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Abstract—In recent years there has been a considerable drive
towards data-driven analysis, discovery and control of dynamical
systems. To this end, operator theoretic methods, namely, Koop-
man operator methods have gained a lot of interest. In general,
the Koopman operator is obtained as a solution to a least-squares
problem, and as such, the Koopman operator can be expressed as
a closed-form solution that involves the computation of Moore-
Penrose inverse of a matrix. For high dimensional systems and
also if the size of the obtained data-set is large, the computation of
the Moore-Penrose inverse becomes computationally challenging.
In this paper, we provide an algorithm for computing the
Koopman operator for high dimensional systems in a time-
efficient manner. We further demonstrate the efficacy of the
proposed approach on two different systems, namely a network
of coupled oscillators (with state-space dimension up to 2500)
and IEEE 68 bus system (with state-space dimension 204 and up
to 24,000 time-points).

I. INTRODUCTION

Dynamical systems theory dates back to Newton when he
came up with the laws of motion. Since then, it has flourished
as a branch of mathematics and physics, with applications to
a plethora of scientific and engineering disciplines. In recent
times, with advancements in computational and data handling
capacity, data-driven analysis of dynamical systems has gained
a real impetus.

In the realm of data-driven analysis of dynamical systems,
one of the most popular methods is based on operator theoretic
methods, namely, the Koopman and Perron-Frobenius (P-F)
operators [1]]. Given a dynamical system, P-F and Koopman
operators are typically infinite-dimensional operators which
govern the evolution of distributions (or measures) and func-
tions, respectively, under the system dynamics [[1]-[6]]. Though
these operators are infinite-dimensional, one major advantage
is the fact that these are linear operators and hence even if the
underlying system is nonlinear, one obtains a linear system,
albeit infinite-dimensional [1]. It is the linearity property that
has driven researchers to explore these operator theoretic ideas
for data-driven analysis of dynamical systems.
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Data-driven discovery and control of dynamical systems,
using the P-F and Koopman operators involves the construc-
tion of finite-dimensional approximations of these operators.
Computation of P-F operators involves set-theoretic methods
[7]-[9] and is typically computationally expensive. Finite-
dimensional approximation of Koopman operator, on the other
hand, is computed by studying the evolution of observables
and usually involves finding a solution to a least-squares
problem and hence is computationally much less expensive.
Moreover, a Koopman operator can be trained on only a few
trajectories and thus, one does not require a large number
of initial conditions. Hence, the Koopman operator is more
popular for data-driven analysis of dynamical systems. This
has resulted in a huge drive in the development of Koopman
operator methods for dynamical systems analysis and control
(21-[7], [101-[24).

Among the different methods for computation of the finite-
dimensional approximation of the Koopman operator, the
most popular methods are Dynamic Mode Decomposition
(DMD) [4] and Extended Dynamic Mode Decomposition
(EDMD) [14]. Typically the trajectories are lifted to a higher
dimensional feature space and the finite-dimensional Koopman
operator is obtained as a solution of a norm minimization
problem on the feature space and as such when the norm
considered is the 2-norm, the Koopman operator can be com-
puted directly using the Moore-Penrose inverse. However, for
high dimensional systems computation of the Moore-Penrose
and hence the Koopman operator becomes computationally
challenging. In particular, the standard algorithms for compu-
tation of the Moore-Penrose inverse involves Singular Value
Decomposition (SVD) and the computation is of the order
O(n?). Moreover, if the number of data-points is large, it poses
similar challenges.

In this paper, we provide a new method for computing the
Koopman operator for high dimensional systems (and/or large
data sets) in a time-efficient manner. In particular, the method
is based on Cholesky decomposition [25] so that the dimen-
sion of the matrix being inverted is reduced. Furthermore,
if parallel processing capabilities is utilised, the computation



time is reduced further, thus making this algorithm for data-
driven identification of dynamical systems using Koopman
operator easily scalable. To demonstrate the efficacy of the pro-
posed approach, we consider two different dynamical systems
wherein one example we increase the dimension of the system
(keeping the number of data points constant) and compare the
computation times, while in the other example we consider a
high dimensional system and consider different sizes of the
data-set.

