Pgk(t
′), and βt

is the known PEV charging price during the time slot t′.
By defining

R(t′) = {Pg(t
′), Qg(t

′)},R = {R(t′)}t′∈T ,

and

τ = {τ(t′)}t′∈T , τ(t
′) = {τkn

(t′)}kn∈Hk
,

(R(t′), τ(t′)) and V (t′) are considered as the system state

and control, respectively. As such, the joint PEV charging

coordination and voltage control to optimize the energy and

charging costs appears to be the following control problem

over the finite horizon [1, T ]:

min
V,R,τ

F(R, τ) s.t. (1), (2), (3)− (8). (10)

However, all equations in (10) are not known a priori.

Denote by C(t) the set of PEVs that need to be charged at

t and ahead. For each kn ∈ C(t), let dkn
(t) be its remaining

demand for charging by the departure time tkn,d. Therefore,

the binary variable

τkn(t
′) ∈ {0, 1}, t′ ∈ [t, tkn,d], kn ∈ C(t) (11)

must satisfy the following constraints:

tkn,b∑
t′=t

τkn(t
′) = τ̄kn(t), kn ∈ C(t), (12)

where τ̄kn
(t) := � dkn (t)

uhP̄kn
�. Define Ψ(t) = maxkn∈C(t) tkn,d,

we propose an online algorithm, which at time t solves the

following MPC over the prediction horizon [t,Ψ(t)] but then

takes only V (t), R(t) and τ(t), for updating the solution of

(10):

min
VP (t),RP (t),τP (t)

FP (RP (t), τP (t))



s.t. (4)− (8), (11), (12), (13a)

Vk(t
′)[

∑
m∈N (k)

ykm(Vk(t
′)− Vm(t′))]∗

= [Pgk(t
′)− Plk(t

′)−
∑

kn∈C(t)

P̄knτkn(t
′)] +

j(Qgk(t
′)−Qlk(t

′)), (t′, k) ∈ [t,Ψ(t)]× G. (13b)

One can see (13) is a difficult MINP because (4), (8) and

(13b) are nonlinear in the voltage variable V (t′) while (11)

is a discrete combinatoric constraint. In the next section, we

propose an efficient approach, which also exploits the fact

that only the snapshot at t of the solution of (13) is extracted

to update the online solution of (10).

III. SOLVER FOR MINP

For W (t′) := V (t′)V H(t′) ∈ C
N×N , which must satisfy

W (t′) � 0 and rank(W (t′)) = 1, we replace Wkm(t′) =
Vk(t

′)V ∗
m(t′), (k,m) ∈ N × N in (13) to reformulate it

to the following MINP in matrix-valued variable WP (t) :=
{W (t′)}t′∈[t,Ψ(t)] and binary-valued variable τP (t):

min
WP (t),RP (t),τP (t)

FP (RP (t), τP (t)) s.t. (6), (11), (12),

∑
m∈N (k)

(Wkk(t
′)−Wkm(t′))y∗km = [Pgk(t

′)− Plk(t
′)

−
∑

kn∈C(t)

P̄kn
τkn

(t′)] + j(Qgk(t
′)−Qlk(t

′)), k ∈ G,(14a)

∑
m∈N (k)

(Wkk(t
′)−Wkm(t′))y∗km =

−Plk(t
′)− jQlk(t

′), k ∈ N \ G,(14b)

V 2
k ≤ Wkk(t

′) ≤ V
2

k, k ∈ N ,(14c)

�(Wkm(t′)) ≤ 	(Wkm(t′)) tan(θmax
km ), (k,m) ∈ L,(14d)

W (t′) � 0,(14e)

rank(W (t′)) = 1,(14f)

The difficulty of (14) is concentrated on the multiple non-

convex matrix rank-one constraints in (14f) and multiple

binary constraints in (11). Below we propose a two-stage

optimization approach to its online algorithm. In the first

optimization stage, we drop the matrix rank-one constraint

(14f) to relax (14) to the following MICP for t′ ∈ [t,Ψ(t)]:

min
WP (t),RP (t),τP (t)

FP (RP (t), τP (t))

s.t. (6), (11), (12), (14a)− (14e). (15)

