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Abstract— This paper examines the problem of state esti-
mation in power distribution systems under low-observability
conditions. The recently proposed constrained matrix comple-
tion method which combines the standard matrix completion
method and power flow constraints has been shown to be
effective in estimating voltage phasors under low-observability
conditions using single-snapshot information. However, the
method requires solving a semidefinite programming (SDP)
problem, which becomes computationally infeasible for large
systems and if multiple-snapshot (time-series) information is
used. This paper proposes an efficient algorithm to solve the
constrained matrix completion problem with time-series data.
This algorithm is based on reformulating the matrix completion
problem as a bilinear (non-convex) optimization problem, and
applying the alternating minimization algorithm to solve this
problem. This paper proves the summable convergence of
the proposed algorithm, and demonstrates its efficacy and
scalability via IEEE 123-bus system and a real utility feeder
system. This paper also explores the value of adding more data
from the history in terms of computation time and estimation
accuracy.

I. INTRODUCTION

State estimation in power systems is critical for maintain-
ing normal and secure operating conditions. In power trans-
mission systems, the weighted least squares (WLS) method
[1] is well developed and widely used by utilities for state
estimation; however, the limited availability of measurements
renders the WLS inapplicable in power distribution systems.
The requirement for state estimation in distribution systems
is becoming stringent because the increased penetration of
distributed energy resources—such as solar photovoltaics,
wind turbines, and energy storage systems—on distribution
systems introduces bidirectional power flows that might
impact the system responses to various types of disturbances.

Much work has been done in an attempt to address the
low observability state estimation problem. Reference [2]
determined the optimal minimum measurement locations and
used the difference between the measured and calculated
voltages and complex powers to obtain the voltage profile of
the whole network. Reference [3] used the voltage sensitivity
at each bus to the load at all buses to determine the voltage
given the measured load at each location. References [4]–
[7] applied neural networks, which do not require system
models, to estimate the voltage in the distribution grid;
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however, these approaches still require the installation of
significant numbers of phasor measurement units (PMUs)
when considering large systems. References [4], [8]–[10]
used pseudo-measurements, which are estimates based on
historical data to overcome the requirement of the installation
of more meters; however, it is known that the pseudo-
measurements typically have larger measurement errors than
the metered measurements.

An alternative approach that does not require installing
new sensors or explicit computation of pseudo-measurements
was recently proposed by [11]. This method leverages the
standard matrix completion method [12] and augments it
with linearized power flow constraints to acknowledge for
the physical network constraints. This method was shown
to be effective in estimating voltage phasors using single-
snapshot information. However, this method requires solving
a semidefinite programming (SDP) problem, which becomes
computationally infeasible for large systems or if multiple-
snapshot (time-series) information is used.

In fact, temporal correlation (dependency between mea-
surements at different time steps) exists among data in
addition to the spatial correlation (dependency between mea-
surements at different locations) and the correlation among
measurement types (characterized by power flow equations).
By modeling both the temporal and spatial correlation of
the data, [13], [14] apply the standard matrix completion
method to recover missing PMU data, and [15] applies the
standard matrix completion method with Bayesian estimation
to recover missing low-voltage distribution system data.

This paper proposes an efficient algorithm to solve the
constrained matrix completion problem with time-series data.
To this end, this paper formulates matrix X using time-series
data by considering both the spatial and temporal correlation
of the data. Similar to [11], this paper leverages a linear
approximation of the power flow equations as constraints
to characterize the correlation among different measurement
types. Then, this paper applies the alternating minimization
method, which was a winner in the Netflix Challenge [16],
to solve the proposed matrix completion problem for state
estimation in multiphase distribution systems.

To apply the alternating minimization method, matrix X
is written in a bilinear form, i.e., X = UV , and then the
algorithm finds the best U and V in an alternating fashion.
Because of the bilinear term in the objective function, the
problem becomes nonconvex with respect to any variable and
thus the alternating minimization method is not guaranteed
to converge to the global optima. However, results on the
convergence of the method were established under some
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regularity conditions in [17], [18]. This paper proves that the
objective function satisfies these conditions, which guarantee
the convergence of the proposed method.

