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Abstract—The transition to a low carbon transportation system
has brought many challenges for researchers, one major challenge
is how to ensure power system reliability as a result of high
load demands to supply energy to Electric Vehicles (EVs) while
coping with increasing distributed and renewable sources of energy.
Consequently, energy management strategies have become very im-
portant in the future smart grid design. An aggregator could play a
critical role when integrating management strategies between EVs
and the grid, based on emerging market opportunities and different
variables from the stakeholders involved such as EV requirements,
balancing services and profitability of the Charging Station (CS).
This paper proposes a data-driven optimisation algorithm with
pricing and control modules that communicate with each other to
achieve a successful integration with the grid by charging at the
right price and at the right time. The results show customers can
be positively engaged with pricing signals while providing support
to the power system. In conclusion, this paper can be used as
a foundation to a commercial CS that may enhance an effective
integration of EVs with the grid.

I. INTRODUCTION

Increasing penetration of renewable energy sources and a near
zero carbon transport sector are challenging the reliability and
resilience of today´s electricity network [1]. Consequently, the
system operator of Great Britain, National Grid (NG) reports
that ancillary services will play a critical role for energy
transition. Therefore, innovative technologies and new business
models are required to provide solutions considering energy
management strategies along with emerging electricity markets
[2]. A recent report of Vehicle to Grid (V2G) projects in Europe
shows it’s possible to use V2G technology to deliver value to
customers [3]. However, the collaboration between a Charging
Station (CS) provider (Enel X), V2G vehicle providers (Nissan,
Mitsubishi, PSA Groupe) and an energy aggregator (Nuvve) [4],
is the only project identified at commercialisation stage . As a
result, there are still challenges to integrate V2G users with
global energy markets.

Sortomme et al. [5] proposed an energy bidding strategy
of an energy aggregator that models Electric Vehicle (EV)
charging and discharging while providing frequency regulation
and spinning reserves services to the grid. Vagropoulos et al.
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[6] also proposed a bidding strategy with charging only. They
considered additional penalties to customers and to the energy
aggregator, in case of energy variations from the day ahead.
Likewise, van der Linden et al. [7] showed a bidding strategy
and control over bid pricing that works when the energy price
is lower than the market capacity clearing price. Chen et al. [8]
proposed an energy management system with V2G capability
and a photovoltaic (PV) CS where EVs are classified in rigid
and flexible loads to support ancillary services. These authors
didn’t provide incentives for customers to engage them in the
market. So, it is hard to tell customer willingness to participate
with energy management systems.

Demand response strategies are a promising tool for enabling
renewables [9]–[11] because price mechanisms can be used
to influence customer behaviours according to energy markets
[12], [13]. Rigas et al. [14] used price congestion signals as
promoters for allocating different energy time slots in a CS.
This balance was created under the assumption that EVs look
for cheaper prices. Yoon et al. [15] proposed a stackelberg based
model where customers respond to price signals until reaching
an equilibrium point between customer and retailer for home
charging. The availability of information of the grid can also be
used to provide accurate supply and demand curve responses
using data association mining as proposed by Zhou et al. [16].
This data can also be used to calculate demand elasticity and
price tariffs like: time of use, as modeled by Galvis and Costa
[17] and Wang et al. [18] or dynamic pricing as proposed by
Ferreira and Dortolina [19], and Hu and Li [20].

The added value in this paper relies mainly on research focus
in economical operation of a solar V2G CS which is one of the
hardest key factors to commercialisation of this technology as
discussed in [3]. Even though it is a very important research
topic, there are limited multidisciplinary publications in this
area. This paper proposes usage of microeconomic theory in
pricing schemes to manipulate energy charging of customers
in specific time periods depending on customer’s response to
price. Then, a second level optimisation is integrated to control
the charging of EVs with different technology and customer
settings. Thereby, the contributions of this paper are outlined
below:

1) New demand response pricing scheme is proposed by
using inverse demand curve and optimal pricing to adjust
demand for providing balancing services.

2) Energy bidding planning algorithm is proposed using978-1-7281-6127-3/20/$31.00 ©2020 IEEE



Fig. 1. Proposed model with activities and communication between stakeholders
involved and variable inputs for the pricing and EV charging modules.

revenues and costs of the CS which translates into a
profitable pricing and control operation in a solar CS.

