
Deep Reinforcement Learning for DER
Cyber-Attack Mitigation

Ciaran Roberts
Sy-Toan Ngo, Alexandre Milesi

Sean Peisert, Daniel Arnold
Lawrence Berkeley National Laboratory

{cmroberts,sytoanngo,amilesi,
sppeisert,dbarnold}@lbl.gov

Shammya Saha
Anna Scaglione
Nathan Johnson

Arizona State University
{sssaha,ascaglio,

nathanjohnson}@asu.edu

Anton Kocheturov
Dmitriy Fradkin

Siemens Corporation
Corporate Technology
{anton.kocheturov,

dmitriy.fradkin}@siemens.com

Abstract—The increasing penetration of DER with smart-
inverter functionality is set to transform the electrical distribution
network from a passive system, with fixed injection/consumption,
to an active network with hundreds of distributed controllers
dynamically modulating their operating setpoints as a func-
tion of system conditions. This transition is being achieved
through standardization of functionality through grid codes
and/or international standards. DER, however, are unique in that
they are typically neither owned nor operated by distribution
utilities and, therefore, represent a new emerging attack vector
for cyber-physical attacks. Within this work we consider deep
reinforcement learning as a tool to learn the optimal parameters
for the control logic of a set of uncompromised DER units to
actively mitigate the effects of a cyber-attack on a subset of
network DER.

I. INTRODUCTION

The increasing penetration of distributed energy resources
(DER) in electrical distribution systems is causing a paradigm
shift in how these networks are managed. While these systems
were historically passive, distributed power generation is forc-
ing distribution grids to become more dynamic as DER are
expected to provide grid services, e.g. voltage control. This
transition presents several challenges, particularly in the area
of cyber-physical security [1], [2].

DER are especially unique when it comes to cyber-physical
security. These devices are typically neither utility owned nor
directly controlled and, therefore, present a new attack vector
for adversaries seeking to disrupt normal grid operating con-
ditions. Additionally, many manufacturers and/or aggregators
remotely control large populations of these devices via cellular
networks, customers’ WiFi routers, or wired internet connec-
tions [3]. This makes ensuring the integrity of commands
significantly more difficult. While recent standards (e.g. IEEE
1547 standard) seek to specify minimal control requirements
for these devices, they do not explicitly address the associated
cyber-physical security challenges [4]. Inverter manufacturers
and aggregators have the ability to remotely monitor and
control the settings for inverters/DER deployed in the field.
Once access to the central system is gained, that system can
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be used to push malicious control logic back to all DER. Thus,
utilities have already expressed concerns about how the impact
of a single cyber intrusion into an aggregators’/manufacturers’
internal network could be exploited to compromise an ag-
gregators/manufacturers entire DER fleet [3]. In regions with
high penetration of these devices, this could have devastating
effects.

In this work we adopt a purely physics-based approach for
the mitigation of cyber-physical attacks on DER (specifically,
solar photovoltaic inverters). We assume that the adversary has
already gained access to a subset of DER on a given network
and seeks to maliciously re-configure the control settings of
smart inverters to disrupt distribution grid operations. Our
approach does not focus on detecting the cyber-intrusion
but rather mitigating the resulting physical manifestation of
the attack on the grid. To develop optimal control policies
that mitigate the impact of these attacks, we train a deep
reinforcement learning (DRL) policy that re-configure the
control settings of uncompromised DER. This trained policy
is then deployed locally on controllable DER and determines
smart inverter parameter updates based on locally observed
information.

DRL has been gaining increasing attention in recent years,
including in power systems, for determining control policies
for highly complex non-linear systems. In [5], the authors use
Deep Q-Network (DQN) learning, a reinforcement learning
(RL) algorithm that combines Q-Learning with deep neural
networks, to control both generator dynamic braking and load
shedding in the event of a contingency to ensure post-fault
recovery. In [6], the authors consider the problem of coordi-
nated voltage regulation using capacitors and smart inverters.
Exploiting the timescale separation of these devices, they
solve a convex optimization problem to determine the control
policies of the smart inverters while using a DQN network
to learn an optimal policy for capacitor bank switching. In
[7], a deep deterministic policy gradient (DDPG) RL agent is
used to co-ordinate across DER and directly modulate active
and reactive power to regulate the grid voltage during normal
operations.