The rest of this paper is organized as follows. Section II
introduces the standard matrix completion model, the formu-
lation of the data matrix using time-series data, the linearized
power flow constraints, and the full matrix completion model
for state estimation in multiphase distribution systems. The
alternating minimization algorithm and the summable con-
vergence are presented in Section III. Simulation results on
the IEEE 123-bus system and a real utility feeder are shown
in Section IV. Section V concludes the paper.

II. PROBLEM FORMULATION

This section first reviews the standard matrix completion
formulation, and then introduces how to build the data
matrix using the time-series data in multiphase distribution
systems. Next, the linearized power flow constraints are
introduced. Finally, the full matrix completion model for
state estimation in multiphase distribution systems is derived,
which combines the standard matrix completion model with
the linear power flow constraints.

A. Standard Matrix Completion

Let M ∈ Rm×n be the matrix we wish to reconstruct, and
let Ω denote the set of indices for known elements of M .
Define the observation operator PΩ : Rm×n → Rm×n as:
PΩ(M)ij = Mij for (i, j) ∈ Ω; 0 otherwise.

The goal is to recover M from PΩ(M), under the as-
sumption that M is low rank. Because the rank function
is nonconvex and the tightest convex relaxation of the rank
function is the nuclear norm function [12], we consider the
following regularized matrix completion model:

min
X∈Rm×n

||X||∗ +
µ

2
||PΩ(X)− PΩ(M)||2F , (1)

where X is the decision variable, ||X||∗ =
∑min{m,n}
i=1 σi(X)

is the nuclear norm of X with σi(X) denoting the ith largest
singular value of X , and µ > 0 is a weight parameter.

B. Matrix Formulation in Multiphase Distribution Systems

For the scope of this paper, we consider a general three-
phase distribution network consisting of one slack bus and a
given number of multiphase PQ buses.

Matrix completion was shown effective for state estimation
in general three-phase distribution systems by [11], which
formulated the data matrix M using single-snapshot infor-
mation. Considering the temporal correlation of the data, we
set up the data matrix M using time-series data.

Assume that the voltage phasor and other measurements
at the slack bus are known. So we use only measurements
at nonslack buses to form the data matrix. Let P denote the
set of phases at all nonslack buses and |P| be the number
of all phases at nonslack buses. The measurements we use
in this matrix are the real and imaginary parts of voltage
phasor, voltage magnitude, and the active and reactive power
injection at each phase of nonslack buses. Consider a time
series t = 1, . . . , T . Let M t denote the measurement matrix

Fig. 1: Singular values of data matrices for the IEEE 123-bus
system with one-time step, two-time step, and three-time step data
matrix formulation. The data matrices are of size 5×260, 10×260,
and 15 × 260, respectively. The bars show the individual singular
values (normalized by the singular value sum), and the circles show
the cumulative sums of (normalized) singular values. The first four
largest singular values comprise 99% of the singular value sum.

at time t such that each column represents a phase and
each row represents a quantity relevant to the phase. To be
specific, for each phase i ∈ P , the corresponding column of
M t is of the form:

[<(vi), =(vi), |vi|, <(si), =(si)]
ᵀ
,

where <(·) and =(·) are the real part and imaginary part
of a complex variable, respectively, ᵀ is the transpose no-
tation, v = [v1, . . . , v|P|]

ᵀ ∈ C|P| is the vector containing
voltage phasors at each phase of nonslack buses, and s =
[s1, . . . , s|P|]

ᵀ ∈ C|P| is the vector of power injections
at each phase of nonslack buses. Then the matrix M is
constructed by

M =
[
M1; M2; · · · ; MT

]
∈ Rm×n, (2)

where T is the length of the time series, and m = 5T, n =
|P|. Note that the data matrix is not limited to the structure
proposed above; it can accommodate any available measure-
ments if these measurements are correlated such that M has
the (approximate) low-rank property.

Because the rows and/or columns of the matrix M are
related by temporal correlation, spatial correlation, or power
flow equations, such a matrix has low rank. Fig. 1 shows that
the low-rank property holds for the IEEE 123-bus system
with one-time step, two-time step, and three-time step data
formulation.

