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Abstract—Timely and accurate detection of anomalies in power
electronics is becoming increasingly critical for maintaining
complex production systems. Robust and explainable strategies
help decrease system downtime and preempt or mitigate in-
frastructure cyberattacks. This work begins by explaining the
types of uncertainty present in current datasets and machine
learning algorithm outputs. Three techniques for combating these
uncertainties are then introduced and analyzed. We further
present two anomaly detection and classification approaches,
namely the Matrix Profile algorithm and anomaly transformer,
which are applied in the context of a power electronic converter
dataset. Specifically, the Matrix Profile algorithm is shown to be
well suited as a generalizable approach for detecting real-time
anomalies in streaming time-series data. The STUMPY python
library implementation of the iterative Matrix Profile is used
for the creation of the detector. A series of custom filters is
created and added to the detector to tune its sensitivity, recall,
and detection accuracy. Our numerical results show that, with
simple parameter tuning, the detector provides high accuracy
and performance in a variety of fault scenarios.

Index Terms—Industrial Internet of Things, anomaly detection,
fault classification, cyber-physical system, visualization

I. INTRODUCTION

Recent advances in power electronics have increased renew-
able energy generation, which positively contributes to global
decarbonization goals. Converters are among the key power
electronic components that play an important role in enabling
an increase in renewable energy sources and storage units.
Photovoltaic power plants, wind farms, and electric vehicles
utilize these converters so improving them is critical to in-
creasing operational reliability. For instance, power converters
are prone to different classes of faults, including issues in
physical components, faulty operation in the electrical grid
and cyberattacks from external agents.

Anomaly detection strategies are thus required to enhance
security and reliability, and enable a widespread penetration of
converters in the grid [1]. Most of the anomaly detection meth-
ods in the literature rely on classic strategies like switching
pattern and voltage observation [2], [3] or frequency analysis
of output voltages [4]. Despite the effectiveness of these
approaches, they are quite application dependent, focused
mainly on the modulation techniques.

Improvements in computational techniques and machine
learning models are now opening the opportunity for anomaly
detection in converters, with the advantage of generalization
and no interdependence on specific parameters across the
models. In [5], a fault detection method based on deep neural
networks using a sparse auto encoder obtained promising
results. In [6], a methodology based on wavelet packet decom-
position is used to obtain energy values of the voltage signals
which are then input into a 4-layer deep belief network to
perform fault diagnosis. A long short-term memory network
to identify different fault types in high-speed train converters
is proposed in [7], with an analysis of the model sensitiv-
ity on single-sensor and multisensor signals. Some notable
contributions in categorizing between faults and cyberattacks
in power electronic systems has also been carried out, using
conventional and advanced physics-informed machine learning
methods in [8]–[10].

Scientific research based on machine learning models for
fault diagnosis in power electronics brings a lot of benefits,
mostly in terms of computational time and the ability to deal
with system parametrization [11]–[13]. However, most ap-
proaches lack “explainability”, which means that the outcomes
from the learned model are not easily interpretable by hu-
mans. Interpretability and explainability have become a recent
topic in the machine learning community, answering questions
about the model outcomes and guiding researchers on how to
improve and track their current algorithms [14]. Explainable
artificial intelligence (XAI) methods for fault diagnosis in
electric systems are proposed in [15]. XAI in power electronics
can further improve interpretation, finding links that correlate
sensor variables and how data transformation may impact fault
diagnosis.

In this paper, we propose a general framework for anomaly
detection, considering different types of uncertainty and
anomaly in cyber-physical systems [16], which allows for
testing several machine learning approaches. To illustrate the
efficacy of the proposed robust and explainable framework, we
consider a simple example of the controllability of a 2-level,
3 phase grid-tied voltage source converter (VSC). As shown
in Fig. 1, the control structure has been implemented in the
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Fig. 1: Single-line diagram of a grid-forming converter interfaced to the grid
via filters. We consider two classes of faults in this work - different sub-classes
of faults in the grid and sensors.

dq0 frame. Since this architecture involves forming the grid at
its output, we use VSG control philosophy [17] to obtain the
frequency and phase angle information. As the grid-tied VSC
operates with different active and reactive power reference
points given by idref and iqref respectively, the corresponding
data has been obtained from the control platform to train
an ensemble regression based learning model to imitate the
control response. Our numerical results illustrate the efficacy
of the proposed solution.