This work differs from those described above in that we
focus on developing a supervisory control policy that con-
tinuously monitors system conditions and takes action during
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sustained abnormal behavior. This controller, therefore, should
not impact an inverters response to normal disturbances, e.g.
line-to-ground faults. While the proposed controller design
is motivated by the need to respond to cyber-physical at-
tacks, it is agnostic to the cause of the abnormal conditions.
Consequently, it can also serve to autonomously re-configure
controller settings in the event that an intended action has
resulted in abnormalities, for instance, when connecting dif-
ferent microgrids with independently optimized controllers.
This paper presents a framework for DRL for smart grid
applications and explores the use case of a cyber-physical
attack intended to induce oscillatory behavior in the grid
voltage.

The remainder of the paper is organized as follows. Sec-
tion II gives a brief introduction to DRL and the terms
that will be used throughout the paper. Section III gives an
overview of the power system models and networks used in the
study. Finally, Section IV presents the results and Section V
summarizes some of the key conclusions.

II. DEEP REINFORCEMENT LEARNING

A. Reinforcement Learning

RL is a branch of machine learning focused on optimal
decision making in stochastic environments. The goal of RL
techniques is to train an agent (i.e. the decision-maker) to
interact with an environment in such a way as to maximize
a cumulative reward. The environment is usually cast as
a Markov Decision Process (MDP), which consists of the
following elements:

• A state space, S , containing states observable by the
agent;

• An action space, A, containing all the possible actions
the agent can execute;

• A state transition function, P : S × A × S → [0, 1],
specifying the probability distribution over the next state
s′ when an action a is taken at state s;

• A reward function, R : A × S × S → R, specifying
the reward received by the agent when the environment
transitions from state s to state s′ with action a;

• A discount factor, γ ∈ [0, 1], representing the trade-off
between immediate and future rewards.

A RL agent learns optimal actions by repeatedly interacting
with the environment and assessing the value of resulting
rewards, Rt ∈ R, dependent on the actions taken, at ∈ A,
and the states of the environment, st ∈ S . The agent-
environment interaction is visualized in Fig. 1. As shown in
the figure, the agent takes action at following policy π causing
a state transition in the environment. The new state, st, and
subsequent reward, Rt, are observed by the agent and can then
be used to update the policy π. The objective of the agent is
to maximize the discounted reward J(π) = Eπ

[∑T
t=0 γ

tRt

]
,

where T is the terminal time step, by following a policy π
which can be deterministic or stochastic in nature.

Environment

Agent

State: (st ∈ S) ∼ P
Reward: Rt ∈ R

Action
(at ∈ A) ∼ π

Fig. 1: Reinforcement learning loop.

B. Deep Reinforcement Learning

Classical RL relies on feature engineering and is difficult
to apply to environments with high dimensional, continuous
action and/or state spaces [8]. Such spaces, typically, must
be discretized first, leading to a combinatorial explosion in
complexity and unreasonable training time (the so-called curse
of dimensionality). In addition, classical RL has trouble cap-
turing patterns in the presence of noisy or incomplete data.
DRL solves these issues by leveraging neural networks with
multiple hidden layers that take the agent observations as input
and output a policy that determines what action to take in a
given state.

With DRL, the inputs to the neural network can be struc-
tured data (tabular data), unstructured data (images, text,
video), or both. The weights of these neural networks are
efficiently learned end-to-end via gradient-based optimization
to find the best intermediate features and an optimal output
policy. The need for precise feature engineering is then greatly
reduced, thanks to the automatic high-dimensional feature ex-
traction of the hidden layers. In DRL, one can use the networks
to explicitly approximate an optimal policy distribution, π,
over possible actions. This distribution is then sampled by
the agent to determine the next action, as in policy gradient
methods. They may also be used to approximate either a
value function, V π(s), or an action-value function, Qπ(s, a),
from gathered data, leading to an action decision based on
inferred values for all possible future states, as in DQN.
The value function, V π(s), is the expected discounted reward
when starting in state s and following the policy π, whereas
the action-value function Qπ(s, a) is defined as the expected
discounted reward when starting in state s, taking action a,
and then following the policy π thereafter.

