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Abstract—Effective defense against cyber-physical attacks
in power grid requires the capability of accurate damage
assessment within the attacked area. While some solutions have
been proposed to recover the phase angles and the link status
(i.e., breaker status) within the attacked area, existing solutions
made the limiting assumption that the grid stays connected
after the attack. To fill this gap, we study the problem of
recovering the phase angles and the link status under a general
cyber-physical attack that may partition the grid into islands.
To this end, we (i) show that the existing solutions and recovery
conditions still hold if the post-attack power injections in the
attacked area are known, and (ii) propose a linear programming-
based algorithm that can perfectly recover the link status under
certain conditions even if the post-attack power injections are
unknown. Our numerical evaluations based on the Polish power
grid demonstrate that the proposed algorithm is highly accurate
in localizing failed links once the phase angles are known.

Index Terms—Power grid state estimation, cyber-physical at-
tack, failure localization.

I. INTRODUCTION

Modern power grids are interdependent cyber-physical
systems consisting of a power transmission system (power
lines, substations, etc.) and an associated control system
(Supervisory Control and Data Acquisition - SCADA and
Wide-Area Monitoring Protection and Control - WAMPAC)
that monitors and controls the status of the power grid. This
interdependency raises a legitimate concern: what happens
if an attacker attacks both the physical grid and its control
system simultaneously? The resulting attack, known as a joint
cyber-physical attack, can cause large-scale blackouts, as the
cyber attack can blindfold the control system and thus make
the physical attack on the power grid more damaging. For
example, one such attack on Ukraine’s power grid left 225,000
people without power for days [2].

The potential severity of cyber-physical attacks has attracted
efforts in countering these attacks [3], [4]. One of the challenges
in dealing with such attacks is that as the cyber attack blocks
measurements (e.g., phase angles, breaker status, and so on)
from the attacked area, the control center is unable to accurately
identify the damage caused by the physical attack (e.g., which
lines are disconnected) and hence unable to make accurate
mitigation decisions. To address this challenge, solutions have
been proposed to estimate the state of the power grid inside
the attacked area using power flow models. Specifically, [3]
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developed methods to estimate the grid state under cyber-
physical attacks using the direct-current (DC) power flow
model, and [4] developed similar methods using the alternating-
current (AC) power flow model. Both works made the limiting
assumption that either (i) the grid remains connected after the
attack, or (ii) the control center is aware of the supply/demand
in each island formed after the attack – both leading to known
post-attack active power injection at each bus.

In practice, however, disconnecting lines within the attacked
area may cause partitioning of the grid and change the active
power injections, and such changes within the attacked area
will not be directly observable to the control center due to the
cyber attack. Our goal is thus to estimate the power grid state,
especially the breaker status of lines, under cyber-physical
attacks without the above assumption.

A. Related Work

Power grid state estimation, as a key functionality for
supervisory control, has been extensively studied in the liter-
ature [5]. Secure state estimation under attack is of particular
interest [6]. Specifically, the attackers can distort sensor data
with noise [7] or inject false data [8] so that the control center
cannot correctly estimate the phase angles [9] or the topology
[10] of the power grid. Recently, joint cyber-physical attacks
are gaining attention, as the physical effect of such attacks
is harder to detect due to the cyber attack [3], [11], [12].

In particular, several approaches have been proposed for
detecting failed links. In [13], [14], the problem is formulated
as a mixed-integer program, which becomes computationally
inefficient when multiple links fail. The problem is formulated
as a sparse recovery problem over an overcomplete
representation in [15], [16], where the combinatorial sparse
recovery problem was relaxed to a linear programming (LP)
problem. Based on this approach, the work in [3] further
establishes graph-theoretic conditions for accurately recovering
the failed links. All the algorithms in [3], [15], [16] aim to find
the sparsest solution among the feasible solutions under the
assumption that the power grid remains connected after failure.

All the state estimation solutions require the modeling of
the relationship between the observable parameters and the
unknown variables of interest. To this end, two types of models
have been considered: DC power flow model and AC power
flow model. The AC power flow model [17] is based on the
AC power flow equations, which can represent the voltage
magnitude and phase angle at each bus in the system. The DC
power flow model [18] is an approximation of the AC power
flow model by neglecting the resistive losses and assuming
a uniform voltage profile. In the literature of state estimation
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and particularly failure localization, most existing solutions
are based on the DC power flow model [3], [13]–[16], with
few exceptions [4], [19]. We adopt the DC power flow model
in this work due to its simplicity and robustness, and leave
extensions to the AC power flow model to future work.

B. Summary of Contributions

We aim at estimating the power grid state within an attacked
area, focusing on the phase angles and the link status (i.e.,
breaker status of lines), with the following contributions:

1) We show that an existing rank-based condition for
recovering the phase angles, previously established when
the grid remains connected after the attack, still holds
without this limiting assumption.

2) We show that existing graph-theoretical conditions for
localizing the failed links, previously established under
the above assumption of a connected grid, still hold with-
out this assumption if the post-attack power injections
are known.

3) When the post-attack power injections are unknown but
the phase angles are known, we develop an LP-based
algorithm that is guaranteed to correctly identify the
status of failed/operational links under certain conditions.

4) Our evaluations on a large grid topology show that the
proposed algorithm is highly accurate in localizing the
failed links with few false alarms, while the rank-based
condition for recovering the phase angles can be hard
to satisfy, signaling the importance of protecting PMU
measurements.

Roadmap. Section II formulates our overall problem, which
is divided into three subproblems addressed in Sections III–V.
Then Section VI evaluates our solutions on a real grid topology,
and Section VII concludes the paper. Additional proofs are
provided in the appendix.

II. PROBLEM FORMULATION

A. Power Grid Model

We model the power grid as a connected undirected graph
G = (V,E), where V is the set of nodes (buses) and E
the set of links (transmission lines). Each link e = (s, t) is
associated with a reactance rst (rst = rts) and a status ∈
{operational, failed} (assumed to be operational before attack).
Each node v is associated with a phase angle θv and an active
power injection pv. The phase angles θ := (θv)v∈V and the
active powers p := (pv)v∈V are related by

Bθ = p, (1)

where B := (buv)u,v∈V ∈ R|V |×|V | is the admittance matrix,
defined as:

buv =


0 if u 6= v, (u, v) 6∈ E,
−1/ruv if u 6= v, (u, v) ∈ E,
−
∑
w∈V \{u} buw if u = v.

(2)
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Figure 1. A cyber-physical attack that blocks information from the attacked
area H while disconnecting certain lines within H .

Given an arbitrary orientation of each link, the topology of
G can also be represented by the incidence matrix D ∈
{−1, 0, 1}|V |×|E|, whose (i, j)-th entry is defined as

dij =

 1 if link ej comes out of node vi,
−1 if link ej goes into node vi,
0 otherwise.

(3)

We assume that each node is deployed with a phasor
measurement unit (PMU) measuring the phase angle and remote
terminal units (RTUs) measuring the active power injection at
this node, and the status and the power flows of its incident
links. These reports are sent to the control center via a SCADA
or WAMPAC system. The PMU data is assumed to be com-
municated over a relatively secure WAMPAC network, and the
RTU measurements over a more vulnerable SCADA network.

Remark: Under the North American SynchroPhasor Initiative
(NASPI) [20], the number of PMUs is steadily growing [21],
and installing PMUs is becoming part of routine transmission
system upgrades and new construction [22]. Some utilities have
achieved full observability in their networks, e.g., Dominion
Power has piloted the PMU-based linear state estimator [23],
[24]. These trends indicate that it is just a matter of time that
complete observability through PMUs is achieved, which is
the scenario we will consider.

B. Attack Model

As illustrated in Fig. 1, an adversary attacks an area H of
the power grid by: (i) blocking reports from the nodes within
H (cyber attack), and (ii) disconnecting a set F (|F | > 0) of
links within H (physical attack). Formally, H = (VH , EH) is
a subgraph induced by a set of nodes VH , where EH is the
set of links for which both endpoints are in VH .

C. State Estimation Problem

Notation. The main notations are summarized in Table I.
Moreover, given a subgraph X of G, VX and EX denote the
subsets of nodes/links in X , and xX denotes the subvector of
a vector x containing elements corresponding to X . Similarly,
given two subgraphs X and Y of G, AX|Y denotes the
submatrix of a matrix A containing rows corresponding
to X and columns corresponding to Y . We use DH ∈
{−1, 0, 1}|VH |×|EH | to denote the incidence matrix of the
attacked area H . For each quantity x, we use x′ to denote its
value after the attack. For a set A, IA(e) = 1 if e ∈ A and
IA(e) = 0 otherwise.