Suppose that (ŴP (t), R̂P (t)), τ̂P (t) is the optimal solution

of (15). If rank(Ŵ (t′)) ≡ 1, t′ ∈ [t,Ψ(t)], then V̂ (t′) such

that Ŵ (t′) = V̂ (t′)V̂ H(t′) together with R̂(t′) and τ̂kn(t
′)

constitute the optimal solution of MINP (13). Otherwise, we

go to next optimization stage, which substitutes τ̂kn
(t) into

(14a) and considers the snapshot at t of (14) only

min
W (t),R(t)

F (Pg(t))) :=

Ψ(t)∑
t′=t

∑
k∈G

f(Pgk(t
′))

s.t. (6), (14b)− (14e)(16a)

∑
m∈N (k)

(Wkk(t)−Wkm(t))y∗km = [Pgk(t)− Plk(t)

−
∑

kn∈C(t)

P̄kn
τ̂kn

(t)] + j(Qgk(t)−Qlk(t)), k ∈ G, (16b)

rank(W (t)) = 1,(16c)

which involves only one matrix rank-one constraint (16c).

The rationale behind this simplified treatment is that in the

end we need only the snapshot at t of the solution of (14)

for online updating the voltage V (t) and generated power

R(t).
In the next two subsections we propose algorithms for

solving MICP (15) and the nonconvex optimization problem

(16).

A. New computational solution for MICP problem (15)

It is clear that the main task is how to cope with the

discrete constraint (11) in MICP (15). The following result

establishes the equivalence between this discrete constraint

and a set of continuous constraints.

Lemma 1: Under the linear constraint (12), the binary con-

straint (11) is equivalent to the following set of continuous

constraints:

0 ≤ τkn
(t′) ≤ 1, t′ ∈ [t, tkn,d], kn ∈ C(t), (17)

g(τP (t)) ≥ τ̄(t) :=
∑

kn∈C(t)

τ̄kn
(t), (18)

where

g(τP (t)) :=
∑

kn∈C(t)

∑
t′=t

tkn,bτ
L
kn
(t′),

and τLkn
(t′) is τkn

(t′) to the power of L > 1.

Proof. Note that

τLkn
(t′) ≤ τkn

(t′) ∀ τkn
(t′) ∈ [0, 1],

so

g(τP (t)) ≤
∑

kn∈C(t)

tkn,d∑
t′=t

τkn(t
′) = τ̄(t).

Therefore constraint (18) forces g(τP (t)) = τ̄(t), which is

possible if and only if τLkn
(t′) = τkn

(t′), i.e. τkn
(t′) ∈

{0, 1}, implying (11). �
Since g(τP (t)) is convex in τP (t), constraint (18) is

called reverse convex [16]. Also, as L decreases, g(τP (t))
approaches the linear function

∑
kn∈C(t)

∑tkn,b

t′=t τkn
(t′) and

as thus the constraint (18) approaches the linear constraint∑
kn∈C(t)

∑tkn,b

t′=t τkn(t
′) ≥ τ̄(t). However, it does not mean

that choosing L closer to 1 is effective because the function

g(τP (t)) − τ̄(t) also approaches zero very quickly, making

constraint (18) highly artificial. In our previous works [17],

[18], L = 2 was chosen. However, we choose L = 1.5 in

this paper as it accelerates the convergence of the proposed

optimization algorithms.

The following result is a direct consequence of Lemma 1.

Proposition 1: Under the linear constraint (12), the func-

tion

g1(τP (t)) :=
1

g(τP (t))
− 1

τ̄(t)



can be used to measure the degree of satisfaction of

the binary constraint (11) in the sense that g1(τP (t)) ≥
0 ∀ τkn

(t′) ∈ [0, 1] and g1(τP (t)) = 0 if and only if τkn
(t′)

are binary (i.e. satisfying (11)).