Thanks to its flexibility, DRL has been successfully applied
to robotic control [9], video games [10], [11] and board game
playing [12], [13].

C. Policy Gradient and PPO

Policy gradient methods employ a policy modeled by a
neural network which is trained directly by gradient ascent
on the expected return. The most basic method (vanilla policy
gradient) is simple to implement but has the drawback of
having a high gradient variance. In response, Actor-Critic (AC)
methods were proposed[14], where another, possibly shared,
neural network approximates the value function.

Let πθ(a|s) be a stochastic policy, parameterized by θ,
modeling the probability distribution of action a ∈ A given
the state s ∈ S. Let V πφ (s) be a value function parameterized



by φ, estimating the cumulative discounted reward from the
current state to the terminal state. The gradient of J(θ) is:

∇θJ(θ) = E
τ∼πθ

[
T∑
t=0

∇θ log πθ(at|st)Aπφ(st, at)

]
, (1)

where τ is the trajectory generated by policy πθ and
Aπφ(st, at) = Rt + γV πφ (st+1)− V πφ (st) is the advantage es-
timation, representing how much better taking action at is, as
opposed to following the policy π when in state st. The policy
and value function are updated by gradient ascent/descent:

θk+1 = θk + α∇θJ(θ), (2)

φk+1 =φk − β∇φ(Rt + V πφ (st+1)− V πφ (st))
2. (3)

As the training of AC methods can be unstable when the
data distribution changes due to a large policy update, the
Trust Region Policy Optimization (TRPO) was introduced
[15]. TRPO limits the updates in the policy space by enforcing
a KullbackLeibler divergence constraint on the size of each
update. A Proximal Policy Optimization (PPO) [16] using
a clipped surrogate objective simplifies the aforementioned
method and yields similar performance:

LCLIP(θ) = Ê
[
min

(
rt(θ)Ât, clip

(
rt(θ), 1− ε, 1 + ε

)
Ât

)]
,

where rt(θ) ,
πθ(at|st)
πθold(at|st)

and Ât , Aπφ(st, at)

This clip operation encourages a more gradual updates to the
policy rather than large changes, and the minimum between
the unclipped and the clipped objective is used so that the
final objective is a lower bound on the unclipped objective
[16]. The hat over the expectation means that we compute a
Monte Carlo estimate of it.

PPO is a state-of-the-art method that was successfully used
in video games [11] and robotics in simulation [17]. We
consider here its application to the control of smart inverters.
Before we map the specific problem onto the RL formalism,
the following remark is in order:

Remark 1: In many applications, the state of the entire
system, st, is not directly observed. In this case, the problem
falls in the class of Partially Observable MDPs (POMDP). In
a POMDP, the additional element in the model is:
• An observation transition function (also called perceptual

distribution or emission probability) V : S ×O → [0, 1]
that specifies the probability distribution of the observa-
tion ot given the state st.

The policy function in this case takes as input the observation
rather than the state, i.e. the goal is to find the optimum
π(at|ot). As mentioned later, the formulation in this paper falls
in the class of POMDP. Also, we note that neither the state
transition function nor the perceptual distribution are explicitly
given; hence the policy neural network is trained through a
Monte Carlo method.