3) Integral bi-level optimisation and two-way communication
system that can reinforce the behaviour of the CS is
proposed.

4) Adaptive model is studied that is compliant with sec-
ondary frequency regulation market in the United King-
dom which can be used by researchers and industrial
research and development.

II. PROPOSED ALGORITHM

The business model of the CS proposed in this paper is
applicable for big parking lots such as the ones in office
buildings or supermarkets. The revenues come from charging
of EVs and from participating in balancing grid services. The
three stakeholders involved are NG, the CS and EV customers.
Fig. 1, illustrates the main activities of each stakeholder and key
variable inputs needed for the CS operation. The CS operates
with a bi-level optimisation where the CS first computes eco-
nomical pricing schemes that are then followed by EV charging
strategies. Both computations are important for the CS and EV
drivers respectively, the pricing schemes in the pricing module
ensure a financially sustainable operation of the CS and the
EV charging module ensures customers save money as much as
possible while complying with technology and customer restric-
tions. Consequently, the CS is the price maker (monopoly case
is assumed) that considers solar generation capacity, number of
EVs in the CS, energy price to buy from the grid when necessary
and demand response to charging prices when setting pricing
schemes. The EV charging module processes the charging
strategies assuming customers will respond to price signals by
charging when energy is cheaper and as long as restrictions like
charging availability, driving requirements, charging and battery
limits are met. These two modules in the bi-level optimisation
are explained in more detail in the following paragraphs.

A. Pricing module

The pricing algorithm is obtained from two sources: an
optimum pricing and a demand response pricing, commonly
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Fig. 2. Mathematical relationship of variables in pricing module.

referred as a cost and customer based pricing respectively [21].
This module computes day ahead pricing schemes divided in
24 hour periods. A linear regression estimates responsiveness
of EV customers to price as a first step in the pricing module.
Details of the real data used for the model are discussed in
section III.

P = 54.201− 20.405 ·Q (1)

The linear regression or inverse demand curve includes price
(P ) in pounds, as the dependent variable and quantity of
customer demand (Q) in kWh, as the independent variable.
Thereby, a linear fitting model is used to estimate the coefficients
of the intercept and the coefficient of demand. The results of
the linear fitting are in equation (1).

R = P ·Q (2)
C = CG · (Q− PPV ) (3)

To calculate the optimum price that maximises utilities, the
next step is to calculate revenues (R) and costs (C). Equation
(2) represents the revenues obtained by multiplying price times
quantity. Costs of the CS in (3) are based on an approximation
of cost times quantity of energy to buy from the grid minus
the cost of PV generation which is considered to be zero.
Therefore, costs are obtained when subtracting the onsite PV
generation quantity available per each EV (PPV ) from the
quantity demanded per EV times the grid energy cost (CG).

MR = P · ∂Q
∂Q

+Q · ∂P
∂Q

(4)

MC = CG · (Q− PPV ) ·
∂

∂Q
(5)

MR−MC = 0 (6)

Revenues and costs are differentiated to obtain a marginal
revenue (MR) and marginal cost (MC). Then these are equalized
to find the optimum quantity that can produce maximum utilities
(4-6). The optimum quantity (Q*), is calculated when solving



equation (6) for Q, this specific procedure is common in
microecomomic theory (utility maximisation of the monopoly
case) [22]. This calculation will be the reference to either sum
or to subtract the corresponding bidding quantity to increase or
decrease energy in a balancing service. To illustrate the model,
Fig. 2 shows the quantity (demand of EVs) and its relation to
costs, utilities and revenues calculated from the inverse demand
curve.