Goal. Our goal is to recover the post-attack phase angles θ′H
and localize the failed links F within the attacked area, based
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Table I
NOTATIONS

Notation Description

G = (V,E) power grid

H , H̄ attacked/unattacked area

F , E1 set of failed/operational links after attack

B, D admittance/incidence matrix

θ, θ′ vector of phase angles before/after attack

p, p′ vector of active power injections before/after attack

Γ diag{ 1
re
}e∈E (re: reactance of link e)

∆ vector of changes in active power injections

D̃ matrix of (hypothetical) post-attack power flows (6)

η rounding threshold in Algorithm 1

SU , fU,g , fU,1(0) definitions related to hyper-node (17)

ST , fT,g , fT,1(0) definitions related to fail-cover hyper-node (20)

on the state variables before the attack and the measurements
from the unattacked area H̄ after the attack.

In contrast to the previous works, we consider cases where
the attack may partition the grid into multiple islands, which
can cause changes in active power injections to maintain the
supply/demand balance in each island. Let ∆ = (∆v)v∈V :=
p − p′ denote the change in active power injections, where
∆v > 0 if v is a generator bus and ∆v ≤ 0 if v is a load bus.

III. RECOVERY OF PHASE ANGLES

Under the assumption that G remains connected after the
attack and thus ∆ = 0, [3] showed that the post-attack phase
angles θ′H can be recovered if the submatrix BH̄|H of the
admittance matrix has a full column rank. Below, we will show
that the same condition holds without this limiting assumption.

Specifically, we have the following lemma (see proof in
appendix) that extends [3, Lemma 1] to the case of arbitrary
∆ (“supp”: indices of non-zero entries in the input vector).

Lemma III.1. supp(B(θ − θ′)−∆) ⊆ VH .

Using Lemma III.1, we prove that the recovery condition
in [3, Theorem 1] remains sufficient even if the post-attack
grid may be disconnected (see proof in appendix).

Theorem III.1. The phase angles θ′H within the attacked area
can be recovered correctly if BH̄|H has a full column rank.

IV. LOCALIZING FAILED LINKS WITH KNOWN ACTIVE
POWERS

Now assume that the post-attack phase angles θ′ have
been recovered. This can be achieved when BH̄|H has a
full column rank as shown in Theorem III.1. Alternatively,
θ′ can be directly reported from PMUs – assuming that the
cyber attack only affects SCADA but not the WAMPAC
network carrying PMU measurements. This can occur in a
hybrid control system, where the PMU measurements are
reported via a modern WAMPAC network and the other sensor
measurements are reported via a legacy SCADA network [25].
While SCADA is known to be vulnerable to cyber attacks [2],
WAMPAC is designed to satisfy stronger cyber security
requirements [26]. We will show that as long as the change

in active powers ∆ is known, the failed links can be uniquely
localized under the same conditions as specified in [3].

First, we note that under practical assumptions, the con-
ditions presented in Section III for recovering the phase
angles greatly simplify the recovery of the active powers.
To this end, we assume that the adjustment of active power
injections at generator/load buses follows the proportional load
shedding/generation reduction policy, where (i) either the load
or the generation (but not both) will be reduced upon the
formation of an island, and (ii) if nodes u and v are in the
same island and of the same type (both load or generator), then
p′u/pu = p′v/pv. This policy models the common practice in
adjusting load/generation in the case of islanding [27], [28]. It
implies that (1) the machine rating of a generator is proportional
to its pre-disturbance (nominal) power output, as is typical in
power grid operation, and (2) in the case of demand more than
supply in an island, the frequency nadir during the inertial phase
becomes low enough to activate underfrequency relays, and the
load shedding action that follows leads to balance of supply
and demand before the governor response kicks in (due to slow
turbine-governor time constants involved in that process).

We observe the following cases in which the active powers
can be recovered via this policy (see proof in appendix).

Lemma IV.1. Let N(v; H̄) denote the set of all the nodes in
H̄ that are connected to node v via links in E \ EH . Then
under the proportional load shedding policy, ∆v for v ∈ VH
can be recovered unless N(v; H̄) = ∅ or every u ∈ N(v; H̄)
is of a different type from v with ∆u = 0.

Remark 1: Under the condition of Theorem III.1, i.e., BH̄|H
has a full column rank, each v ∈ VH must be the neighbor of
at least one node in H̄ (otherwise its corresponding column in
BH̄|H will be 0), and thus N(v; H̄) 6= ∅. Moreover, majority
of the nodes in practice are load buses, and thus each node in
H is likely to be a load bus neighboring to another load bus in
H̄ . Thus, we can usually recover ∆H under the proportional
load shedding policy if the condition for recovering θ′H holds.

Remark 2: Besides the cases indicated in Lemma IV.1, it is
also easy to show that if H contains no generator bus or no
load bus, and

∑
v∈VH̄

∆v = 0, then we must have ∆H = 0.
Next, we will establish the conditions for localizing the

failed links F with known θ′ and ∆. The basic observation is
the following property of the set F (see proof in appendix).

Lemma IV.2. There exists a vector x ∈ R|EH | that satisfies
supp(x) = F , and

DHx = BH|G(θ − θ′)−∆H . (4)

This lemma, which replaces [3, Lemma 2], implies that if
one can find the conditions under which the solution to (4) is
unique, then the links corresponding to non-zero elements of
this solution must be the failed links. To this end, [3] gave a
set of graph-theoretic conditions. As these conditions are only
about the solution space of DHx = y, they remain valid in our
setting as long as the righthand side is known. We summarize
these conditions below (see proof in appendix).

Theorem IV.1. The failed links F within the attacked area
can be localized correctly if:
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1) H is acyclic (i.e., a tree or a set of trees), in which case
(4) has a unique solution x for which supp(x) = F , or

2) H is a planar graph satisfying (i) for any cycle C in
H , |C ∩ F | < |C \ F |, and (ii) F ∗ is H∗-separable1,
in which case the optimization min ‖x‖1 s.t. (4) has a
unique solution x for which supp(x) = F .

Special cases satisfying the second condition in Theorem IV.1
include that (i) H is a cycle in which majority of the links
have not failed, and (ii) H is a planar bipartite graph in which
each cycle contains fewer failed links than non-failed links [3].

V. LOCALIZING FAILED LINKS WITH UNKNOWN ACTIVE
POWERS

Although providing strong theoretical guarantees, the solu-
tions for localizing failed links given in Section IV are only
applicable to small attacked areas with simple topologies (e.g.,
trees or cycles in which every node is connected to another
node outside the attacked area). To deal with larger attacked
areas for which ∆H cannot be recovered by Lemma IV.1, we
investigate alternative solutions by jointly estimating the set of
failed links F and the changes in active power injections ∆H .
As in Section IV, we assume that the post-attack phase angles
θ′ are known, which can be either inferred or directly measured.

A. Solution

Our approach is to formulate the joint estimation problem
as an optimization as follows.

Constraints: Let x ∈ {0, 1}|E| be an indicator vector such
that xe = 1 if and only if e ∈ F . Due to B = DΓDT (see
Table I for the definitions), we can write the post-attack ad-
mittance matrix as B′ = B −DΓdiag{x}DT , which implies

∆H = BH|G(θ − θ′) +DHΓHdiag{DT
G|Hθ

′}xH , (5)

where DG|H ∈ {−1, 0, 1}|V |×|EH | is the submatrix of the
incidence matrix D only containing the columns corresponding
to links in H . For simplicity, we define

D̃ := DΓdiag{DTθ′}. (6)

For link ek = (i, j), (D̃)i,k = −(D̃)j,k =
θ′i−θ

′
j

rij
, which indi-

cates the post-attack power flow on link ek if it is operational.
Besides (5), ∆H is also constrained as

pv ≥ ∆v ≥ 0, ∀v ∈ {u |u ∈ VH , pu > 0} , (7a)
pv ≤ ∆v ≤ 0, ∀v ∈ {u |u ∈ VH , pu ≤ 0} , (7b)

1T∆ = 0, (7c)

which ensures that a generator/load bus will remain of the
same type after the attack, and the total power is balanced. It
is worth noting that (7c) is ensured by (5), which implies that
1T∆H−1TBH|G(θ−θ′) = (1T D̃H)xH = 0 since 1T D̃H =
0 by definition (6). This implies that any ∆H satisfying (5)
will satisfy 1T∆H = 1TBH|G(θ − θ′) = 1T∆∗H (∆∗H : the

1Here H∗ is the dual graph of H , and F ∗ is the set of edges in H∗ such
that each edge in F ∗ connects a pair of vertices that correspond to adjacent
faces in H separated by a failed link.

ground-truth load shedding values in H), and thus satisfy (7c).
Hence, we will omit (7c) in the sequel.