The paper is organized as follows. In section |lI} we briefly
review the concepts of P-F and Koopman operators, followed
by the EDMD algorithm for the finite-dimensional approx-
imation of the Koopman operator in section In section
[Vl we describe the algorithm for the efficient computation
of the Koopman operator. In section we demonstrate the
efficacy of the method by computing the Koopman operators
for two high-dimensional systems, namely, a network of linear
oscillators and IEEE 68 bus system. The paper is finally
concluded in section [VIl

II. PRELIMINARIES

Consider a discrete-time dynamical system
T =T () (1

where T : X C RY — X is assumed to be at least C!. As-
sociated with the dynamical system () is the Borel-o algebra
B(X) on X and the vector space M (X) of bounded complex
valued measures on X . With this, two linear operators, namely,
Perron-Frobenius (P-F) and Koopman operator, can be defined
as follows [1]]:

Definition 1: The P-F operator P : M(X) — M(X) is
given by

[P#KfU::l[;5Tcw(A)du($):ZHCT*1@4X

d7(2)(A) is stochastic transition function which measure the
probability that point 2 will reach the set A in one time step
under the system mapping 7.

Definition 2: Given any h € F(X), the Koopman operator
U: F(X) = F(X) is defined as [Uh](xz) = h(T(x)), where
F(X) is the space of functions (observables), defined on X,
invariant under the action of the Koopman operator.
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Fig. 1. Schematic of the P-F and Koopman operators.

Both the Perron-Frobenius and the Koopman operators are
linear operators, even if the underlying system is nonlinear.
But while analysis is made tractable by linearity, the trade-
off is that these operators are typically infinite-dimensional.
In particular, the P-F operator and Koopman operator often
will lift a dynamical system from a finite-dimensional space
to generate an infinite-dimensional linear system.

III. DATA-DRIVEN DISCOVERY OF DYNAMICAL SYSTEMS

The P-F and Koopman operators are adjoint to each other,
however, since the Koopman operator governs the evolution of
functions under the system dynamics (instead of densities as
in the case of P-F operators) it is more suitable for data-driven
analysis and discovery of dynamical systems.

A. Extended Dynamic Mode Decomposition

In this subsection, we briefly describe the popular Extended
Dynamic Mode Decomposition (EDMD) algorithm for the
computation of the Koopman operator from time-series data
[14].

Let

where z; € X and y; € X, be snapshots of data obtained from
a simulation of a system z — T'(z) or from an experiment .
The two pair of data sets are assumed to be two consecutive
snapshots i.e., y; = T(x;). Let D = {¢1,%2,...,9¥x} be the
set of dictionary functions or observables, where ¢ : X — C.
Let Gp denote the span of D such that Gp C G, where G =
Lo(X, B, ). Define vector valued function ¥ : X — CX

T (z) = [Ui(z) () @) B

Any function gb?é € Gp can be written as

K
¢ = Zakwk =T'aq,

k=1

Xp = [.’L‘l,xg,...,l‘M],

Xf = [y17y25"'

K
o= ap=¥"a @
k=1

for some set of coefficients a, @ € CX. Let

¢(x) = [Ug](x) +r,
where r is a residual function that appears because Gp
is not necessarily invariant to the action of the Koopman
operator. Let K be the finite dimensional approximation of
the Koopman operator. Then the matrix K is obtained as a
solution of least square problem as follows

min || KY, = Y [l )
where
Y= () = (o) ) )]
Vi=%(Xs) = [®(y1), C(y2), -, ®(ym)l,

with K € CK*X_ The optimization problem (5] can be solved
using a multitude of techniques like batch gradient descent,
stochastic gradient descent or can be solved explicitly to obtain
the following solution for the matrix K

Kppup = YrY) @)



where G is the Moore-Penrose of matrix G. DMD is a special
case of EDMD algorithm with ¥ (z) = x.