The remainder of the paper is divided as follows. Section
II presents an overview of explainability in machine learning.
Section III introduces different classes of anomaly detection
approaches. Section IV presents the numerical results for the
adopted power grid model. Section V concludes the paper.

II. ALGORITHM EXPLAINABILITY

Certain high-risk use cases for machine learning algorithms
demand a high level of explainability and confidence in the
algorithm outputs for decision-making. In many cases, an
algorithm makes a classification decision, but there is no clear
explanation as to why. In the field of power electronics, un-
derstanding why a data-driven controller is making a decision
is critical to incorporating it into real world power distribution
scenarios.

A. Types of Uncertainty

Determining sources of uncertainty in a model or system is
essential. In the following, we differentiate between two basic
types of uncertainty.

Epistemic uncertainty results from inadequate training data.
In this case, the training data is not sufficient to provide enough
or accurate data to the model. This can result from imbalanced
or insufficient training information. Increasing the amount of
training data or decreasing class imbalance can help reduce
this type of uncertainty.

Aleatoric uncertainty arises from probabilistic errors in
sampling that follow a specific probability distribution. This
type of uncertainty is independent of the amount of data
collected and therefore cannot be corrected with additional
training data. If a signal has noise inline with a given prob-
ability distribution, having more data on that signal does

not change the noise probability distribution. This type of
uncertainty references the distribution of random errors in the
data and not the data distribution itself.

As an example, suppose there is a continuous audio record-
ing at a train station. There are three announcements each
hour that disrupt the recording, but their occurrence in the
hour is unknown. Having more data (hours), does not change
the amount of announcements that occur. In the systems’ do-
main, a malfunctioning sensor or bad connection can generate
aleatoric uncertainty in the form of noise that cannot be fixed
by more measurements or more data.

B. Combating Model Uncertainty

With deep learning algorithms, it is important to know the
confidence level of the model output. Authors in [18] explain
that adding simple adversarial data (e.g., similar to adding
small noise to a photo) makes an image recognition algorithm
incorrectly classify an animal as a completely unrelated one.
This is further concerning since adversarial data does not need
to be tailored to a specific algorithm. The transferability of this
type of adversarial data allows its application against many
black-box algorithms to achieve an unintended or potentially
malicious result.

To solve this problem, authors in [19] propose using con-
ditional entropy to determine how each input is related to
each output. The generated plots are then compared to the
physical insights of the system. In the process, adversarial data
that falls outside the plot is identified and removed, and the
model is retrained. This technique is helpful for identifying
and removing adversarial data that falls outside the range
of accepted values. Unfortunately, it does not identify data
overloading in a specific portion of the graph, which would
create an incorrect classification.

1) Bayesian Dropout: Bayesian techniques can be used
to create a probability distribution over the weights of each
neuron to determine a level of prediction uncertainty. The
work in [20] introduces a standard Bayesian neural network
implementation with back-propagation that can determine
these probability distributions. Authors in [21] explain that
retraining a large number of models on a variety of datasets
is computationally expensive and time-consuming. A dropout
technique can instead be used to approximate the Bayesian
representation with improved computational efficiency. This
technique avoids over-fitting by randomly sampling and drop-
ping network nodes across many different training iterations.
Performing Bayesian dropout while training and testing the
algorithm enables the computation of variance to determine
the uncertainty level of the outputs. This allows researchers
to determine if an algorithm is providing a best-guess answer
with high levels of uncertainty for specific values; in turn, this
can signal the need for human intervention or review before
making decisions based on the algorithm output.

2) Shapley Additive Explanations (SHAP): Using reverse-
engineering, the output of a machine learning algorithm can
be analyzed and explained. Authors in [22] introduce SHapley
Additive exPlanations (SHAP) to interpret and explain the why



behind machine learning algorithm results. Machine learning
models usually output the likelihood of a certain prediction
given a set of inputs. SHAP explains why a model makes
a classification decision, in terms of how important each of
the input features is for a given decision. To determine this,
SHAP analyzes every possible combination of input weights
to determine how significantly each input contributes to the
overall output.