Objective: The problem of failure localization aims at finding
a set F̂ that is as close as possible to the set F of failed links,
while satisfying all the constraints. The solution is generally not
unique, e.g., if both endpoints of a link l ∈ EH are disconnected
from H̄ after the attack, then the status of l will have no impact
on any observable variable, and hence cannot be determined.
To resolve this ambiguity, we set our objective as using the
fewest failed links to satisfy all the constraints. This idea has
been applied to failure localization in power grid in various
forms [3], [16]. Mathematically, the problem is formulated as

(P0) min
xH ,∆H

1TxH (8a)

s.t. (5), (7a)− (7b), (8b)
xe ∈ {0, 1}, ∀e ∈ EH , (8c)

where the decision variables are xH and ∆H . Next, we
characterize the complexity of (P0) (see proof in appendix).

Lemma V.1. The optimization (P0) is NP-hard.

By relaxing the integer constraint (8c), (P0) is relaxed into

(P1) min
xH ,∆H

1TxH (9a)

s.t. (5), (7a)− (7b), (9b)
0 ≤ xH ≤ 1. (9c)

where 0 ≤ xH ≤ 1 denotes element-wise inequality. The
problem (P1) is a linear program (LP) which can be solved
in polynomial time. Based on (P1), we propose an algorithm
for localizing the failed links, given in Algorithm 1, where
the input parameter η ∈ (0, 1) is a threshold for rounding the
factional solution of xH to an integral solution (η = 0.5 in
our experiments). We will analyze how η affects the trade-off
between miss rate and false alarm rate of Algorithm 1 at the
discussion after Theorem V.2 in Section V-B.

Algorithm 1: Failed Link Detection
Input: B,p,∆H̄ ,θ,θ

′,D, η
Output: F̂

1 Solve the problem (P1) to obtain xH ;
2 Return F̂ = {e : xe ≥ η}.

B. Analysis
We now analyze when the proposed algorithm can correctly

localize the failed links. In the sequel, ∆∗H denotes the ground-
truth load shedding values in H and x∗H denotes the ground-
truth failure indicators.

According to (7), we decompose VH into VH,L for nodes
with pv ≤ 0 and VH,S for the rest. Define E1 ⊆ EH as the
set of links that operate normally after failure, and F ⊆ EH
as the failed links. We make the following assumption:

Assumption 1. As in [3], we assume that for each link (s, t) ∈
EH , θ′s 6= θ′t, as otherwise the link will carry no power flow
and hence its status cannot be identified2.

2This assumption essentially means that we will ignore the existence of
such links in failure localization.
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1) Main Results: First, we simplify (P1) into an equivalent
but simpler optimization problem. To this end, we combine
the decision variables ∆H and xH of (P1) into a single
vector yH = [∆T

H ,x
T
H ]T ∈ R(|EH |+|VH |) (where [A,B]

denotes horizontal concatenation), and explicitly represent
the solution to yH that satisfies (5). Notice that (5) can be
written as [I|VH |,−D̃H ]yH = BH|G(θ − θ′) (I|VH |: the
|VH | × |VH | identity matrix). The ground-truth solution
y∗H = [(∆∗H)T , (x∗H)T ]T certainly satisfies (5). Next, consider
the null space of [I|VH |,−D̃H ], whose dimension is |EH |. It is
easy to verify that [d̃Te ,u

T
e ]T (e ∈ EH ) are |EH | independent

vectors spanning the null space of [I|VH |,−D̃H ], where d̃e
is the column vector of D̃H corresponding to link e, and ue
is a unit vector in R|EH | with the e-th element being 1 and
the other elements being 0. Therefore, any yH satisfying (5)
can be expressed as

yH =

[
∆∗H
x∗H

]
+
∑
e∈EH

ce

[
d̃e
ue

]
, (10)

where ce’s are the coefficients. Based on the decomposition
of VH into VH,L and VH,S , D̃H and ∆H can be written as

D̃H =

E1 F[ ]
VH,L D̃H,L,1 D̃H,L,F

VH,S D̃H,S,1 D̃H,S,F

, (11a)

∆H =

[ ]
VH,L ∆H,L

VH,S ∆H,S . (11b)

Let D̃H,L := [D̃H,L,1, D̃H,L,F ], D̃H,S := [D̃H,S,1, D̃H,S,F ],
and c := (ce)e∈EH

∈ R|EH |. Since ∆H,L and ∆H,S are
constrained differently in (7a) and (7b), we introduce ΛL =
[I|VH,L|,0] and ΛS = [0, I|VH,S |] such that ∆H,L = ΛL∆H ,
∆H,S = ΛS∆H , D̃H,L = ΛLD̃H and D̃H,S = ΛSD̃H .
According to (10), for Algorithm 1 to correctly localize the
failed links, it suffices to have x∗e+ce ≥ η for all e ∈ F and x∗e+
ce < η for all e ∈ E1. Equivalently, it suffices to ensure that
the optimal solution c∗ to the following optimization problem
satisfies c∗e ≥ η − 1 for all e ∈ F and c∗e < η for all e ∈ E1:

min
c

1T c (12a)

s.t. D̃H,Lc ≤ −∆∗H,L, (12b)

− D̃H,Lc ≤ −(ΛLpH −∆∗H,L), (12c)

− D̃H,Sc ≤∆∗H,S , (12d)

D̃H,Sc ≤ ΛSpH −∆∗H,S , (12e)

− c ≤ x∗H , (12f)
c ≤ 1− x∗H , (12g)

where (12a) is equivalent to (9a), (12b)-(12c) correspond to
(7b), (12d)-(12e) correspond to (7a), (12f)-(12g) correspond
to (9c), and the change of variables xH ,∆H into c based on
(10) ensures the satisfaction of (5). This equivalent formulation
of (P1) will help to simplify our analysis by eliminating the
equality constraint (5). For notational simplicity, we will omit
the subscript H in the sequel unless it causes confusion.

Next, we use (12) to analyze the accuracy of Algorithm 1.

Let F̂ be the failed link set returned by Algorithm 1. We
first define Qm = F \ F̂ as the set of failed links that are
not detected, and Qf = F̂ \ F as the set of operational links
that are falsely detected as failed. Note that according to (12),
a failed link e ∈ F is missed if and only if c∗e < η − 1.
Similarly, an operational link e ∈ E1 is falsely detected as
failed if and only if c∗e ≥ η. To express this in a vector form,
we define Wm ∈ {0, 1}|Qm|×|EH | as a binary matrix, where
for each i = 1, . . . , |Qm|, (Wm)i,e = 1 if the i-th missed
link is link e and thus we have Wmc

∗ ≤ (η − 1)1. Similarly,
Wf ∈ {0, 1}|Qf |×|EH | is defined such that (Wf )i,e = 1 if the
i-th false-alarmed link is link e, which leads to −Wfc

∗ ≤ −η1.
For ease of presentation, we define

AT
D := [D̃T

L ,−D̃T
L ,−D̃T

S , D̃
T
S ] ∈ R|EH |×2|VH |, (13a)

AT
x := [−I|EH |, I|EH |] ∈ R|EH |×2|EH |, (13b)

W T := [W T
m,−W T

f ] ∈ R|EH |×(|Qm|+|Qf |), (13c)

gTD := [−(∆∗L)T , (−p′L)T , (∆∗S)T , (p′S)T ], (13d)

gTx := [(x∗)T ,1T − (x∗)T ] ∈ R1×2|EH |, (13e)

gTw := [(η − 1)1T ,−η1T ] ∈ R1×(|Qm|+|Qf |), (13f)

where p′L = pL − ∆∗L and p′S = pS − ∆∗S denote the
post-attack active power injections at VH,L and VH,S . Then the
constraints in (12) can be written as [AT

D,A
T
x ]T c ≤ [gTD, g

T
x ]T ,

and the optimal solution must satisfy Wc ≤ gw. The following
observation is the foundation of our analysis.