IV. EFFICIENT COMPUTATION OF KOOPMAN OPERATOR

Since the Koopman operator is obtained as a solution of a
least-squares problem, one can solve it directly by computing
the Moore-Penrose inverse of a suitable matrix. The Moore-
Penrose inverse of a p X ¢ matrix M is a unique ¢ X p matrix
MT, such that

MMM =M, MMM =M.

When M is of full rank the Moore-Penrose inverse is the usual
pseudo-inverse MT = (M T M)~'MT". However, when M is
rank deficient, the computation of M is not straightforward
and there are several algorithms to compute the Moore-Penrose
inverse [26], with the Singular Value Decomposition (SVD)
technique being one of the most commonly used algorithms.
However, the computational time of these algorithms grows
rapidly with the size of the matrix M.

With this said, the EDMD algorithm usually suffers from
the curse of dimensionality. The key feature of the EDMD
algorithm is to choose a set of dictionary functions D, such
that the dictionary functions are rich enough to approximate
the Koopman invariant subspaces. To achieve this, usually, the
cardinality of the set D is large and hence the dimension of the
feature space is large, even if the dimension of the underlying
system is small. As such, the number of dictionary functions
increases rapidly with the dimension of the underlying system.
Hence, the computation of the Koopman operator becomes
slow and is thus computationally inefficient. Furthermore,
often the matrices Y, and Y}, as defined in @, are rank
deficient, especially if most of the data points x; are close
to an attractor set. Hence, computing the Koopman operator
using the existing algorithms becomes quite complex.

A. The algorithm

Let M T M be a ¢ x ¢ symmetric matrix so that its rank is
r < g. Hence, there exists a unique upper triangular matrix U
with (¢ — r) zero rows such that

U'U=M"M.

Hence, removal of the zero rows results in a matrix L € R"*¢
with full rank r. Moreover,

U'U=M"M=LL".

With this we have
Theorem 3:

M =L(L"L)"YLTL)'LTMT. (8)
Proof. From [27], we have for a product matrix XY,
XV =y (XTXYyy")ixT.
Hence, when Y is the identity matrix, we have

X =XTXx)'xT.

Moreover, if B = X" and X € R?*" is of rank r, then
(XX =xX"X)"'(x"x)"'xT.
Hence,
(M™M= (LLH) =L)"Y (LTL)"'LT. )
Using, XT = (XTX)TXT, we have
M= MT"M)TMT
=L(L"L)"YL"L)"LTMT. (10)

|
Using the above theorem, the computation of Koopman
operator can be summarized as follows:

Algorithm 1 Efficient Computation of Koopman Operator

1) From the obtained data set form the sets X, and X as
given in (2).

2) Choose the dictionary functions ¥(z).

3) Compute Y}, and Y} as given by (6).

4) Using the Cholesky decomposition of Y),, compute the
Moore-Penrose inverse (YpT ) of Y}, by the formula .

5) Compute the Koopman Operator as K = YprT .

B. Computational cost

The above theorem provides an algorithm of finding the
Moore-Penrose inverse of a rank deficient non-square matrix.
Computationally, there are two steps that are computationally
expensive, namely, computing full rank Cholesky decomposi-
tion of M " M and computing the inverse of LT L. On a serial
processor, these computations are of order O(¢®) and O(r?),
respectively. However, if one utilizes parallel processing, then
the complexity is of order O(q) [28]. Furthermore, even
when using serial processing, inverting a r X 7 matrix is
computationally less expensive than inverting a ¢ X ¢ matrix,
where r < g¢. Thus, even in serial processing, the above
algorithm is efficient and when parallel processing is available,
the complexity of the inversion step is of order O(logr) [29].