C. Linear Power Flow Constraints

As in [11], we use the linear approximation of power flows
as constraints to characterize the correlation among different
measurement types, which provides more information about
the system, and thus likely requires fewer measurements
to recover the matrix than the standard matrix completion
formulation.

Recall that we use P , v ∈ C|P|, and s ∈ C|P| to denote the
set of phases, the vector of voltage phasors, and the vector



of power injections at all nonslack buses, respectively. We
employ approximations of the form:

v ≈ B
[
<(s)
=(s)

]
+ w, (3a)

|v| ≈ C
[
<(s)
=(s)

]
+ |w|, (3b)

where the coefficients B,C ∈ C|P|×2|P|, w ∈ C|P| are
derived by the power flow linearization methods developed
in, e.g., [19]–[21]. Write (3) in the following equivalent form
with A1, A2, A3, A4, C1, C2 ∈ R|P|×|P|:

<(v) ≈ [A1 A2]

[
<(s)
=(s)

]
+ <(w), (4a)

=(v) ≈ [A3 A4]

[
<(s)
=(s)

]
+ =(w), (4b)

|v| ≈ [C1 C2]

[
<(s)
=(s)

]
+ |w|, (4c)

where [A1 A2] = <(B), [A3 A4] = =(B), and [C1 C2] = C.
We use vt, st to denote the corresponding v, s in (4) at

time slot t. Assume that v0 (the slack bus voltage phasor)
and the system topology are the same at different time
steps, and then by using the linearization method in [19],
A1, A2, A3, A4, C1, C2 are the same at different time steps.
Hence, we have the linear approximation of voltage phasor
and magnitude at time t in (4) with v, s being replaced by
vt and st.

For simplicity of expression in the sequel, we use the
following model to express this linear model at time t =
1, . . . , T :

y ≈ Ax+ b, (5)

where:

y =



<(v1)
=(v1)
|v1|

...
<(vT )
=(vT )
|vT |


, A =



A1 A2 0 · · · 0 0
A3 A4 0 · · · 0 0
C1 C2 0 · · · 0 0
...

...
...

. . . 0 0
0 0 0 · · · A1 A2

0 0 0 · · · A3 A4

0 0 0 · · · C1 C2


,

x =
[
<(s1)ᵀ =(s1)ᵀ . . . <(sT )ᵀ =(sT )ᵀ

]ᵀ
,

and

b =
[
<(w)ᵀ =(w)ᵀ |w|ᵀ . . . <(w)ᵀ =(w)ᵀ |w|ᵀ

]ᵀ
with A ∈ R3T |P|×2T |P|, x ∈ R2T |P|, and y, b ∈ R3T |P|.

The linear model (5) will be incorporated into the matrix
completion formulation in the following subsection.

D. The Regularized Matrix Completion for State Estimation

By incorporating the linear power flow model (5) into
problem (1) as a regularization term, we obtain the following

optimization problem:

min ||X||∗ +
µ

2
||PΩ(X −M)||2F +

ν

2
||y − (Ax+ b)||22

over X ∈ Rm×n, y ∈ R
3
5mn, x ∈ R

2
5mn,

s.t. y =
[
aᵀ1X aᵀ2X aᵀ3X . . . aᵀ

3T−2
X aᵀ

3T−1
X aᵀ

3T
X
]ᵀ
,

x =
[
cᵀ1X cᵀ2X . . . cᵀ

2T−1
X cᵀ

2T
X
]ᵀ
, (6)

where, ν > 0 is a weight parameter, m = 5T, n = |P|,
a3(t−1)+i = e5(t−1)+i and c2(t−1)+i = e5(t−1)+3+i are
standard basis vectors in Rm, in which t denotes the time
step number and i denotes the ith a or c at the t-th time
step. For example, if a1, t = 1, i = 1, then, a1 = e1 ∈ Rm;
if c1, t = 1, i = 1, then c1 = e4 ∈ Rm.

III. ALTERNATING MINIMIZATION FOR SOLVING THE
FULL MATRIX COMPLETION MODEL

This section first proposes the alternating minimization
algorithm for the full matrix completion model in multiphase
distribution system state estimation, and then proves the
summable convergence of the proposed algorithm.