Lemma V.2. A link e ∈ F cannot be missed by Algorithm 1
if for Qm = {e} and Qf = ∅, there is a solution z ≥ 0 to

[AT
D,A

T
x ,W

T ,1]z = 0, (14a)

[gTD, g
T
x , g

T
w ,0]z < 0. (14b)

Similarly, a link e′ ∈ E1 cannot be falsely detected as failed
by Algorithm 1 if there exists a solution z ≥ 0 to (14) where
W is constructed according to Qf = {e′} and Qm = ∅.

The proof is by contradiction: if e ∈ F \ F̂ , then for W
corresponding to Qm = {e} and Qf = ∅, there must be no
z ≥ 0 satisfying (14); similar argument holds for e′ ∈ E1 by
assuming e′ ∈ F̂ \ F . See detailed proof in Appendix.

For ease of presentation, we will introduce a few notations
as follows. Denote D̃u as the row in D̃ corresponding to
node u, and D̃u,e as the entry in D̃u corresponding to
link e. Recall that as defined in (6), if e = (u, v), then
D̃u,e = (θ′u − θ′v)r−1

uv . We decompose the left-hand-side of
(14a) intoAT

DzD+AT
x [zx−, zx+]+W T

mzw,m+W T
f zw,f+z∗1

such that its row corresponding to link e can be written as∑
u∈VH

(
D̃u,ezD,u − D̃u,ezD,−u

)
+
(
zx+,e − zx−,e

)
+ IQm

(e)zw,m,e − IQf
(e)zw,f,e + z∗. (15)

Similarly, the left-hand-side of (14b) can be expanded into∑
u∈VH

(
gD,uzD,u + gD,−uzD,−u

)
+
∑
e∈EH

[zx+,e(1− x∗e)+

zx−,ex
∗
e] + gTwzw + z∗, (16)

where gTwzw =
∑
e∈EH

[IQm
(e)zw,m,e(η−1)−IQf

(e)zw,f,eη],
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Figure 2. An example of hyper-node (arrow denotes the direction of a power
flow or a hypothetical power flow).

gD,u := −∆∗u and gD,−u := −p′u if pu ≤ 0, whereas gD,u :=
p′u and gD,−u := ∆∗u if pu > 0. Then, a solution z ≥ 0
satisfies (14) if ∀e ∈ EH , we have (15) equal to 0 and (16)
less than 0.

Although Lemma V.2 can already be utilized as recovery
conditions, it does not explicitly characterize what type of links
are guaranteed to be correctly identified. To this end, we will
show that a link will satisfy the conditions in Lemma V.2 (and
can thus be correctly identified by Algorithm 1) if its endpoints
satisfy certain conditions. To make our conditions as general
as possible, we introduce a generalization of node called hyper-
node as follows (a single node is also a hyper-node):

Definition V.1. A set of nodes U ⊆ VH is a hyper-node if they
induce a connected subgraph before attack.

We define a few properties of a hyper-node U . Define EU
as the set of links with exactly one endpoint in U , i.e, EU :=
{e|e = (s, t) ∈ EH , s ∈ U, t /∈ U}. If EU ∩F 6= ∅, we define

D̃U,e :=
∑
u∈U

D̃u,e, (17a)

SU := {e ∈ EU \ F | ∃l ∈ EU ∩ F, D̃U,lD̃U,e > 0}, (17b)

fU,0 := max
e∈SU

|D̃U,e|, where fU,0 := 0 if SU = ∅, (17c)

fU,1 := min
e∈EU∩F

|D̃U,e|, (17d)

fU,g :=

{∑
u∈U gD,u if ∃l ∈ EU ∩ F, D̃U,l < 0,∑
u∈U gD,−u otherwise.

(17e)

Example 1. Consider an attacked area H as shown in Fig. 2,
where blue circles denote nodes (buses) while the direction
of each link indicates the direction of power flow3. Suppose
that F = {l2, l6} and all nodes are load buses. Nodes u1, u2

and u3 form a hyper-node U , where EU = {l2, l4, l6, l7},
SU = {l7}, fU,0 = |D̃U,l7 |, fU,1 = min{|D̃U,l2 |, |D̃U,l6 |} and
fU,g = −

∑
v∈U ∆∗v. D̃U,l1 = D̃u1,l1 + D̃u2,l1 = 0 since

l1 /∈ EU , while D̃U,l2 = D̃u2,l2 6= 0 since l2 ∈ EU .

Based on these definitions and Lemma V.2, we are ready to
present a condition under which a failed link l ∈ F will not
be missed by Algorithm 1.

Theorem V.1. A failed link l ∈ F will be detected by Algo-
rithm 1, i.e., l ∈ F̂ , if there exists at least one hyper-node (say
U ) such that l ∈ EU , for which the following conditions hold:

1) ∀e, l ∈ EU ∩ F , D̃U,eD̃U,l > 0,
2) SU = ∅, and

3These may be hypothetical power flows, as a failed link carries no flow.

3) fU,g + (η − 1)|D̃U,l| < 0.

Proof. We will prove by showing that there is a solution to
(14) for Qf = ∅ and Qm = {l} where l ∈ EU . We prove
this by directly constructing a solution z for (14) as follows:
∀u ∈ U , if D̃U,l < 0, set zD,u = 1; otherwise, set zD,−u =
1. Set zw,m,l = |D̃U,l|, zx−,e′ = |D̃U,e′ | for e′ ∈ EU \ F ,
zx+,e = |D̃U,e| for e ∈ EU ∩F \ {l}, and other entries of z to
0. Note that (x∗)e′ = 0,∀e′ ∈ EU \F , and (1−x∗)e = 0,∀e ∈
EU ∩F . Then, we will demonstrate why (14) is satisfied under
this assignment of z. First, (15) for link l is expanded as
−|D̃U,l|+ zw,m,e = 0, and (15) for e ∈ F \ {l} is expanded
as −|

∑
u∈U D̃u,e| + zx+,e = −|D̃U,e| + zx+,e = 0 due to

condition 1). Second, since SU = ∅, for all e′ ∈ EU \ F , the
corresponding row in (14a) is expanded into |D̃U,e′ |−zx−,e′ =
0. Other rows of (14a) holds trivially since they only involve the
zero-entries in the constructed z. Thus, (14a) holds under this
assignment. As for (14b), its left-hand-side can be expanded
as fU,g + (η − 1)|D̃U,l| < 0 due to condition 3). According to
Lemma V.2, l ∈ EU ∩ F will not be missed, which completes
the proof.

Based on similar arguments, the following condition can
guarantee that an operational link l ∈ E1 will not be falsely
detected by Algorithm 1 (l /∈ F̂ ). For notational simplicity,
we first extend the definition of fU,g to a hyper-node U with
EU ∩ F = ∅:

fU,g :=

{ ∑
u∈U gD,u if ∃l ∈ EU \ F, D̃U,l > 0,∑
u∈U gD,−u otherwise.

(18)

Theorem V.2. An operational link l ∈ E1 will not be detected
(as failed) by Algorithm 1, i.e., l /∈ F̂ , if there exists at least one
hyper-node (say U ) such that l ∈ EU , for which the following
conditions hold:

1) ∀l, l′ ∈ EU ∩ E1 : D̃U,lD̃U,l′ > 0,
2) SU = ∅ if EU ∩ F 6= ∅, and
3) fU,g − η|D̃U,l| < 0.

Proof. Similar to the proof of Theorem V.1, we will prove by
showing that there is a solution to (14) for Qf = {l} and Qm =
∅ where l ∈ EU . We construct the following z: ∀u ∈ U , if
D̃U,l < 0, set zD,u = 1; otherwise, set zD,−u = 1. Set zw,f,l =
|D̃U,l|, zx−,e′ = |D̃U,e′ | for e′ ∈ EU \ (F ∪ {l}), zx+,e =
|D̃U,e| for e ∈ EU ∩F , and other entries of z to 0. Then, it is
easy to check that (14a) is satisfied. As for (14b), considering
that gTx zx =

∑
e′∈EU\F x

∗
e′ +

∑
e∈EU∩F (1 − x∗e) = 0 since

(x∗)e′ = 0, ∀e′ ∈ EU \ F and (1− x∗)e = 0, ∀e ∈ EU ∩ F ,
the left-hand-side of (14b) can be expanded as

gTDzD + gTx zx − ηzw,f,l = fU,g − η|D̃u,l| < 0, (19)

where fU,g =
∑
u∈U gD,u if D̃U,l > 0 and fU,g =∑

u∈U gD,−u if D̃U,l < 0, and the last inequality holds due
to condition 3). Thus, according to Lemma V.2, l /∈ F̂ , which
completes the proof.