R− C = 0 (7)
+Qbid ≤ Qmax −Q∗ (8)
−Qbid ≤ Q ∗ −Qmin (9)

PDR = 54.201− 20.405 · (Q ∗ ±Qbid) (10)

The next step is to calculate the expected price that will
keep the right charging quantity depending on the corresponding
contracted energy capacity with the grid. It is important to take
into account a maximum and minimum quantity (Qmax, Qmin)
to either increase or decrease energy of EVs because the price
and quantity relationship can provoke negative utilities for the
CS if not managed appropriately. Thus, these bid quantities
are calculated from (7), assuming there aren’t any utilities
obtained from buying or selling electricity to EVs, the utilities
are instead obtained from balancing services offered to the
grid. These maximum and minimum quantities limit the bid to
provide balancing services when controlling an energy increase
bid (+Qbid) in (8) and an energy decrease bid (−Qbid) in
(9). Finally the pricing values: optimum price and a demand
response price (PDR), are calculated from (1) and (10) to be
concatenated in a final price matrix. Here the optimum price is
used for the time periods where there isn’t need for balancing
services and the maximum and minimum prices are used when
balancing services are required during the day.

U = R− C (11)
PNG = ((U ∗ −Ubid)/(Q ∗ −Qbid)) · (1 + u) (12)

After getting the prices for selling (charging) and buying
energy from EV users (discharging) when applicable, it is also
important to set the prices of the balancing services to enter
in NG auctions. These NG prices should produce additional
revenues to the normal operation of the CS. Therefore, equation
(11) calculates the utilities (U ) with data from the previously
mentioned quantities and prices obtained from (6), (7), and (1),
(10) respectively. These are used in (12) to obtain an optimum
utility (U∗) and a utility when providing balancing services
(Ubid) to then calculate the price to enter NG balancing services
of increase and decrease of energy (PNG) with an expected
margin of utility (u) that is specified by the CS.

B. EV charging module

To integrate the pricing model with a robust EV charging
algorithm, the second level in our optimisation problem is
based in charging control from [5] with some omissions and
additions of constraints that include relevant variables such as
EV customer charging requirements, charging limits from the

solar CS and EV battery limits. The complete optimisation
problem is formulated below:

Minimise
Q(t)

CEV =

T∑
t=1

P (t) ·Q(t) (13)

Where,

SOC(t) = SOCI(t− 1) +Q(t) (14)
Min(t) = min(QEV , QCS , Qmax) (15)

Max(t) = max(−QEV ,−QCS , Qmin) (16)

Subject to

Trip = SOCF (t)− SOCI(t) (17)
0.01 ·B ≤ SOC(t) ≤ B (18)
Q(t) ≤Min(t) ·AV (t) (19)
Q(t) ≥Max(t) ·AV (t) (20)

Q(t) ∈ R

The objective function considers the minimisation of cus-
tomer costs (CEV ) when charging in (13). The charging rate
is the decision variable which will be expected to follow
pricing signals from the pricing module, however there aren’t
restrictions to charge when EVs are not able to follow price
signals because of time or trip restrictions. That is to say,
customers can have the option to pay more if required. The
model considers the dynamics of state of charge of the EV
(SOC) with an initial state of charge (SOCI ) and charging
rate during the available charging period in (14). The quantity to
charge an EV is restricted to a minimum (Min) and a maximum
(Max) possible charging rate when taking into account the
charging rate limit of the EV (QEV ), CS charging rate limit
(QCS) and economic rates obtained from the pricing module
(Qmax, Qmin) as formulated in (15,16). The restrictions of
the EV charging module start with the trip requirements of
individual EVs (Trip) that are calculated from the difference in
a final (SOCF ) and initial state of charge in (17). The charging
rate complies with charging rate limits defined in (15) and (16)
and are formulated in (19, 20) with an addition to EVs’ time
availability for charging during a day (AV ). The optimisation
also considers a limit in the negativity of the decision variable
Q(t) when discharging is not necessary, however it can become
negative when discharging is economically possible for the CS.

III. SIMULATION

The bi-level optimisation is solved in MATLAB, the EV
charging module uses Yalmip toolbox [23] and Gurobi [24] for
formulating and solving matters. The algorithm is tested using a
basic case scenario and different inputs of variables to perform
several sensitivity analysis and charging profile comparisons.

The pricing basic case scenario uses real world quantity and
price response data from trial 3 of Electric Nation Project kindly
provided by EA Technology [25]. Monthly values (October to
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Fig. 3. Sensitivity analysis of data-driven estimation of bids for balancing
services provided by each EV.