A. Alternating Minimization Algorithm

Any matrix X ∈ Rm×n of a rank up to r has a matrix
product X = UV form with U ∈ Rm×r and V ∈ Rr×n, and
its nuclear norm can be expressed by the Frobenius norm of
U and V as follows [22]:

||X||∗ := arg min
U∈Rm×r,V ∈Rr×n

1

2
(||U ||2F + ||V ||2F )

s. t. X = UV.

(7)

Note that for sufficiently small r (r � min{m,n}), using
this characterization of the nuclear norm allows us to dra-
matically reduce the size of the problem. We now use (7) to
reformulate (6) as follows:

min
U∈Rm×r,
V ∈Rr×n

1
2 (||U ||2F + ||V ||2F ) + µ

2 ||PΩ(UV −M)||2F
+ν

2 ||f1(UV )− (Af2(UV ) + b)||22,

s.t. f1(UV ) =
[
aᵀ1X aᵀ2X aᵀ3X . . . aᵀ

3T−2
X aᵀ

3T−1
X aᵀ

3T
X
]ᵀ
,

f2(UV ) =
[
cᵀ1X cᵀ2X . . . cᵀ

2T−1
X cᵀ

2T
X
]ᵀ
,

X = UV. (8)

The alternating minimization algorithm that updates the
variables in an alternating fashion is proved to be one of
the most accurate and effective methods for solving the
matrix completion problem [23]. For our matrix completion
formulation in state estimation, the alternating minimization
algorithm solves for U and V alternatively while fixing the
other factor. The pseudo-code of the alternating minimization
algorithm for the formulation (8) is given in Algorithm 1.

B. Convergence of the Alternating Minimization Algorithm

Because of the bilinear form X = UV , problem (8) is
not jointly convex with respect to any variable. In general,
there is no guarantee that a stationary point of a nonconvex
problem will coincide with the global optimum. However,



Algorithm 1 Alternating Minimization Algorithm for Matrix
Completion in Distribution System State Estimation

Input: Set of known indices Ω, measurement matrix M ,
linear model A, b, and the number of iterations N .

Initialize: Calculate the rank r singular value decomposition
[Ũ Σ̃Ṽ ] = SVDr(PΩ(M)), and set V (0) = Σ̃

1
2 Ṽ .

1: for k = 1, . . . , N do
2:

U (k) = arg min
U∈Rm×r

||U ||2F + µ||PΩ(UV (k−1) −M)||2F

+ ν||f1(UV (k−1))− (Af2(UV (k−1)) + b)||22
3:

V (k) = arg min
V ∈Rr×n

||V ||2F + µ||PΩ(U (k)V −M)||2F

+ ν||f1(U (k)V )− (Af2(U (k)V ) + b)||22
4: end for
5: return X = U (N)V (N)

[18] proved the summable convergence of the alternating
minimization algorithm if the objective function satisfies the
following four conditions: 1) it is continuous in its domain
and always bigger than negative infinity; 2) it has a Nash
equilibrium; 3) it is strongly convex with respect to each
variable; and 4) it satisfies the Kurdyka-Łojasiewicz property
(please see Definition 2.5 in [18] for the definition). We
show below that our objective function satisfies these four
conditions; thus, we have the following proposition.

Proposition 1. The alternating minimization algorithm (Al-
gorithm 1) satisfies the summable convergence, i.e.:

+∞∑
k=1

||U (k+1) − U (k)||F + ||V (k+1) − V (k)||F < +∞.

Proof. The objective function f can be written as follows:

f(U, V ) =
1

2
(||U ||2F + ||V ||2F ) +

µ

2
||PΩ(UV −M)||2F

+
ν

2
||f1(UV )− (Af2(UV ) + b)||22, (9)

where:

||f1(UV )− (Af2(UV ) + b)||22

=
T∑
i=1

||Xᵀa
3i−2
− (A1X

ᵀc
2i−1

+A2X
ᵀc

2i
)−<(w)||22

+
T∑
i=1

||Xᵀa
3i−1
− (A3X

ᵀc
2i−1

+A4X
ᵀc

2i
)−=(w)||22

+
T∑
i=1

||Xᵀa
3i
− (C1X

ᵀc
2i−1

+ C2X
ᵀc

2i
)− |w|||22 (10)

with X = UV .
First, the domain of the objective function is (U ,V) =

{(U, V ) : U ∈ Rm×r, V ∈ Rn×r}. By the form of f(U, V )
in (9), we have that f(U, V ) is continuous in its domain
(U ,V), and it is non-negative for any (U, V ) ∈ (U ,V) .