Remark: Theorems V.1 and V.2 provide sufficient conditions
for Algorithm 1 to correctly identify the status of a link l
based on the direction and magnitude of power flows around
a hyper-node U at the “endpoint” of l (i.e., l ∈ EU ):
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1) The (hypothetical) power flows on all the links of the
same status (failed or operational) around U should
be in the same direction, i.e., all going into or out
of U (condition 1); all links of the different status
(if any) around U should have opposite (hypothetical)
power flow directions (condition 2); the magnitude of
the (hypothetical) power flow on the link of interest (i.e.,
l) should be sufficiently large (condition 3).

2) The value of η can be tuned to control the trade-off
between miss rate and false alarm rate. Specifically, the
condition 3) of Theorem V.1 will be easier to satisfy
with a smaller η. On the contrary, the condition 3) of
Theorem V.2 will be easier to satisfy with a larger η.

However, the conditions in Theorems V.1 and V.2 are
stronger than necessary. In particular, z∗ is always 0 in the
proof of these theorems, which means that the optimality
condition 1T c∗ ≤ 0 formulated in (31) has not been exploited.
This results in the requirement of the condition “SU = ∅”
in these theorems. To better characterize the accuracy of
Algorithm 1, we will establish a condition that exploits the
optimality condition. To this end, we introduce a few further
definitions as follows.

Definition V.2. A hyper-node U is a fail-cover hyper-node if
EU ∩ F 6= ∅ and ∀e, l ∈ EU ∩ F , D̃U,eD̃U,l > 0.

Given a set of fail-cover hyper-nodes T , we divide T into
Tn = {Uni} and Tp = {Upi}, such that each Uni ∈ Tn
satisfies D̃Uni

,e ≤ 0 for all e ∈ F , and each Upi ∈ Tp satisfies
D̃Upi

,e ≥ 0 for all e ∈ F . Then, we define:

RUi
:=

maxU∈T {fU,1}
fUi,1

, ∀Ui ∈ T, (20a)

D̃T,e :=
∑
Ui∈Tn

RUiD̃Ui,e +
∑
Ui∈Tp

(−RUi)D̃Ui,e, (20b)

ST := {e′ /∈ F |∃e ∈ F s.t. D̃T,e′D̃T,e > 0}, (20c)

fT,0 := max
e′∈ST

|D̃T,e′ |, fT,1 := min
e∈F
|D̃T,e|, (20d)

fT,g :=
∑
Ui∈T

RUi
fUi,g. (20e)

Now we provide the recovery conditions when condition 2)
in Theorems V.1 and V.2 is relaxed (see proof in appendix).

Theorem V.3. Assume that there exists a set of fail-cover
hyper-nodes T = {Ui} satisfying the following conditions:

1) ∀e ∈ F, |D̃T,e| ≥ fT,0, i.e., fT,1 ≥ fT,0, and
2) F ⊆

⋃
Ui∈T EUi

.

Then, a failed link e ∈ F will be detected by Algorithm 1
(e ∈ F̂ ) if

fT,g + (η − 1)(|D̃T,e| − fT,0) < 0. (21)

In addition, an operational link e′ ∈ E1 will not be detected
(as failed) by Algorithm 1 (e′ /∈ F̂ ) if fT,g − η

(
fT,1 +

∣∣∣D̃T,e′

∣∣∣) < 0 if e′ /∈ ST
fT,g − η

(
fT,1 −

∣∣∣D̃T,e′

∣∣∣) < 0 if e′ ∈ ST
(22)

All Cases

Theo ⅴ.1 and ⅴ.2

Theo ⅴ.3

Lemma ⅴ.2

Figure 3. Relationship between cases covered by various theorems.

Besides serving as performance guarantees for Algorithm 1,
the conditions in Lemma V.2 and Theorems V.1–V.3 can be
used in real-time contingency analysis, where the operator can
simulate a certain number of failures and test their detectability
based on these conditions. Moreover, these conditions can
serve as the foundation for stronger conditions that can be
tested in the field to verify the correctness of the failure
localization results before crew dispatching [29].

For ease of understanding, we visualize the relationship
among the results in this section in Fig. 3. Specifically,
• Even if the condition in Lemma V.2 is not satisfied for

a link, Algorithm 1 may still identify its state correctly,
because (P1) can have multiple optimal solutions while a
typical LP solver can only return one of them, which can
result in correct identification of the given link. Thus, the
cases satisfying Lemma V.2 are only part of all the cases
in which Algorithm 1 is correct.

• The cases satisfying Lemma V.2 can be classified into
four categories according to whether they satisfy Theo-
rem V.1/V.2 and/or Theorem V.3.

• At a first glance, (21) in Theorem V.3 seems to include
all the cases covered by Theorem V.1 due to the relaxed
condition on SU . However, (21) depends on the value of
fT,g , which is the weighted sum of all fUi,g for Ui ∈ T .
For a failed link e, it is possible to find a hyper-node
U with fU,g = 0 such that Theorem V.1 holds, while
(21) is violated. This argument applies similarly to a link
e′ ∈ EH \ F . Thus, cases covered by Theorem V.1/V.2
and those covered by Theorem V.3 partially overlap. A
quantitative analysis will be shown in Fig. 7.

Theorems V.1–V.3 shed light on what kind of H allows
accurate failure localization. For example, Theorem V.3 implies
that Algorithm 1 will localize all the failures correctly if ∃ a
vertex cover V0 of H (i.e., ∀e ∈ EH is incident to some u ∈
V0), where ∀u ∈ V0 satisfies (i) pu = 0, (ii) f{u},1 > f{u},0,
and (iii) u is incident to at most one failed link.

Example 2. Consider Fig. 2 as an example, where all the
nodes in H are load buses. If ∆∗u = 0,∀u ∈ V2 :=
{u1, u2, u3, u6, u7}, then T = {V2} satisfies that fT,g =∑
u∈V2

gD,u = −
∑
u∈V2

∆∗u = 0 and ST = ∅, which leads to
the satisfaction of (21) for all the failed links and (22) for all
the operational links. Meanwhile, l2 and l6 are guaranteed to
be correctly identified through Theorem V.1 by setting U = V2,
since SU = ∅ and fU,g = 0. Furthermore, both l3 and l5
satisfy Theorem V.2 if U = {u3, u6, u7}. As can be seen, some
failed links (l2 and l6) can be covered by both Theorem V.3
and Theorem V.1. Also, some operational links (l3 and l5) can
be covered by both Theorem V.3 and Theorem V.2. However,
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l1 can only be covered by Theorem V.3.

2) Special Cases: We can use these theorems to analyze the
accuracy of Algorithm 1 in special cases of practical interest.

No islanding: We now examine the accuracy of Algorithm 1
in the special case that the grid remains connected after attack,
which has been studied in [3]. It is worthwhile to analyze this
case (where ∆∗ = 0) because Algorithm 1 assumes no prior
knowledge of ∆∗ (see proof in appendix).

Corollary V.1. If the grid stays connected after failure, H is
acyclic, and H contains either no load bus or no generator
bus, then Algorithm 1 can correctly detect F , i.e., F̂ = F .

Remark: If the grid stays connected after failure, H contains
either no load bus or no generator bus, and H contains cycles,
then the status of a link l ∈ EH is guaranteed to be correctly
identified if l is not in any cycle. This is because in this case,
we can construct a hyper-node satisfying the conditions in
Theorem V.1 or V.2 as in the proof of Corollary V.1.

Islanding: Now, we study the case where the attacked area
is decomposed into multiple islands. Suppose that the failures
partition H into K islands Hi = (Vi, Ei) (i = 1, . . . ,K),
where VH =

⋃K
i=1 Vi and EH = (

⋃K
i=1Ei)

⋃
Ec, with Ec

being the set of links between different islands. Then the
following is implied by Theorem V.3 (see proof in appendix).