III. METHODOLOGY

A. Modeling the DER action space

In response to evolving standards and requirements, DER
are increasingly being deployed with the ability to modu-
late their real and reactive power injection/consumption in

response to locally measured grid conditions. In this work
we focus specifically on smart inverter Volt-VAR (VV) and
Volt-Watt (VW) control functionality as these operating modes
are designed to help regulate distribution system voltages in
the presence of large amounts of renewable generation. Under
VV/VW control schemes, each inverter seeks to modulate
active and reactive power injections in response to measured
system voltage. The amount by which reactive and active
power injections are modulated is governed according to
piece-wise linear functions of voltage, often referred to as
“droop” curves. Different parameterizations of VV and VW
curves exist, however, existing guidelines often depict shapes
shown in Figs. 2 - 3, which are parameterized by the five
parameters that define the piece-wise linear curves shown,
which will be referred to as the components of the setpoint-
vector η = [η1, . . . , η5]. In this work, the action is a 5 × 1
vector a = ∆η , η − ηo, where ηo is the default set of
parameters. Note that, even though in principle the action is
continuous, we quantize the possible range for the action and
search directly for the categorical vector a.

The VV curve injects reactive power when voltages in
the system are low and transitions to VAR consumption as
voltages increase. The VW curve provides maximum real
power injection under most voltage levels, but curtails PV
output as voltage levels increase. The additional capacity
resulting from active power curtailment can then be used for
additional reactive power consumption.

V

% available VARs

η2

η3

100%

η1

-100%

η4

Fig. 2: Inverter Volt-VAR curve. Positive percent of VAR injection.

V

% max. watt output

η4

100%

η5

Fig. 3: Inverter Volt-Watt curve. Positive percent of watt injection.

Without loss of generality, we assume all inverters in the
subsequent analysis possess both VV and VW functionality.
Let pmax be the maximum output of the PV unit under
presently available solar insolation, and qavail the limit for
reactive power in absolute value. In some instances, the
amount of reactive power available for injection/consumption



may be fixed (in the case of an oversized inverter relative
to the capacity of the PV panels) while in others, qavail may
depend on the amount of real power being generated from the
PV system:

qavail ≤
√
s2 − fp(v̄)2, (4)

where s is the inverter capacity. Let up,i and uq,i denote the
active and reactive power control signal of inverter i. They are
function of the averaged measured voltage magnitude at the
bus (c.f. (7a)). Rather than considering completely arbitrary
VV and VW mappings up,i and uq,i that respect the limits
pmax and qavail, we seek policies that are expressed as:

upi = fpi (v̄) ,


pmax v̄ ∈ [0, η4](
η5−v̄
η5−η4

)
pmax v̄ ∈ (η4, η5]

0 v̄ ∈ (η5,∞)

. (5)

uqi = fqi (v̄) ,



qavail v̄ ∈ [0, η1](
η2−v̄
η2−η1

)
qavail v̄ ∈ (η1, η2]

0 v̄ ∈ (η2, η3)

−
(
η3−v
η4−η3

)
qavail v̄ ∈ [η3, η4]

−qavail v̄ ∈ (η4,∞)

, (6)

The scheme of (5) - (4) illustrates the combined use of
VV and VW control with VW precedence [18]. Under VW
precedence, priority is given to the VW controller to determine
any needed curtailment before determining the VARs available
(qavail). After qavail is fixed, uqi is computed from (6).

In the event of a cyber-physical attack we assume that an
adversary has the capability to re-dispatch a set of voltage
breakpoints η = [η1, . . . η5] that parametrize the droop curves
in Figs. 2 - 3 for a subset of DER on the network. Within the
context of this work, the remaining set of non-compromised
DER can then be updated with new parameters vector η′ =
a+ηo to re-shape their own local droop curves to transition the
system voltages to a safe region, devoid of oscillatory behavior.

Finally, the structure of the DER VV and VW control dy-
namic response, similarly to [18]–[20], includes the following
first order low pass filters that average the input voltage and
determine the active and reactive power injections:

v̄i,t = v̄i,t−1 + τmi
(
vi,t − v̄i,t−1

)
, (7a)

pi,t = pi,t−1 + τoi
(
fpi (v̄i,t)− pi,t−1

)
, (7b)

qi,t = qi,t−1 + τoi
(
fqi (v̄i,t)− qi,t−1

)
, (7c)

where v̄i denotes a low-pass filtered measured of the voltage
magnitude, vi, at node i, τmi is its associated measurement
time constant, τoi is the output filter time constant and fpi (v̄i,t)
and fqi (v̄i,t) are the piecewise linear functions of the measured
nodal voltages for node i given by (5) and (6) respectively.
Note the equilibrium of (7b) - (7c) is given by (5) - (6).