Second, to prove that (8) has a Nash point, we prove that
(8) has a global minimizer, which by definition is a Nash

point. By the definition of f(U, V ) in (9), the following
expression holds:

lim
||U ||→+∞,
||V ||→+∞

f(U, V ) = +∞,

which means that f(U, V ) is coercive [24]. Then, by Theo-
rem 2 in [24], problem (8) has a global minimizer.

Third, we prove that f(U, V ) is strongly convex with
respect to U and V , respectively. To prove that f(U, V ) is
strongly convex with respect to U , we prove that ∂

2f(U,V )
∂U2 �

0 as follows.
Let g(U) := ||f1(UV )− (Af2(UV ) + b)||22 for a fixed V .

Then we have

∂2f(U, V )

∂U2
=Imr×mr + µ(V ⊗ Im×m)TRΩ(V ⊗ Im×m)

+
ν

2

∂2g

∂U2
, (11)

where RΩ ∈ Rmr×mr is the diagonal matrix such that
(RΩ)ii = 1 if

(
(i mod n) + 1, d ime

)
∈ Ω and 0 otherwise.

By the form of g in (10), we focus only at the second-
order partial derivative of the first term in the first summation
term in (10); treatment of the other terms can be derived
similarly. Let g1 denote the first term in the first summation
term in (10). We will prove that g1 is a convex function by
definition, then using that g1 : Rm×r → R is convex if and
only if ∂2g1

∂U2 � 0 to derive that ∂2g1
∂U2 � 0.

By (10), we have that:

g1(U) = ||A1V
ᵀUᵀc1 +A2V

ᵀUᵀc2 − V ᵀUᵀa1 + <(w)||22.

Because U denotes the set of all matrices of size m× r, we
have that U is a convex set. Then by the form of g1(U), it
is easy to derive that ∀U1, U2 ∈ U ,∀t ∈ [0, 1]:

g1(tU1 + (1− t)U2) ≤ tg1(U1) + (1− t)g1(U2).

Hence, g1 is convex, implying that ∂2g1
∂U2 � 0.

Because all the other terms in (10) share the similar form
with g1, we can similarly prove that all the other terms in
(10) are convex functions with respect to U ; thus, we have
that ∂2g

∂U2 � 0. By (11), we have that Imr×mr � 0, and
µ(V ⊗ Im×m)TRΩ(V ⊗ Im×m) � 0; therefore, for µ >

0, ν > 0, ∂
2g

∂U2 � 0, we have ∂2f(U,V )
∂U2 � 0.

Hence, we conclude that f is strongly convex with respect
to U . The proof that f is strongly convex with respect to V
is similar and is omitted for brevity.

By [18], any real analytic function satisfies the Kurdyka-
Łojasiewicz property. And by definition of the real analytic
function, the objective function (9) is real analytic; thus, (9)
satisfies the Kurdyka-Łojasiewicz property.

This concludes the proof.

IV. SIMULATION RESULTS

This section demonstrates Algorithm 1 on the IEEE 123-
bus test system [25] and a real utility feeder system. The two
systems are both three-phase unbalanced radial distribution
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Fig. 2: Convergence of the alternating minimization algorithm
with one-time step data matrix formulation and 50% available
measurements.
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Fig. 3: Comparison of performance for the alternating minimization
algorithm and SDP solver.

systems, in which buses are one-, two-, or three-phase. The
slack bus is three-phase, and the total number of phases
at all buses for the IEEE 123-bus system is 263 and that
for the real utility feeder system is 1234. The data for both
systems were simulated at 1-minute resolution using power
flow analysis with diversified load and solar profiles that
were created for each bus using realistic solar irradiance and
load consumption data. The voltage magnitudes range from
0.95 to 1 p.u., and the voltage angles are around 0 or ±120
degrees.