Corollary V.2. Suppose that F = Ec. Let Ec,i ⊆ Ec be the
subset of failed links with one endpoint in Hi. Then, Algorithm 1
will correctly detect the failures (F̂ = F ) if there exists a set
L ⊆ {Hi}Ki=1 with

⋃
Hi∈LEc,i = Ec, such that each Hi ∈ L

satisfies the following conditions4:
1) ∀e, e′ ∈ Ec,i, D̃Vi,eD̃Vi,e′ > 0,
2) ∀v ∈ Vi that is incident to a link in l ∈ Ec,i, f{v},0 <

f{v},1, and
3) ∀v ∈ Vi that is incident to a link in l ∈ Ec,i, gD,v = 0

if D̃v,l < 0, and gD,−v = 0 if D̃v,l > 0.

Remark: Corollary V.2 extends Theorem V.1 in [1] in the
sense that Corollary V.2 only requires hypothetical power flows
on failed links to be in the same direction, while Theorem V.1
of [1] requires these power flows to have a specific direction.

VI. PERFORMANCE EVALUATION

We test our solutions on the Polish power grid (“Polish
system - winter 1999-2000 peak”) [30] with 2383 nodes and
2886 links, where parallel links are combined into one link.
We generate the attacked area H by randomly choosing one
node as a starting point and performing a breadth first search to
obtain H with a predetermined |VH |. We then randomly choose
|F | links within H to fail. We vary |VH | and |F | to explore
different settings, and for each setting, we generate 70 different
H’s and 300 different F ’s per H . In our experiments, |VH | is
chosen to be large enough such that there are sufficiently many
internal nodes in H whose post-attack active power injections
cannot be easily recovered, and there are sufficiently many
candidate links to fail that can lead to island formation in the
grid.

4See (17) and Tabel I for the definitions of notations.

20 25 30 35 40
|V

H
|

0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n 
of

 c
as

es

Figure 4. Prob. that condition of Theorem IV.1.(1) holds.
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(b) Prob. of no miss
Figure 5. Prob. of correctly identifying failed link status with known phase
angles but unknown active powers (|VH | = 40).

We evaluate two types of metrics: (1) how often the recovery
conditions are satisfied, and (2) how accurate our algorithm
is when its recovery conditions are not necessarily satisfied.

A. Probability of Guaranteed Recovery

First, we evaluate the fraction of randomly generated cases
(combinations of H and F ) satisfying the conditions in
Theorem III.1 for recovering the phase angles, and The-
orem IV.1.(1)5 for localizing the failed links with known
phase angles and active powers. We observe that: (i) the
condition in Theorem III.1 is almost never satisfied under a
nontrivial size of H (|VH | = 20, . . . , 40), which emphasizes the
importance of securing PMU measurements; (ii) the condition
in Theorem IV.1.(1) is only satisfied with a small probability
as shown Fig. 4, which decreases with the size of H (note that
Theorem IV.1.(1) does not depend on F ). In previous work [3],
this issue was addressed by actively designing “zones” for
reporting measurements such that each zone satisfies these strin-
gent conditions, which only works for attacks limited to single
zones. In contrast, our recovery conditions are much more
general as shown below (Fig. 5 and Fig. 6), even though we
do not assume to know the post-attack power injections in H .

Then, we evaluate the fraction of links satisfying the recovery
conditions in Lemma V.2 and Theorems V.1–V.3, together with

5We only tested condition (1) in Theorem IV.1, as the other condition relies
on complicated graph properties that are difficult to test.
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Figure 6. Prob. of correctly identifying operational link status with known
phase angles but unknown active powers (|VH | = 40).
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Figure 7. Prob. that conditions of Theorems V.1–V.3 hold.

the actual fraction of links whose status are correctly identified
by Algorithm 1, under known phase angles and unknown
active powers. The results are shown in Fig. 5 and Fig. 6,
where “Experimental Results” is the actual performance of
Algorithm 1, “Lemma V.2” indicates the failed/operational
links satisfying Lemma V.2, and “Theorems V.1–V.3” indicates
the failed links that satisfy either Theorem V.1 or (21) in
Theorem V.3, or the operational links that satisfy either
Theorem V.2 or (22) in Theorem V.3. More specifically, Figs. 5–
6 (a) show the fraction of correctly identified failed/operational
links, averaged over all the randomly generated cases, where
the bottom and the top edges of the error bar indicate the 25th

and 75th percentiles. In addition, Figs. 5–6 (b) demonstrate
the fraction of cases with no miss/false alarm.

It is worth noting that checking whether Theorems V.1–V.3
hold for each link is hard since they require testing all possible
hyper-nodes, whose number is exponential in |VH |. To test
whether Theorem V.1 holds for a given link, we heuristically
construct a hyper-node through BFS starting from each of its
endpoints. In each iteration of BFS, we add all the nodes that
cause violation of condition 1 or condition 2 in Theorem V.1
into the hyper-node and test whether condition 3 holds. This
procedure applies similarly to the testing of Theorem V.2
and the construction of T in Theorem V.3. Therefore, the
fractions of links/cases covered by Theorems V.1–V.3 in
Figs. 5–6 are lower bounds. Meanwhile, checking whether
Lemma V.2 holds for each link is easy. Nevertheless, we see
that (i) Theorems V.1-V.3 explain the success of Algorithm 1
quite well, especially when |F | is small, (ii) the theorems
can explain most cases covered by Lemma V.2, and (iii)
Algorithm 1 is actually highly accurate in identifying the
operational links even though the theoretical conditions
for doing so appear stringent. To better understand the last
phenomenon, we observe in experiments that many operational
links carry small post-attack power flows, which makes the
conditions in Theorem V.2 and (22) in Theorem V.3 hard
to satisfy. On the contrary, the values of hypothetical power
flows on failed links are usually large, making the conditions
in Theorem V.1 and (21) in Theorem V.3 easier to satisfy.

To better understand the relationship between Theorems V.1–
V.3, we decompose all the failed links into 4 categories: (1)
links satisfying both Theorem V.1 and (21) in Theorem V.3, (2)
links satisfying only (21) in Theorem V.3, (3) links satisfying
only Theorem V.1, and (4) links satisfying neither. Fig. 7 (a)
shows the fraction of links in each category, averaged over
all the simulated cases. We observe that (i) many failed links
satisfy both conditions; (ii) as |F | grows, the fraction of failed
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Figure 9. Performance comparison on miss rate (|VH | = 40).

links satisfying only (21) in Theorem V.3 decreases, while the
fraction of links satisfying only Theorem V.1 increases; (iii)
the fraction of links covered by neither of the conditions is
small. Similarly, we look into the coverage of Theorem V.2
and (22) in Theorem V.3 for operational links, as shown in
Fig. 7 (b), with similar observations except that the fraction of
links covered by neither of these conditions increases with |F |.

B. Accuracy of Failure Localization

Next, we compare Algorithm 1 with benchmarks in localizing
the failed links, assuming that post-attack phase angles are
known, due to the better protection of PMU measurements [26].
We consider two benchmarks: (i) the solution given in Theo-
rem IV.1 (extended from [3]), i.e., estimating F by supp(x)
for the solution to min ‖x‖1 s.t. (4), assuming the true ∆H to
be known, and (ii) min ‖x‖1 s.t. ‖BH|G(θ−θ′)−DHx‖2 ≤
‖pH‖2, which is extended from the solutions in [15], [16]. We
note that the original solution in [3] (which assumes ∆ = 0) is
often infeasible for our problem, as shown in Fig. 8, thus not
used as a benchmark. Note that benchmark (i) should be treated
as a “performance upper bound”, as it assumes more knowl-
edge (i.e., ground-truth ∆H ) than our proposed algorithm.

As shown in Fig. 9, benchmark (i) demonstrates the best
performance with regard to both miss-detection rate and the
probability of having no miss-detection, while Algorithm 1
performs much better than benchmark (ii). This confirms the
importance of knowing or estimating load shedding values
in failure localization. Regarding the false alarm as shown in
Fig. 10, Algorithm 1 performs even better than benchmark (i).
This is because the decision variable x in benchmark (i)
combines the information of both the failed links and the phase
angles θ′H , and thus does not fully exploit the knowledge of θ′H .
Furthermore, from the specific number of false alarms/misses
in Fig. 11, we see that Algorithm 1 correctly detects all the
failed links with almost no false alarm for the majority of the
time, while only missing a couple of failed links for the rest.
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Figure 10. Performance comparison on false alarm rate (|VH | = 40).
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Figure 11. Number of false alarms/misses of Algorithm 1 (|VH | = 40).