Therefore MICP (15) is equivalent to the following pe-

nalized optimization problem:

min
WP (t),RP (t),τP (t)

Φ(RP (t), τP (t)) :=

FP (RP (t), τP (t)) + μg1(τP (t))

s.t. (6) for t′ ∈ [t,Ψ(t)], (12), (14a)− (14e), (17), (19)

where μ > 0 is a penalty parameter. As the function g(τP (t))

is convex, it is true that at τ
(κ)
P (t) [16],

g(τP (t)) ≥ g(κ)(τP (t))

:= g(τ
(κ)
P (t)) + 〈∇g(τ

(κ)
P (t), τP (t)− τ

(κ)
P (t)〉

= −(L− 1)
∑

kn∈C(t)

tkn,d∑
t′=t

(τ
(κ)
kn

(t′))L

+L
∑

kn∈C(t)

tkn,d∑
t′=t

(τ
(κ)
kn

(t′))L−1τkn
(t′).

(20)

Therefore, an upper bounding approximation at τ
(κ)
P (t) for

g1(τP (t)) can be easily obtained as

g1(τP (t)) ≤ g
(κ)
1 (τP (t)) :=

1

g(κ)(τP (t))
− 1

τ̄(t)
(21)

over the trust region

g(κ)(τP (t)) > 0. (22)

Accordingly, at the κ-th iteration we solve the following

convex optimization problem to generate the next iterative

point (W(κ+1)
P (t),R(κ+1)

P (t), τ
(κ+1)
P (t)):

min
WP (t),RP (t),τP (t)

Φ(κ)(RP (t), τP (t)) :=

FP (RP (t), τP (t)) + μg
(κ)
1 (τP (t)) s.t. (6),

for t′ ∈ [t,Ψ(t)], (12), (14a)− (14e), (17), (22). (23)

We thus arrive at

Φ(R(κ+1)
P (t), τ

(κ+1)
P (t)) ≤

Φ(κ)(R(κ+1)
P (t), τ

(κ+1)
P (t)) <

F (R(κ)
P (t), τ

(κ)
P (t)), (24)

implying that τ
(κ+1)
P (t) is a better feasible point than τ

(κ)
P (t)

for (19). For a sufficiently large μ > 0, g(τ
(κ)
P (t)) → 0 as

well, yielding an optimal solution of MICP (15). Pseudo-

code for this computational procedure is provided by Algo-

rithm 1.

B. Computational procedure for (16)

Following our previous works [12], [13], [15], [19], [20],

the matrix rank-one constrained optimization problem (16)

Algorithm 1 MICP Solver

Initialization. Choose a feasible point τ
(0)
P (t) for (19) as

the optimal solution of the following problem by relaxing

the binary constraints (11) in (15) to box constraints:

min
WP (t),RP (t),τP (t)

FP (RP (t), τP (t))

s.t. (6), (14a)− (14e), (12), τkn(t
′) ∈ [0, 1], (25)

Set κ = 0.

κ-th iteration. Solve (23). If the

optimal solution τ
(κ+1)
P (t) satisfies∑

kn∈C(t)

∑tkn,d

t′=t

(
τ
(κ+1)
kn

(t′)−
(
τ
(κ+1)
kn

(t′)
)L

)
≈ 0,

terminate the algorithm and output τ
(κ+1)
P (t) as a

found solution. Otherwise, reset κ + 1 → κ and

τ
(κ+1)
P (t) → τ

(κ)
P (t) for the next iteration.

is solved via the following penalized optimization problem

for λ > 0:

min
W (t),R(t)

F (Pg(t)) + λ(Trace(W (t))− λmax(W (t))),(26a)

s.t. (6), (14b)− (14e) for t′ = t,(26b)

which is computed by solving the following convex opti-

mization problem at the κth iteration to generate W (κ+1)(t):

min
W (t),R(t)

F (Pg(t)) + λ(Trace(W (t))

−(w(κ)
max(t))

HW (t)w(κ)
max(t)) s.t. (26b), (27)

where W (k)(t) is a point found from the (κ− 1)th iteration

and w
(κ)
max(t) denotes the normalized eigenvector correspond-

ing to the maximal eigenvalue λmax(W
(κ)(t)) of W (κ)(t).

The rationale behind using the penalized optimization prob-

lem (26) is that Trace(W (t)) − λmax(W (t)) is the degree

of satisfaction of the matrix rank-one constraint (16c). The

reader is referred to [13] for proof of its convergence.