The stability of (7a) - (7c) has been studied in [19] and
[21], where it has been observed that instabilities manifest as
oscillations in inverter power injections and nodal voltages.

As said before, the RL agent indirectly manipulates the
outputs of the inverter by modifying the vector of parameters

ηt = at + ηo. Next we define a component of the observation
ot used as an input to the DRL controller in our POMDP
formulation. The quantity is a local measure of the presence
and severity of voltage magnitude aforementioned oscillations.

B. A Measure of Unstable Oscillations

We propose the use of a simple filter to determine the
“energy” associated with voltage oscillations in the distribution
grid. The filter consists of the series of a highpass filter, and
an energy detector, consisting of a square-law, followed by a
lowpass filter. A discrete time block diagram of the process is
shown in Fig. 4

HHP (z) c · ()2 HLP (z)
vi,t ∆vi,t yi,t

Fig. 4: Block diagram of instability detector using a transfer function
representation of high and low pass filters.

where HHP and HLP are high-pass and low-pass filters
respectively, realized using a bilinear transform equivalent of
a first-order high/low-pass filter, and c is a positive gain. The
high-pass filter removes DC content from vi,t, yielding ∆vi,t.
This signal is then squared to produce a DC term which is
then extracted via low pass filtering. The output signal, yi, t
is a measure of the intensity of the instability. The filter
parameters should be chosen such that the filter does not
attenuate oscillations due to inverter instabilities.

C. DER Cyber-Attack Mitigation as a RL problem

The primary goal of the DRL controller is to mitigate
instabilities introduced by DER smart inverter VV/VW con-
trollers due to maliciously chosen set-points. Let the graph
G = (N ,L) represent the topology of the distribution feeder
considered, where N is the set of nodes of the feeder (with
0 indexing the feeder head) and L is the set of lines. For
simplicity of presentation, we assume the presence of a
VV/VW capable smart-inverter at every node in the system,
so that the total number of inverters in the system is |N |.
We suppose the set N is partitioned into two sets, H, and
U , where H

⋃
U = N which represent the ”compromised”

and ’”uncompromised” inverters respectively. Furthermore we
assume that U 6= ∅, i.e. we have some controllable resources
to mitigate the effects of the cyber-physical attack. Given
U ( N and the temporal dependency of load and solar
irradiance, as mentioned in Remark 1, the model is a POMDP
where we wish to determine the optimum stochastic policy,
πθ(a|o), parameterized by the neural network parameters θ,
modeling the probability distribution of action a ∈ A given
the observation o ∈ O.
Training: Rather than training multiple agents simultaneously,
we adopt the following heuristics to aid convergence:

1) For agent training, we define a single agent whose input
observation vector is the mean of the input observation
vectors of all controllable inverters ∈ U and whose ac-
tion, at, is a deviation/offset, ∆η, from default VV/VW
control curves that apply across inverters.



2) Once a single agent has been trained, this agent optimal
policy is deployed locally on each individual inverter
and only acts on local observations.

3) Rather than optimize over arbitrarily shaped VV/VW
curves (fq(v̄) and fp(v̄)), we optimize over the devia-
tion, i.e. a = ∆η, from the default parameters defining
the curves in Figs. 2 - 3. An example of this is shown
in Fig. 5. The translation is in range from -0.05 pu to
0.05 pu around an inverters default VV/VW curve, with
the action space being discretized into k bins.

4) New parameterizations of VV/VW functions will be
chosen so that measurement and power injection dy-
namics evolve on a faster timescale. This choice will
preserve the Markov property between actions taken by
the RL controller.

V

% available VARs

η2

η3

100%

η1

-100%

η4

RL Agent Action
∆η

Fig. 5: Action example.