VII. CONCLUSION

We investigated the problem of power grid state estimation
under general cyber-physical attack that may disconnect the
grid. First, we demonstrated that existing solutions and the
corresponding recovery conditions for recovering phase angles
and link status are still applicable with the knowledge of post-
attack power injections. Second, for unknown post-attack power
injections, we proposed an LP-based algorithm to identify link
status within the attacked area with the knowledge of recovered
phase angles. We established sufficient conditions for the
proposed algorithm to identify the link status correctly. Finally,
our evaluations based on the Polish power grid demonstrated
that the proposed algorithm is highly accurate in localizing
the failed links, and the majority of cases are theoretically
guaranteed by the presented conditions. Meanwhile, the
existing condition for perfectly recovering phase angles can
be hard to satisfy in practice, indicating the importance of
safeguarding PMU measurements from cyber attacks.
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APPENDIX: ADDITIONAL PROOFS

Lemma III.1. For a link (s, t), define a column vector xst ∈
{−1, 0, 1}|V |, which has 1 in s-th element, −1 in t-th element,
and 0 elsewhere. The failure of links in F changes the
admittance matrix by6

B′ = B +
∑

(s,t)∈F

bstxstx
T
st, (23)

where bst is the (s, t)-th element in B. Before the attack, we
have Bθ = p. After the attack, we have B′θ′ = p′ = p−∆.
Therefore, the following holds:

Bθ −B′θ′ = ∆ (24)

⇒ B(θ − θ′)−∆ =
∑

(s,t)∈F

bstxstx
T
stθ
′ (25)

⇒ supp(B(θ − θ′)−∆) ⊆
⋃

(s,t)∈F

{s, t} ⊆ VH , (26)

where (25) is obtained by plugging in (23) into (24).

Theorem III.1. By Lemma III.1, we see that BH̄|G(θ− θ′)−
∆H̄ = 0. Writing this equation in more detail shows that

BH̄|H(θH − θ′H) +BH̄|H̄(θH̄ − θ′H̄)−∆H̄ = 0 (27)

⇒ BH̄|Hθ
′
H = BH̄|HθH +BH̄|H̄(θH̄ − θ′H̄)−∆H̄ . (28)

Since both BH̄|H and the righthand side of (28) are known to
the control center, we can uniquely recover θ′H if BH̄|H has
a full column rank.

Lemma IV.1. As failures can only occur within EH , nodes
in N(v; H̄) must be in the same island as v after the attack.
Under the proportional load shedding policy, we know that (i)
if ∃u ∈ N(v; H̄) of the same type as v, then we can recover
the post-attack active power at v by p′v = pvp

′
u/pu and thus

recover ∆v; (ii) if ∃u ∈ N(v; H̄) of a different type from v
(e.g., u is a generator bus but v is a load bus) and ∆u 6= 0,
then ∆v must be zero. This proves the claim.

Lemma IV.2. Note that by definition, xst defined in the proof
of Lemma III.1 is the same as the column corresponding to
link (s, t) in D. Define a vector y ∈ R|E| by

ye =

{
bst(θ

′
s − θ′t) if e = (s, t) ∈ F,

0 o.w. (29)

Then it is easy to see that
∑

(s,t)∈F bstxstx
T
stθ
′ = Dy. By

(25), we have B(θ − θ′) −∆ = Dy. Considering only the
equations corresponding to VH yields

BH|G(θ − θ′)−∆H = DHyH , (30)

where we have used the fact that yH̄ = 0. Thus x = yH
satisfies the conditions in the lemma.

Theorem IV.1. Condition (1) is implied by [3, Lemma 3],
which proved that DH has a full column rank if and only
if H is acyclic. This combined with Lemma IV.2 shows that
if H is acyclic, then (4) only has one solution, and hence the

6There was a mistake in the proof of [3, Lemma 1], which claimed that
B′ = B −

∑
(s,t)∈F bstxstxT

st.

support of this solution must be F .
Condition (2) is implied by the proof of [3, Theorem 2],

which showed that if H satisfies this condition, then any
solution x to (4) satisfies ‖x‖1 ≥ ‖x∗‖1, where x∗ is a vector
satisfying the conditions in Lemma IV.2. Moreover, it showed
that ‖x‖1 = ‖x∗‖1 only if x = x∗. Thus, x∗, whose support
equals F , can be computed by minimizing ‖x‖1 s.t. (4).

Lemma V.1. We will prove the claim by a reduction from the
subset sum problem, which is known to be NP-hard [31]. Given
any set of non-negative integers {fi ≥ 0}ni=1 and a target value
T , the subset sum problem determines whether there exists
{xi ∈ {0, 1}}ni=1 such that

∑n
i=1 fixi = T . For each subset

sum instance, we construct the following star-shaped attacked
area H: let H = (VH , EH) such that VH is composed of n+1
nodes, where node u0 is the hub with pu0 = 0 and θ′u0

= 0,
and node ui (i ∈ [n] for [n] := {1, . . . , n}) is incident to
only one link ei = (u0, ui), with pui

= −fi, θ′ui
= −fi,

and rei = 1. In addition, u0 is connected to v ∈ VH̄ , with
θ′v =

∑n
i=1 fi − T , through link e0 = (u0, v) with re0 = 1.

By substituting (5) and pu0
= 0, (7b) for node u0 becomes

D̃H,u0xH = Bu0|Gθ
′, where D̃H,u0 is the row of D̃H

corresponding to node u0. Since (D̃H,u0)i =
θ′u0
−θ′ui

rei
, it

is easy to check that D̃H,u0
xH =

∑n
i=1 fixi. Moreover,

Bu0|Gθ
′ =

∑n
i=1 fi +

θ′u0
−θ′v
re0

= T . Since ui (i ∈ [n])
is connected to only one link ei = (u0, ui), we have that
D̃H,uixH = −fixi and Bui|Gθ

′ = −fi. Thus, (7b) for ui
becomes −fi ≤ −fixi ≤ 0, which is satisfied whatever value
xi takes. Therefore, a subset sum instance returns true if and
only if the instance of (P0) constructed as above is feasible,
which completes the proof.

Lemma V.2. We prove the lemma in two steps. First, note that
c∗ = 0 corresponding to the ground-truth F is feasible for
(12). If F̂ is returned by Algorithm 1 with e ∈ Qm, there
must exist a corresponding optimal solution c to (12) with
ce ≤ η− 1 and 1T c ≤ 1T c∗ = 0. Together with the feasibility
constraints in (12), c must satisfy

[AT
D,A

T
x ,W

T ,1]T c ≤ [gTD, g
T
x , g

T
w , 0]T , (31)

where W and gw are defined such that e ∈ Qm. To prove
e /∈ Qm, we only need to show the infeasibility of (31), which
can be proved if there is no solution to (31) when W and gw
are defined for Qm = {e}, Qf = ∅. This is because a linear
system must be infeasible if there is no solution to a subset of
its inequalities. According to Gale’s theorem of alternative [32],
there is no solution to (31) if and only if there exists solutions
z ≥ 0 to (14), which completes the proof.

Theorem V.3. We first prove the condition for a failed link
e ∈ F . Based on Lemma V.2, we prove by constructing
a solution to (14) w.r.t Qf = ∅ and Qm = {e}. We
prove by directly constructing the following z for (14): (i)
z∗ = fT,0; (ii) ∀v ∈ VH , set zD,v =

∑
Ui∈Tn

IUi
(v)RUi

,
zD,−v =

∑
Ui∈Tp

IUi
(v)RUi

, where IUi
(v) is the indicator

function whose value is 1 if v ∈ Ui and 0 otherwise; (iii)
∀l ∈ EH \ F , set zx−,l = D̃T,l + z∗; (iv) ∀l ∈ F and l 6= e,
set zx+,l = |D̃T,l|− z∗; (v) zw,m,e = |D̃T,e|− z∗; (vi) the rest
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entries of z are set as 0. Note that ∀l ∈ EH \F , zx−,l ≥ 0 due
to the definition of fT,0. Furthermore, ∀l ∈ F \ {e}, zx+,l ≥ 0
since |D̃T,l| ≥ fT,0 by the assumption on T , and zw,m,e ≥ 0
for a similar reason. We will show that (14) is satisfied under
this assignment. First, note that according to the definition in
(20b), D̃T,l ≤ 0 for all l ∈ F , which implies that D̃T,l < 0
for all l ∈ ST and D̃T,l ≥ 0,∀l ∈ (EH \ F ) \ ST . Thus,
∀l ∈ F \ {e}, the left-hand-side of (14a) can be expanded
as
∑
Ui∈Tn

RUi
D̃Ui,l +

∑
Ui∈Tp

RUi
(−D̃Ui,l) + zx+,l + z∗ =

D̃T,l + |D̃T,l| − z∗ + z∗ = 0. Similarly, the row of the left-
hand-side of (14a) corresponding to e can be expanded as
D̃T,e + zw,m,e + z∗ = 0, while the rows corresponding to
l ∈ EH \ F can be expanded as D̃T,l − zx−,l + z∗ = 0.
Moreover, the left-hand-side of (14b) can be expanded as
fT,g + (η − 1)(|D̃T,e| − fT,0), which satisfies (14b) due to
(21). Note that this assignment of z is valid for any possible
Qm and Qf with e ∈ Qm. That is to say, there is always a
non-negative solution to (14) if e ∈ Qm, which implies that e
will not be missed by Algorithm 1 according to Lemma V.2.