As in Section II-B, the data matrix is formulated using
the real and imaginary parts of voltage phasor, voltage
magnitude, and active and reactive power injection at each
phase of nonslack buses. We consider the real and imaginary
parts of voltage phasor as variables, and the voltage magni-
tude, active power, and reactive power as potentially known
measurements. In our experiments, we define the percentage
of known measurements as the ratio of the number of known
measurements and the total number of voltage magnitude,
active power, and reactive power in the data matrix. If less
than two thirds of the measurements are known, there are
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Fig. 4: Comparison of performance for alternating minimization
algorithm on one-time step, two-time steps, and three-time steps.

fewer measurements than variables, under which case, the
system is underdetermined and the WLS cannot generate
a unique solution. For all of our experiments, the known
measurements are added with noise with zero mean and
1% of the true value as the standard deviation. And the
simulation results are based on the average of 50 runs for
each scenario.

A. Performance on IEEE 123-Bus System

First, we implement our algorithm with one-time step
data formulation at one time slot when solar generations are
nonzero with 10% to 70% measurements available (where
WLS is under-determined). We compare the alternating min-
imization algorithm with the SDP solver used by [11]. Both
algorithms are run with MATLAB on a laptop with 1.9-GHz
CPU and 32 GB RAM.

Fig. 2 shows one representative convergence result (with
50% available measurements) of the alternating minimization
algorithm. Fig. 3 shows that the mean absolute percentage
errors (MAPEs) of the voltage magnitude and the mean
absolute errors (MAEs) of the voltage angle are comparable
for the alternating minimization algorithm and the SDP
solver. The running time for the alternating minimization
algorithm is about 15 seconds for different percentages of
available measurements, whereas that for the SDP solver is
more than 70 seconds. These results show that the alternat-
ing minimization algorithm estimates voltage phasors more
computationally efficient than the SDP solver under similar
performance. The running time for the SDP solver increases
as more measurements are available. This is because the
SDP solver solves a constrained SDP problem, where more
measurements being available means more constraints to be
satisfied, and thus longer time is required to achieve the
convergence.



TABLE I: Performance on a real utility feeder system

MAPE MAE Time (s)

One-time step matrix formulation 0.4840 0.3967 50
Two-time step matrix formulation 0.4240 0.2869 105
Three-time step matrix formulation 0.3503 0.2265 156

To test the computation time and estimation accuracy
as more data are used, we implement the alternating min-
imization algorithm on the two-time step and three-time
step data matrix formulation with 10%, 30%, 50%, and 70%
measurements available. Fig. 4 shows that the MAPEs of
the voltage magnitudes and the MAEs of the voltage angles
for the two-time step and three-time step cases are much
better than the one-time step case. This is because the matrix
completion problem minimizes the rank, and the larger the
time steps are, the smaller the rank of the matrix is compared
to its size (which is shown in Fig. 1) and the more accurate
the estimates are. The running time also increases with the
length of time steps, however, because of the increased size
of the matrices. The MAPEs of the voltage magnitudes and
MAEs of the voltage angles for the three-time step case is
slightly better than the two-time step case overall, but the
running time almost doubles. However, the running time for
the three scenarios shows that the alternating minimization
algorithm for state estimation can be implemented in real
time for the IEEE 123-bus system.

B. Performance on A Real Feeder System

In order to demonstrate the scalability of our algorithm, we
implement it on a real utility feeder system with 1234 phases
under the assumption that 50% measurements are available
for one-time, two-time, and three-time step matrix formula-
tion, respectively. The performance in terms of MAPE, MAE,
and running time are shown in Table I. The results show that
the performance improves with more data being used for
building the matrix and the computation time also increases.
However, the running time shows that the algorithm can be
applicable in real-time estimation.

V. CONCLUSIONS

This paper applied the constrained matrix completion
formulation for state estimation in multiphase distribution
systems. Different from the constrained matrix completion,
the data matrix was formulated using time-series data and the
alternating minimization algorithm was applied to solve the
constrained matrix completion. The summable convergence
of the alternating minimization algorithm was proved. In
addition, the efficacy and scalability of the algorithm were
demonstrated via the IEEE 123-bus system and a real utility
feeder system.
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