Observation: The observation vectors oi,t, i ∈ U at each RL
agent (i.e. the input to the neural network that learns the
optimum policy π(a|o)), consist of:

1) yi,t: the mean of the estimation of voltage oscillation
energy at node i since the last agent environment inter-
action.

2) ymax
i,t : the maximum of yi,t over the previous n environ-

ment interactions. This is a tunable parameter that stores
information of the recent oscillation energy.

3) qavail, nom
i,t : the available reactive power capacity without

active power curtailment.
4) aone-hot

i,t−1 : one-hot encoding of the previous action taken
by the agent.

Reward: At a timestep t, the reward function, Rt(at, ot) is:

Rt =−

(
1

|U|

|U|∑
i=1

σyyi,t + σa1at 6=at−1
+ σ0‖at‖2

+
1

|U|

|U|∑
i=1

σp

(
1− pi,t

pmax
i,t

)2)
. (8)

The first component seeks to minimize the voltage oscillation
y; the second one penalizes configuration changes on inverters;
the third component encourages the agent to use the default in-
verter configurations in the absence of voltage oscillations and
the final component penalizes any active power curtailment.

D. The PyCIGAR DRL Environment
Any learning method requires sufficient training over a

variety of scenarios. As is done in other application of deep

learning in the context of critical infrastructure systems, such
training can be performed through realistic Monte Carlo simu-
lations that cover a variety of operating conditions and cyber-
physical attacks. We named PyCIGAR the modular software
architecture we designed to train the DRL agent described in
the previous section.

PyCIGAR EnvironmentPyCIGAR EnvironmentPyCIGAR Environment

Simulator
(OpenDSS)

PyCIGAR
API RLlib

DeviceDeviceDevice

RB
Controller

RB
Controller

RB
Controller

RL
Controller

RL
Controller

RL
Controller

PyCIGAR
Kernel

action(s)

observation(s)

Fig. 6: PyCIGAR Architecture.

PyCIGAR is a Python library for distributed reinforcement
learning for electric power distribution grids on quasi-static
time scales. The library provides a link between power system
simulators and a reinforcement learning library - RLlib [22].
PyCIGAR is a unified API that can interface different power
system simulators (e.g. OpenDSS), while on the RL side Py-
CIGAR uses RLlib in order to deploy large scale experiments
on a server, machine cluster or on a cloud.

A diagram of the PyCIGAR architecture is shown in Fig. 6.
In addition to RL-based controllers, PyCIGAR also includes
rule-based (RB) control devices (e.g. tap-changing transform-
ers) and can easily be extended to support the integration of
other more complicated DER (e.g. electric vehicle charging
and battery storage systems). PyCIGAR provides a foundation
for the rapid development of learning-based control algorithms
for heterogeneous classes of DER in electric power distribution
grids.

IV. RESULTS

We conduct experiments on the IEEE 37-bus feeder with
all load buses having an active power generation of 50% of
the nominal load with an additional 10% inverter over-sizing
for reactive power headroom. The agent training environment
consists of 700 one-second timesteps per simulation. At the
end of each experiment, the training environment is reset with
randomized load and solar generation profiles and percentage
of compromised inverters. This diversity creates a rich envi-
ronment that exposes the RL agent to attacks that could occur
anytime throughout the day under a variety of loading, solar
conditions and proportions of compromised inverters. For each
case, all inverters start with their default VV/VW settings and
at a particular time in the simulation the attacker gains controls
of 15% to 50% of the installed inverter capacity at each
node to create a voltage instability. It does so by translating
the VV/VW curves and steepening the slopes to induce an

The name stands for Python based Cybersecurity via Inverter-Grid Auto-
matic Reconfiguration.



oscillation. This attack vector represents a subset of possible
attack vectors. The agent is allowed to reconfigure the VV
/VW curves of non-compromised DER to mitigate oscillations
that result from the cyber-attack. We consider two types of
action, 1) translating the entire VV/VW piecewise functions
from its default configuration (offset action) and 2) adjusting
the slope of the piece wise function in the region ∈ (η1, η2]
and ∈ (η3, η4] (slope action). Within the simulation, the agent
receives observations and updates inverters’ functions fqi and
fpi every 35 seconds. The training is conducted on an Intel
Xeon E5-2623 v3 processor, 64GB RAM server and takes 1
hour of training time to converge.