IV. SIMULATION RESULTS

Sedumi [21] interfaced by CVX [22] on a Core i7-7600U

processor is used to solve convex optimization problems

such as (23) and (27). The tolerance ε = 10−3 is set for the

stop criteria in the optimization algorithms. The simulated

power grids are Case9, Case14, Case30 and Case57 from

Matpower [23] with structure, physical limits and cost func-

tions f(Pgk(t
′)) given in the Matpower library [23]. Table

I contains their main parameters, where the second column

provides the numbers of buses, generators and branches, the

third column provides the dimension of W (t) and the last

column provides the total number of PEVs.

The considered charging period is from 6:00 pm to 6:00

am of the next day to reflect the fact that most PEVs are

charged after their owners’ working hours. This time period

is uniformly divided into 24 30-minute time slots. The PEVs

arrive during the time period from 6:00 pm to midnight. The

arrival times of PEVs are independent and are generated

by a truncated normal distribution (20, 1.52). The battery



TABLE I
INFORMATION ON FOUR NETWORKS

Buses/Generators/Branches Dim. of W (t) PEVs

Case9 9/3/9 C9×9 126
Case14 14/5/20 C14×14 210
Case30 30/6/24 C30×30 252
Case57 57/7/80 C57×57 294

capacity Ckn = 100 KWh of PEVs is that of Tesla Model

S. The initial SOC s0kn
of all PEVs is set as 20%. The

maximal charging power uhP̄kn
per time slot is set to be

equivalent to 10% of the battery capacity, i.e. every PEV

needs to charge P̄kn in 8 time slots. We set tkn,d − tkn,a ≡
12 (PEVs are required to be fully charged 6 hours after

their arrivals). The price-inelastic load Plk(t) is defined as

Plk(t) = l(t) × P̄lk × T/
∑24

t=1 l(t), where P̄lk is the load

demand specified by [23] and l(t) is the residential load

demand taken from the UK [24]. The time varying energy

price is taken from [25] on different days in 2017. The data

for profile I is from 6:00 pm on May 17th to 6:00 am on

May 18th, for Profile 2 is from 6:00 pm on May 18th to

6:00 am on May 19th , for Profile 3 is from 6:00 pm on

May 19th to 6:00 am on May 20th, and for Profile 4 is from

6:00 pm on May 15th to 6:00 am on May 16th.

The computational results are summarized in Table II. Its

third column provides the number of binary variables τkn
(t′)

in (10). The values of the penalty parameters μ in (23) and

λ in (27) are specified in the forth and fifth columns. The

value of the cost objective (9) is calculated by summing

up T values
∑

k∈G f(Pgk(t))+
∑
k∈N

∑
n∈Hk

βtτkn
(t)P̄kn

with

solution τkn
(t) and R(t) of (15) and (16) and is given by the

sixth and seventh columns, respectively. The effectiveness of

using (16) is confirmed by observing that these values are

almost the same. The average running time of computation

at each time slot is shown in the last column.

Fig.1 provides the number of iterations that Algorithm 1

needs for solving the penalized optimization problem (19)

for each time t. Recall that at each iteration, the convex

optimization problem (23) is solved, so this number of iter-

ations is also the number of convex optimization problems

(23) used in computing (19). One can see that Algorithm

1 converges rapidly within five iterations. Fig. 2 plots the

aggregated charging rate for the four networks under the

four residential profiles. These aggregated rates increase

gradually until the midnight and then drop continuously.

Their peak value is attained at 11:30 pm or 0:00 am after the

integration of all PEVs into the grid. The charging rates are

relatively low from 8 pm to 10 pm to avoid the peak of the

electricity price. Fig.3 plot the SoC of four PEVs randomly

taken from four cases, which arrive at different times. For

a few time slots, PEVs do not charge so their SoC remain

unchanged.

V. CONCLUSIONS

The joint online coordination of PEV bang-bang charging

and power control to serve both PEVs and residential power
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Fig. 1. Convergence performance of Algorithm 1
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Fig. 2. Aggregated charging rate for four networks during the charging
period

demands at competitive operating cost is very difficult due

to the random nature of PEVs’ arrivals and demands and the

discrete nature of bang-bang charging. We have proposed a

novel and easily-implemented MPC-based two-optimization

stage online algorithm that can achieve an optimal solution.
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