3) Rule-based Explanations: In the data mining literature,
there exists a large body of research focusing on extracting
association rules from data. Starting with the development of
algorithms for the extraction of qualitative association rules
[23], [24] of the type bread −→ milk, various algorithms
were proposed over the years for extracting mixed and quan-
titative association rules that hold over a dataset [25]–[27].

Several EU-funded projects (FIREMAN, QU4LITY,
AI4PublicPolicy) recently demonstrated that having all
the rules that apply on a given dataset available can be
very useful in explaining a third-party classifier/regressor’s
decision. Given a new data instance, together with the
decision of the classifier, a single scan over the database
of all rules that hold on the dataset can select the best-fit
rule that explains the decision; a best-fit rule is one whose
antecedent preconditions are satisfied by the new instance’s
feature values, and the rule’s consequent target value matches
optimally the decision made by the third-party classifier
(constrains the target value as tightly as possible to an
interval that contains the classifier decision value). In case of
multiple rules satisfying the tightness criterion, the rule with
the highest confidence and then support can break the ties;
alternatively, all rules optimally supporting the decision can
be presented to the user seeking explanations for the decision
of a black-box classifier.

In the context of the AI4PublicPolicy project1 research in
explainable AI, a REST web-service is developed, explaining
the decisions of a deep neural network predicting the number
of available parking slots in the Municipality of Athens. This
was performed by first extracting all rules of the form I1 ∈
[l1, h1] & . . . Ik ∈ [lk, hk] → T ≥ v as well as all rules
of the form I1 ∈ [l1, h1] & . . . Ik ∈ [lk, hk] → T ≤ v that
hold with sufficiently high minimum support and confidence
thresholds on the dataset, using the QARMA algorithm [26].
Then, when a new HTTP POST request arrives on our web-
service end point, we perform a single in-memory scan of the
rulesets above and we return the best ones.

C. Anomaly Taxonomy

The term ‘outlier’ or ‘anomaly’ can have a variety of
meanings depending on the context. In order to select appro-
priate techniques for outlier detection, it is essential to create
a taxonomy for various outlier types. Fig. 2 illustrates the
difference between the two types of outliers described below.

1) Point-wise Outliers: Point-wise outliers are single points
that are anomalous in respect to the global dataset. This can

1https://www.ai4publicpolicy.eu
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Fig. 2: Outlier taxonomy (adapted from [28]).
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Fig. 3: Context-wise outlier taxonomy (adapted from [28]).

cause many problems in machine learning algorithms, and a
large body of outlier detection research is focused around this
area. These outliers can be non-temporal or temporal in nature
and often represent phenomena, such as intermittent sensor
failure [29]. Additionally, such outliers may skew scaling
and normalization operations. It is important to consider the
presence of point-wise outliers when selecting which type of
scaler to use. Minimum-maximum scaling is a popular choice
for scaling a dataset, but it is not robust to outliers.

2) Context-wise Outliers: They represent a series of points
that are anomalous and can be described based on their
reference frame as local and global. Local contextual outliers
are anomalous in respect to a specific sub-set or window of
the dataset. Global contextual outliers are similar to local
contextual outliers, however the window size is the global
dataset. Singular points within the global contextual outlier
sub-set are usually not anomalous, but the entire pattern is.

In general, these two outlier types are treated as pattern-wise
contextual outliers with differing window sizes. These outliers
often occur in time-series data because of the interdependence
of samples and sampling time. Fig. 2b shows that points in a
context-wise outlier represent a phenomenon that is anomalous
with respect to a reference frame. Identifying the anomaly
accurately requires selecting the size of the reference frame
carefully. This study sheds light on the detection challenges
introduced by context-wise outliers.

D. Context-wise Outlier Sub-Categories

The context-wise outlier subset of anomalies represents var-
ious anomalous sub-sequences of the data in a given context.
Since context-wise outliers are the focus of this study, it is
possible to further classify this outlier type into three sub-
categories, as illustrated in Fig. 3 and summarized as follows.