V. SIMULATION RESULTS

In this section, we demonstrate the efficacy of the proposed
approach over SVD based method for computation of the
Koopman operator for a high-dimensional system. In one of
the examples, namely a network of coupled oscillators, we
vary the number of oscillators in the network, while keeping
the number of time-points of the data constant, while in the
power network example, we vary the number of data points,
while keeping the number of states of the system constant. The
rationale behind this approach is the fact that while computing
the Koopman operator, the size of the matrix whose inverse
is to be computed can become large because of one or both
of two reasons, namely, the number of states is large or the
number of data points is large. We address both the cases in
the following simulations. All the simulations were performed
in MATLAB R2019a on an Apple Macbook Pro with 2.3 GHz
Intel Core i5 processor and 8 GB 2133 MHz LPDDR3 RAM.



A. Network of Coupled Oscillators

Consider a network of coupled linear oscillators given by

1)

where 0, is the angular position of the k*" oscillator, N is the
number of oscillators, £y, is the k" row of the Laplacian £ and
d is the damping coefficient. In the simulations, the damping
coefficient has been set to 0.4 for all the oscillators and the
data was collected with a sampling time of §¢ = 0.01 seconds.
Furthermore, we assume a ring topology of the network as
shown in Fig. 2]
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Fig. 2. Ring network of second order oscillators.

This network of oscillators has some similarities with the
power network in the sense that each oscillator model follows
closely with the second-order model of a synchronous genera-
tor and as they are connected over a network, it represents the
interactions of the generators. The weighted Laplacian matrix
shown in (1) captures the admittance matrix of the power
network.
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Fig. 3. (a) Time domain trajectories of the oscillator network with 1250
oscillators. (b) Transient trajectories of the oscillator network with 1250
oscillators.
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Fig. 4. Comparison of computation times of the Koopman operator for the
oscillator network using different algorithms.

In the simulations, we vary the number of oscillators from
50 oscillators to 1250 oscillators, so that the dimension of
the system varies from 100 to 2500. Furthermore, in all the
simulations, data was collected for 5000 time steps. The time-
domain trajectories of 1250 oscillators are shown in Fig. 3
Again, since the dynamical system is linear, we use linear
dictionary functions, that is, ¥(x) = z and as such the
dimension of the feature space is equal to the dimension of
the underlying system.

With the 5000 data points, we compute the Koopman oper-
ator for the various networks and compare the computation
times of the various algorithms. In particular, we compare
the efficiency of our algorithm with the existing MATLAB
commands of pinv, which uses SVD decomposition, and “\”
(backslash), which uses QR decomposition with pivoting.

The computation times of the different algorithms for com-
puting the Koopman operator is shown in Fig. ] As can be
seen from the figure, the computation time of the Koopman
operator is greatly reduced by the proposed method. Moreover,
the trend is almost linear, whereas the other algorithms scale
in a nonlinear fashion with the size of the underlying system
dimension. As such, the proposed method will scale much
more efficiently with the dimension of the system.

The eigenvalues of the obtained Koopman operators (pro-
posed method and pinv method) for 750 oscillators are shown
in Fig. 5] and it can be seen that the dominant eigenvalues
are similar using the two different techniques. As such, the
long term behaviour, which is governed by the dominant
eigenvalues, will be similar for both the Koopman operators.
Note that the eigenvalue plots act as a validation of the
obtained Koopman model.
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Fig. 5. (a) Eigenvalues of the Koopman operator when computed using
proposed approach. (b) Eigenvalues of the Koopman operator computed using
the SVD based inverse computation (pinv in MATLAB).