December) of price (pence per kWh) and demand are aggregated
to create a better estimation of an expected inverse demand
curve with a total of 40 observations, an adjusted R-squared
value of 0.815 and a p value close to zero that shows statistical
significance of the model. Fixed variables in the basic case
scenario are: 24 hours in a day, 1000 EVs in the charging station,
cost of energy (to buy from the grid) is 11.66 p/kWh, number
of PV panels in the system is 5000, data forecasting of power
capacity for each PV panel was obtained from [26] considering
an average AC output in a year divided by the number of EVs,
timings for balancing services to either decrease or increase
energy are from 10:00 to 11:00 hrs and from 14:00 to 15:00
hrs respectively. The sensitivity analysis for the pricing module
contains all variables of the basic scenario except for a variation
of number of PV panels in the system from 0 to 10000, number
of EVs in the system from 100 to 1000.

The three charging profile comparisons for the EV charging
module use a basic case scenario with specifications of the
Nissan Leaf which is compared with the Tesla model X in
Fig. 4, both specifications are obtained from [27]. The battery
capacities and charging rates for the Nissan Leaf and the Tesla
model X are 40 kWh, 6.6 kWh and 100 kWh, 16.5 kW
respectively. Both EVs had initial state of charge of 20% of the
total battery capacity and 100% time availability to charge from
8:00 to 18:00 hrs. The EV charging rate of the inverse demand
curve data was increased in quantity to allow a difference
in charging rate for the system (calculated from the pricing
module) from 2 to 20 times the original charging rate, the
minimum and maximum rate restrictions of the model were also
updated to reflect these changes in equations (15) and (16). The
charging profile comparison with non technical requirements
uses also the EV charging basic case scenario and it’s compared
with trip requirements of 27 kWh and time availability to charge
from 10:00 to 14:00 hrs. The final charging profile comparison
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Fig. 4. Analysis of data-driven demand response with two cases of EV
technology requirements (different charging rate and battery capacity).

is performed to compare EV response to price considering the
pricing module’s basic case scenario against a fixed price of 31
p/kWh.

IV. RESULTS

The proposed algorithm is analyzed in this section with
different input parameters. The testing starts with a sensitivity
analysis of the pricing module to show the adaptability of the
model and its capacity to estimate energy bids for balancing
services with different sizing of the PV system, number of EVs
in the CS and charging rate capabilities of both CS and EVs.
Moving on with the testing, the EV charging module is evaluated
against different responses of EV drivers with two different
car capabilities (charging rate and battery capacity included).
Another test compares two customers with different driving
requirements (trip and available time for charging included).
A final test is executed against having and not having the price
scheme as an incentive mechanism to influence customers to
provide balancing services.

A. Pricing module

Fig. 3 shows the quantities or capacity offers in kWh that
the CS is able to provide for balancing services: the asterisk
represents Q∗, the top and bottom lines in the error bar represent
the Qmax and Qmin respectively. The basic case scenario
outlined in the simulation section is used as a basis to increase
the number of PV panels. The graph at the top shows that an
increase in size of the CS reduces the costs which allows the
CS to increase its capability to provide a greater bid capacity
per each EV from 4.17 kWh to 5.069 kWh usable for energy
increase and from -0.660 to -0.898 usable for energy reduction.
This difference in quantity becomes significant when multiplied
by the total quantity of EVs in the system (1000 EVs) as there
is extra capacity for balancing services.

To continue with the results of Fig. 3, the graph in the middle
shows the behavior of the bid capacity when increasing the
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Fig. 5. Analysis of data-driven demand response with two cases of EV customer
requirements (different trip and available time for charging).

number of vehicles in the system. We can observe that this
case scenario contrasts with the graph at the top: the individual
bid does not increase, it actually reduces from 7.292 kWh 4.659
kWh usable for energy increase and -0.672 kWh to -0.489 kWh
usable for energy reduction. This decrease in EV individual
energy bid capacity can be attributed to an increase of costs to
supply energy to EVs as the PV system may not be able to cope
with increasing energy demand and grid energy is relatively
expensive compared to onsite generation (PV generation cost is
assumed to be zero). However, as the number of EVs increases,
the total bid capacity increases from 0.729 MWh to 4.659 MWh
and from -0.067 MWh to -0.489 MWh for energy increase and
energy decrease. Therefore, having an increasing number of EVs
in the system is beneficial for total capacity bidding.