1) Shaplet: Shaplet outliers are classified by a shaplet or
pattern that significantly differs from the normal data pattern.
This outlier type classifies abrupt faults in a system and
constitutes an important outlier type for this study.



2) Seasonal: Seasonal outliers are classified by an in-
creased or decrease pattern frequency during a specific time
period. Identifying seasonal outliers is important in under-
standing specific phenomena, e.g., a spike in web traffic related
to a major holiday. Another example is an increased demand
in residential electrical demand because of a large televised
sporting event.

3) Trend: Trend outliers are classified by a sub-sequence
of the dataset that modifies the underlying distribution of the
data. Trend outliers are present in certain faults in the Power
Electronic Converter (PEC) dataset under study.

III. DETECTION APPROACHES

A. Matrix Profile

The Matrix Profile algorithm computes the distances be-
tween neighboring points in a dataset. It exhibits a variety of
advantages, including speed and generalizability to a variety
of problem domains. Authors in [30] explain that in the
algorithm, the results for each point or sub-sequence are stored
in a vector and the combination of all the sub-sequences
forms the overall matrix. The conventional algorithm utilizes
the Euclidean method to determine point-wise distance; other
distance calculations can also be utilized. Z-normalization
technique is traditionally used to scale the data; however,
normalization can be modified or omitted depending on the
specific dataset requirements.

Using a fixed (m) sized window, the algorithm computes
the nearest-neighbor distances compared to the entire data
stream. To select an appropriate window size (m), it is
important to consider the granularity of the studied anomalies.
A large windows size would detect and identify significant
disturbances, like sensor failure, whereas a small window size
would identify more localized disturbances, like a voltage sag,
in a signal.

The results of the computation of the nearest-neighbor
distances and the index of the closest neighbors are stored in
order of closeness in a new index. In particular, the algorithm
steps are outlined as follows [31]:

1) For each point in the window (m), compute the distance
to the nearest neighbor against the entire data set.

2) Exclude identical or nearly identical matches to prevent
inaccuracy.

3) Update the distance matrix with the new closest neighbor
distance.

4) Set the position matrix with the index position of the
new closest neighbor.

Using the Matrix Profile technique, it is easy to extract
information, like motifs or repeated patterns, from the dataset.
More importantly, discords which represent anomalies can be
discovered from a data stream.

B. Deep Learning

Recent emergence of transformer deep learning methods
based on attention [32] reveal promising results not only
in the field of natural language processing [33], but also
in the processing of the tabular [34] and time-series [35]
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Fig. 4: PEC dataset fault visualization.

data. Transformers were shown to be able to outperform
the Gradient Boosting Decision Tree (GBDT) methods and
ResNet-like architectures [36], [37]. In this work, we focus
on providing complementary results to the Matrix Profile
algorithm, by applying transformers for unsupervised anomaly
detection [38]. An anomaly-attention mechanism is used to
compute the association discrepancy to distinguish between
normal and abnormal (anomalous) data points. Adjusted im-
plementation code of the authors2 and related datasets can be
found on the FIREMAN project GitHub pages3.

IV. APPLICATIONS IN POWER ELECTRONICS

Transitioning from conventional power systems to power
electronics-dominated grids (PEDG) has increased demand
for grid-forming converters (GFM) to facilitate operational
reliability. GFMs have made significant progress in recent
years to expedite stability under different grid conditions, but
their operation during faults or large signal disturbances still
remains a challenge. Authors in [39] note that GFMs handle a
significantly smaller percentage of over-current (usually only
20%) compared to synchronous generators (SGs) which can
handle seven times their nominal current. This makes fault de-
tection for GFMs critical to maintain synchronization with the
grid. Since the network infrastructure of power systems keeps
expanding, it is important to identify these faults accurately
under varying grid parameter uncertainties.