B. Discovery of Power Network

In this subsection, we demonstrate the proposed algorithm
on the real-time PMU data. GridSTAGE [30] simulation plat-
form developed by Pacific Northwest National Laboratory
(PNNL) under the support of Department of Energy’s Ad-
vanced Grid Modeling program is leveraged to generate the
synthetic data for a power network. GridSTAGE is developed
based on Power System Toolbox (PST) [31] where nonlinear
time-domain simulations can be generated for standard IEEE
bus systems. GridSTAGE emulates PMU, SCADA sensors



and provides rich multivariate spatio-temporal network data.
In particular, a IEEE 68 bus system is considered (Fig. [6)
and random load changes were considered at random bus
locations with small magnitudes to generate transient data
for the power network. PMU data whose resolution is 50
measurements/second is generated and for the sake of conve-
nience, we assume a PMU is available at each bus. PMU data
contains nodal measurements such as voltage magnitude (in
p-u.), voltage angle, frequency and rate of change of frequency
along with branch measurements such as current magnitude
and current angle.
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Fig. 6. IEEE 68 bus network topology. The green nodes correspond to the
generators.

The high-level objective here is to identify the evolution
of power system dynamics in a purely data-driven fashion
applying Koopman operator theory. Specifically, we chose
the nodal measurements of PMUs voltage magnitudes (V,,,),
voltage angles (V) and frequencies (f) at each bus to learn
an equivalent representation of the power system dynamics in
terms of a Koopman operator. Sample time-domain trajectories
(data-set used to compute the different Koopman operators) of
the variables are shown in Figs. [7] and [§]
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Fig. 7. Training data using PMU measurements for 3000 time steps.

As discussed in Eq. (7), it is seen that a pseudo-inverse
needs to be computed to solve for the Koopman operator. As
there are 68 buses and each bus has 3 states (voltage magni-
tude, voltage angle and frequency), the combined state space
of the system is 204 (3 x 68). To demonstrate the proposed
computation of the Koopman operator in a computationally
efficient manner, we consider the PMU data for 8 seconds
of simulation where there are at most 2 load changes every
second. Each second of PMU data contains 3000 time points
and hence the total length of PMU time-series data for 8
seconds is 24000. Now, 8 different Koopman operators are
computed from 8 different data-sets. The size of the data set
is varied from 3000 time steps to 24000 time steps in steps of
3000 time points.
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Fig. 8. Training data using PMU measurements for 24000 time steps.

EDMD algorithm with 1000 Gaussian radial basis functions
(RBFs) is considered and hence the corresponding size of the
Koopman operator is 1000 x 1000. The computation times of
the Koopman operators are shown in Fig.[9] As in the case of
the oscillator network, it can be seen that the computation
time of the Koopman operator using the proposed method
is substantially lower than the SVD based (pinv) method.
Moreover, the trend for the proposed approach is linear and as
such, this method will scale much more efficiently compared
to the existing method.
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Fig. 9. Comparison of computation times of the Koopman operator for the
power network with different algorithms.



Furthermore, in Fig. [I0] we plot the eigenvalues of the two
Koopman operators obtained by the two different methods
and observe that the eigenspectrum is almost similar and thus
verifying that the proposed method not only computes the
Koopman operator in a time-efficient way, but it does compute
the correct Koopman operator.
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Fig. 10. (a) Eigenvalues of the Koopman operator when computed using
proposed approach. (b) Eigenvalues of the Koopman operator computed using
the SVD based inverse computation (pinv in MATLAB).

VI. CONCLUSIONS

In this paper, we provide an algorithm for time-efficient
identification of large scale dynamical systems from time-
series data. In particular, the algorithm efficiently computes the
finite-dimensional approximation of the Koopman operator as-
sociated with a dynamical system. In general, the computation
of the Koopman operator involves the computation of Moore-
Penrose inverse of a matrix and if the state-space dimension
is large, the computation of the inverse is computationally
expensive. In this paper, we discuss a new algorithm based on
Cholesky decomposition of the matrix to be inverted, which
reduces the computation time significantly. The proposed
approach’s efficiency is further demonstrated on two different
systems, namely, a network of coupled oscillators and the
IEEE 68 bus system.
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