To finalize with the testing of the pricing module, the graph
at the bottom of Fig. 3 examines the basic scenario with an
increase of potential charging rate from both the CS and EVs.
The bid capacity increases as the charging rate rises. However,
the increasing changes are not the same for for energy increase
in contrast with energy decrease. The reason for this difference
can be attributed to the price and quantity response reference
used in the model which can be preventing the negative charging
rate to keep increasing at the same rate of the positive charging
rate. In other words, with the current inverse demand curve in
the model it is too expensive to increase the negative charging
rate as it represents a high cost for the CS. In total, the capacity
for bidding is from 4.659 MWh to 83.951 MWh and from -0.489
MWh to -0.542 MWh available for balancing services.

B. EV charging module

The charging module integrates with the pricing module as it
models the demand response to price signals. Fig. 4 evaluates
the response of EVs considering the charging rate and battery
capacity of a Tesla model X against the basic case scenario of
the pricing and EV charging module. Both automobiles behave
similarly, this can be explained by the restrictions of the model
as the Qmax and Qmin are 4.659 kWh for energy increase and
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Fig. 6. Analysis of data-driven demand response with pricing scheme and
without pricing changes.

-0.489 kWh for energy decrease per EV, this is less than the
maximum rate limits of the EVs and the CS. Both automobiles
take advantage of the low prices for energy increase from 14:00
to 15:00 hrs and support the grid with V2G capability from
10:00 to 11:00 hrs as they take advantage of the high prices to
sell energy to the CS while the CS uses it to balance the grid.

Fig. 5 shows variation in the response of EVs when the
requirements for driving (Trip) and available time for charging
are affected. The graph at the top shows a flexible customer
1 with lower energy demand and more available time for
charging compared to customer 2. The response of customer
1 works pretty well as it follows price signals. Customer 2
is a relative extreme case where the demand for energy is
quite high and there is less available charging time at the
CS. Unfortunately, this prevents customer 2 from providing
V2G during energy decrease periods from 10:00 to 11:00 hrs.
Although, the charging rate during energy increase can still be
useful for the CS as this can be aggregated to increase demand
at the CS for grid balancing purposes.

To finish the testing of the EV charging module, the optimisa-
tion is evaluated with a fixed pricing as in [5] and with the price
scheme proposed. The graph at the bottom of Fig. 6 shows an
almost random charge rate at any hour during available charging
time because without proper pricing signals to customers, there
isn’t an influence to charging behavior. In this case the minimum
cost to charge the EV means charging at any time as long as trip
requirements are satisfied. The response with the pricing scheme
shows effective influence over EV charging when evaluating the
pricing and EV charging basic case scenario.

V. CONCLUSION AND FUTURE WORK

This paper presents a bi-level optimisation algorithm for
the creation of pricing schemes and EV charging control that
together control the operations of a solar CS to satisfy EV
requirements while providing balancing services to the grid.
Firstly, a pricing algorithm models the quantity of energy
consumption with price depending on a total allowed pricing



tariff to increase or decrease energy up to a specified profitable
bid allowance. Secondly, a control algorithm is presented to
optimise the charge of EVs considering energy savings for cus-
tomers and restrictions of the customer and the CS. The pricing
module demonstrated a robust structure to estimate a profitable
and demand responsive pricing scheme. The control module
effectively provided a demand response to adjust charging rate
with pricing mechanisms.

Future research directions of the model proposed in this paper
could be extensions to other pricing considerations such as
competition with other CS’, discount coupons and real time
pricing. The business model of the CS includes balancing
services to NG, balancing support could also be extended in
the distribution system operation level or could be merged
with other energy trading mechanisms. Other potential research
gaps of the model include analysis of statistically significant
results with addition of stochastic variables such as arrivals,
departures, weather forecasting, initial SOC and estimation of
updated inverse demand response curve in time. In addition, it
is possible to incorporate initial investment and operational cost
values for sizing and location for CS planning purposes. Finally,
a coordinated and real time charging control that can cope
with different charging technology and uncertainty of customer
requirements would be ideal.
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