Fig. 7 shows the baseline case caused by a 45% percentage
attack around noon with no action taken to mitigate the result
of the attack. The attack creates oscillations in system voltages
that are detected by the oscillation detector (see Section III-B).
The malicious re-dispatch of settings are shown in the action
subplot and the components of the reward function, (8), are
shown at the bottom. In the absence of an control the reward
is solely composed of the penalty for the oscillation.

Fig. 8 - 9 show the behavior from the trained RL agent
at a random node in the network in mitigating instabilities
from compromised DER at two different times of day and
different percentage of compromised DER. At simulation time
t = 200 s the attack is introduced in a portion of DER. This
can be seen in the action subplot, which shows the breakpoints
of the piecewise linear curves of 2 - 3 being suddenly moved
to a new configuration. This triggers an oscillation in grid
voltages. The output of the oscillation observer is both fed
into the RL agent as an observation and included as a negative
penalty in the reward function. The agent, therefore, should
control non-compromised assets to minimize the oscillation.
This is what occurs, as the agent changes the breakpoints
of non-compromised units just after t = 250 s by translating
the default VV/VW curves. This action almost immediately
stops the oscillation in the system voltages, resulting in a
defeat of the original cyber-attack. Fig. 8 features an attack
in the morning, around 9am, where there is significant excess
capacity for reactive power compensation available for the
agent to mitigate the cyber-attack. The agent, therefore, does
not need to curtail active power generation to successfully
mitigate the attack. This, however, is not the case in Fig. 9
where the attack occurs around midday and the agent is forced
to curtail active power in order to have enough controllability
to defeat the attack. Across numerous training configurations
it was observed that RL offset was the preferred action of the
agent.

Also worth highlighting is the behavior of the agent after
the compromised DER have been identified and returned
to their original settings, at t = 450 s. Shortly after, we
observe the agent also returning to its original configuration. In
demonstrating this behavior, it can be seen that the RL agent
will take steps to ameliorate the effects of the cyber attack,
but will return a state of inactivity once the threat of the attack
has passed.
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Fig. 7: Result of an evaluation episode at 45% attack without agent
defense
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Fig. 8: Result of an evaluation episode at 20% attack around 9AM

V. CONCLUSIONS

This paper has proposed a reinforcement learning approach
for mitigating the oscillation due to unstable smart inverter
settings by training an agent to translate the VV/VW curves.
The resultant policy successfully mitigated adversary induced
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Fig. 9: Result of an evaluation episode at 45% attack around noon

voltage oscillatory behavior for the cases considered.
Future work will investigate the value of this approach

for larger networks and the sensitivity of the trained agents
to specific network topologies/configuration. Additionally, we
will explore different neural network architectures, includ-
ing Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM), which have proven to be the state of
the art in solar and load forecasting and may improve the
performance of the agent. Additional types of attacks will
also be considered, including, but not limited to, voltage
imbalance attacks. An adversary may seek to exploit DER
interaction with utility voltage regulation systems to create
system voltage imbalances, leading to device trips and possible
system collapse.
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APPENDIX

Hyperparameter Value
α (learning rate) 1× 10−3

γ (reward discount factor) 0.5
λ (GAE parameter) 0.95
ε (PPO clip param) 0.1
batch size 420
activation function tanh
network hidden layers dense (64, 64, 32)
σy (oscillation penalty) 15
σa (action penalty) 0.05
σ0 (penalty for deviation from default VV/VW curve) 18
σp (penalty for curtailing active power) 80
action range −0.05 pu to 0.05 pu
k (action range discretization) 0.01 p.u.

TABLE I: Hyperparameters of the network, training and reward
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