Next, we prove the condition for an operational link
e′ ∈ EH \ F . Again, we prove by constructing a solution to
(14) w.r.t Qf = {e′} and Qm = ∅. To this end, we construct
the following assignment for z: (i) z∗ = fT,1; (ii) ∀v ∈ VH ,
set zD,v =

∑
Ui∈Tn

IUi
(v)RUi

, zD,−v =
∑
Ui∈Tp

IUi
(v)RUi

;
(iii) ∀l ∈ EH \ F and l 6= e′, set zx−,l = D̃T,l + z∗; (iv)
∀l ∈ F , set zx+,l = |D̃T,l| − z∗; (v) zw,f,e′ = D̃T,e′ + z∗;
(vi) the rest entries of z are set as 0. We will show that
z ≥ 0. For l ∈ F , zx+,l ≥ 0 due to the definition of fT,1.
Thus, ∀l ∈ EH \ (F ∪ {e′}), if l /∈ ST , then zx−,l ≥ 0
since D̃T,l ≥ 0; if l ∈ ST , then zx−,l ≥ fT,1 − fT,0 ≥ 0.
Similarly, zw,f,e′ ≥ 0. Furthermore, the left-hand-side of (14b)
can be expanded as [gTD, g

T
x , g

T
w ,0]z = fT,g − ηzw,f,e′ , where

zw,f,e′ = z∗ − |D̃T,e′ | if e′ ∈ ST and zw,f,e′ = z∗ + |D̃T,e′ |
if e′ /∈ ST . Then, it is easy to check that (14) is satisfied
under this assignment, which completes the proof according
to Lemma V.2.

Corollary V.1. We only prove the case that H contains no
generator bus since the other case can be proved similarly. We
first prove that any failed link l ∈ F will not be missed (l ∈ F̂ ).
Under Assumption 1, link l must have one endpoint (say u) such
that D̃u,l < 0. Next, we will build a hyper-node U such that
the induced subgraph is a tree rooted at node u. Specifically,
such hyper-node can be constructed by breadth-first search
(BFS) starting from node u. In the first iteration of BFS, we
start with U = {u} and add a neighbor vi of u into U if
e = (u, vi) ∈ F with D̃u,lD̃u,e < 0 or e = (u, vi) ∈ EU \ F
with D̃u,lD̃u,e > 0. Then, we repeatedly add node v into
U if ∃e = (s, v) ∈ EU ∩ F such that D̃U,lD̃U,e < 0 or
∃e = (s, v) ∈ EU \F such that D̃U,lD̃U,e > 0. This procedure
will terminate since H is acyclic, and the constructed U will
satisfy condition 1) and condition 2) of Theorem V.1. Since
all nodes u ∈ U are load buses, D̃U,l < 0, and the grid stays
connected after failure, we have fU,g = −

∑
u∈U ∆u = 0,

which satisfies condition 3) of Theorem V.1. Thus, we have
F ⊆ F̂ .

Next, we show that any operational link e ∈ EH \ F
will not be falsely detected by Algorithm 1 (e /∈ F̂ ). Under

Assumption 1, link e must have have one endpoint (say u) such
that D̃u,e > 0. The hyper-node U can be constructed as follows:
start with U = {u}, add node v into U if ∃e′ = (s, v) ∈ EU∩F
or ∃e′ = (s, v) ∈ EU \ F such that D̃U,eD̃U,e′ < 0. The
resulting hyper-node must satisfy condition 1) and condition 2)
of Theorem V.2. Again, we have fU,g = −

∑
u∈U ∆u = 0,

which leads to satisfaction of condition 3) in Theorem V.2.
Therefore, we have F̂ ⊆ F .

Corollary V.2. First, we construct a set of fail-cover hyper-
nodes T as required in Theorem V.3. Let VL,c contain all the
nodes in

⋃
Hi∈L Vi that are incident to at least one link in Ec.

Formally, VL,c := {vj}K1
j=1, where ∀vj ∈ VL,c, ∃l ∈ Ec such

that D̃vj ,l 6= 0. We construct T := {Uj}K1
j=1, where Uj = {vj},

as the set of fail-cover hyper-nodes, which automatically
satisfies condition 2) in Theorem V.3.

Next, we will show that the constructed T satisfies con-
dition 1) in Theorem V.3 with strict inequality. To this end,
consider any e = (u1, u2) ∈ ST . Suppose that u1, u2 ∈ Vi.
Recall from the proof of Theorem V.3 that D̃T,e < 0, and
hence at least one of U1 := {u1} and U2 := {u2} must be
in T (as otherwise D̃T,e = 0). If only U1 ∈ T (U2 6∈ T ),
then by (20b), D̃T,e = RU1

D̃U1,e if D̃Vi,l < 0, ∀l ∈ Ec,i,
and D̃T,e = −RU1

D̃U1,e if D̃Vi,l > 0, ∀l ∈ Ec,i. To satisfy
D̃T,e < 0, we must have D̃U1,eD̃Vi,l > 0 (∀l ∈ Ec,i), and thus
e ∈ SU1

. Therefore,

|D̃T,e| = RU1
|D̃U1,e| ≤ RU1

fU1,0 < RU1
fU1,1, (32)

where |D̃U1,e| ≤ fU1,0 is because of the definition of fU1,0

and that e ∈ SU1
, and fU1,0 < fU1,1 by condition 2) in

this corollary. If U1, U2 ∈ T , then e must be in one and
only one of SU1 and SU2 , as D̃U1,l1D̃U2,l2 > 0 for all l1 ∈
EU1 ∩Ec and l2 ∈ EU2 ∩Ec. Suppose that e ∈ SU1 . By (20b),
D̃T,e = RU1

D̃U1,e + RU2
D̃U2,e if D̃Vi,l < 0 ∀l ∈ Ec,i, and

D̃T,e = −RU1
D̃U1,e − RU2

D̃U2,e if D̃Vi,l > 0 ∀l ∈ Ec,i. If
RU1 ≤ RU2 , we will have D̃T,e ≥ 0 since D̃U1,e = −D̃U2,e,
which contradicts with e ∈ ST . Thus, RU1

> RU2
, and hence

|D̃T,e| = (RU1 −RU2) · |D̃U1,e|
≤ RU1

|D̃U1,e| < RU1
fU1,1, (33)

where the last inequality holds for the same reason as (32).
Then, it suffices to prove that maxU∈T {RUfU,1} ≤ fT,1. To

see this, note that ∀U ∈ T,RUfU,1 = maxU ′∈T fU ′,1. Thus,

fT,1 = min
l∈Ec

∑
U∈T

IEU
(l)RU |D̃U,l| ≥ min

l∈Ec

∑
U∈T

IEU
(l)RUfU,1

= min
l∈Ec

∑
U∈T

IEU
(l) max

U ′∈T
fU ′,1 ≥ max

U ′∈T
fU ′,1. (34)

Combined with (32) and (33), this leads to |D̃T,e| < fT,1 for
any e ∈ ST . Therefore, we have fT,0 < fT,1.

Finally, due to assumption 3) of this corollary, we have
fU,g = 0,∀U ∈ T , which leads to fT,g = 0. Thus, due to
fT,1 > fT,0, (21) holds for all e ∈ Ec and (22) holds for all
e′ ∈ EH \ Ec, which proves the corollary by Theorem V.3.
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