This study examines four faults in the PEC dataset: line-to-
line (LL) fault, three-phase sensor fault, single-phase voltage
sag and three-phase grid fault. It is worth noting that the
location of these faults can be determined from Fig. 1.
The frequency [fc] of the system throughout various fault
conditions is used for detection. Each fault has significantly

2https://github.com/5uperpalo/Anomaly-Transformer FIREMAN
3https://github.com/5uperpalo/FIREMAN-project/

https://github.com/5uperpalo/Anomaly-Transformer_FIREMAN
https://github.com/5uperpalo/FIREMAN-project/
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Fig. 5: PEC dataset fault detection using Matrix Profile algorithm.
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Fig. 6: PEC ground truth comparison [Normal: green, Anomaly: red].

different characteristics and magnitude. The faults explained
in this section are illustrated in Fig. 4.

A. Matrix Profile

Fig. 5 depicts a zoomed in window of the matrix profile
values during each fault type examined in this experiment. A
description of the characteristics of these fault types can be
found in Section II. The detector is shown to behave robustly
and accurately for all fault types presented. Fig. 6 shows
that the detector was able to accurately determine the start
and end of each anomaly (i.e., 100% detection rate) with no
false positives (i.e., 0% error rate). It is noted that detecting
the ending of an anomaly sometimes takes more time than
detecting the start.

By nature, anomalies are rare, therefore interpreting the
detection and false positive rates in a traditional way is not
advisable. In our case, the detector was able to successfully
detect all four faults with zero false positives in the PEC
dataset. For the power grid use cases, it is important to
detect anomalies quickly so that remedial action can be taken
promptly. Interestingly, the detector performed well when cop-
ing with anomalies of dramatically different characteristics and
magnitude. Each anomaly in the dataset is shaped differently,

and the algorithm accurately detected the start and end of each
one. This demonstrates the robustness and scalable features of
the algorithm, which was also designed to run in real-time and
was simulated as such. Each datapoint arrived in a simulated
time series, and the algorithm was not aware of subsequent
datapoints. It utilizes a sliding window technique; therefore it
fits in a fixed memory window. Additionally, the computations
are efficient and scale well with the window size; this offers
strong potential in a real-time monitoring context.

B. Anomaly-Transformer

In Table I, we provide the detection performance summary
per fault type using the anomaly-transformer in the PEC
dataset. For model evaluation, we used full datasets per fault
consisting of 13 features, including the frequency [fc] used by
the Matrix Profile algorithm. Training and testing parameter
values are included in the provided GitHub repositories. From
the results, we can observe that in the default configuration,
the model was able to identify all anomalies. We also note
that additional tuning is needed to decrease the number of
false positives in the case of three-phase grid fault. The Matrix
Profile is shown to outperform the model in our use case, but
further testing with multi-feature anomalies and faults would
be needed to confirm this observation.

Fault Accuracy Precision Recall F-score
LL fault 0.990 0.860 1.000 0.925
Single-phase voltage sag 0.998 0.998 1.000 0.999
Three-phase grid fault 0.985 0.630 1.000 0.773
Three-phase sensor fault 0.997 0.996 1.000 0.998

TABLE I: Anomaly-transformer per fault performance report.

V. CONCLUSIONS

Real-time detection and classification has significant impli-
cations in grid cyber-security and reliability. Attacks against
the power grid are becoming more sophisticated, and it is
essential to discern whether the system is under attack or
experiencing a fault condition. Furthermore, it is important
to know whether a fault is occurring so that automated
or manual corrective actions can be performed, to protect
system components and ensure maximum system reliability
and uptime. In this paper, we have presented different methods
for anomaly detection while proposing an effective approach to
identify faults in the operation of power electronic converters
in PEDGs.

As future work, we plan to extend the proposed approach to
a real-time dynamic detector. There is currently a MATLAB
power grid control and monitoring interface for a real system,
and in order to integrate with it, a module for MATLAB must
be created. This would involve creating an implementation
of the Matrix Profile algorithm in MATLAB, and utilizing it
in tandem with the control system. With this setup, it would
be possible to test the real-time detection capabilities of the
algorithm. Once implemented, it would be possible to couple it
with a classification algorithm to attempt to determine the type
of fault. If a fault was determined, the appropriate corrective
actions could be performed depending on the classification.
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