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Abstract—Mobile apps have become an integral part of our
daily lives in that they can be used for accessing a variety of
services everywhere, being smart IoT one of the most important
domain. However, despite the many benefits that the use of mobile
apps provide, there are also risks related to the usage of personal
information. Understanding the privacy implications of installing
an app could be very difficult, especially for non skilled users. To
cope with this issue, in this paper, we provide a risk estimation
approach based on apps’ static analysis. The output of the static
analysis is then used to determine how much the personal data
usage pattern of an app diverges from that of apps with the same
purpose and this is in turn used to determine the app privacy risk.
To prove that the proposed risk estimation measure is effective,
we run several experiments with the involvement of different
groups of participants, obtaining an accuracy varying from 79%
to 82%.

Index Terms—Mobile apps, Privacy risk assessment, static
analysis.

I. INTRODUCTION

Our daily activities heavily rely on apps running, and,
as a result, we have an app that can support us in almost
every task. Internet of Things (IoT) is one of the most fast
growing domain for mobile apps development, since apps are
heavily used for the remote control of smart gadgets, like
wearables (e.g., wristwatches, eyeglasses), medical devices,
sensors, infrared foot-traffic counters, to mention a few. The
result is that users have on average from 20 to 60 apps installed
on their mobile devices.1

Although this trend has enormous advantages in that users
can benefit from different services almost everywhere, the
downside is that apps gather a massive amount of information
about individuals (e.g., users’ profile and habits) and their
devices (e.g., locations) that may leak personal information.
However, not all this information is indeed strictly needed for
the app execution. Privacy regulations, such as the European
GDPR,2 have been designed with the aim to limit the request
of unnecessary information. At this purpose, GDPR introduces
the data minimization principle, which requires to collect and
retain only that personal data which is necessary for the app’s
purposes. Although these efforts have produced the effects of
reducing the set of required permissions to some extent, still
users are largely unaware of the privacy implications of some
permissions they grant to apps.

1https://www.simform.com/the-state-of-mobile-app-usage/,
https://www.statista.com/statistics/267309/number-of-apps-on-mobile-phones/

2https://eur-lex.europa.eu/eli/reg/2016/679/oj

To cope with the privacy risk of installing apps, individuals
have to be able to determine which data an app is collecting.
Ideally, they could read and analyze the app’s privacy policy,
where one expects to read which data the app collects, for
which usage, and how such data are handled at the provider
side. Individuals could also carefully check the list of per-
missions they grant when installing the app. However, these
tasks might be too tricky for average users. For this reason,
several research groups have recently started to investigate
tools supporting users in taking more privacy-aware decisions
on app usage. Some approaches propose to determine the
risk only based on the app’s requested permissions and the
app’s description (see Section VI for more details). However,
these solutions are not robust against malicious apps able to
circumvent the permission system and gain access to protected
data by applying side channels [1].

To overcome this problem, this paper proposes to rely
on the static analysis of the app’s code to provide a more
robust risk estimation. For this purpose, we reviewed the
Google-supported APIs to determine the functions/constants
used to collect personal information. We have identified 66
APIs and more than 13K functions/constants. Then, given
a target app, we parsed its code searching for the usage of
these functions/constants. This determines the app’s behavior
in terms of data collection. Risk estimation is then based on
how the identified behavior is different from the “regular” one,
that is, the functions/constants usage of the majority of apps. In
particular, acknowledging that apps behave differently based
on their business goals, we build a different regular behavior
for each distinct app category.

Other approaches have been proposed to identify risky apps
via static analysis, that we review in Section VI. With respect
to these approaches, our proposal is different in two main
aspects. The first is that we consider API usage at a fine-
grain level, by targeting functions/constants to model the app
behavior. The second is that existing approaches just label an
app as risky or not. This binary estimation might not be so
practical in supporting users in their decisions. In contrast,
we estimate the risk as a measure of the deviation of the
target app’s behavior from the one built on the corresponding
category. To prove that the proposed risk estimation measure
is effective, we run several experiments with the involvement
of different groups of participants (i.e., experts and crowd
workers). The obtained accuracy varies from about 79% with
the crowd workers group to 82% with the experts group.



The remainder of this paper is organized as follows. Section
II provides the definitions of the behavior of an app and
of an app’s category. Section III presents our risk measure,
whereas details on static analysis are provided in Section IV.
Experimental results are presented in Section V. Related work
are discussed in Section VI. Finally, Section VII concludes the
paper.

II. APPS BEHAVIOR IN PERSONAL DATA USAGE

To build the behavior of an app, we focus on how it requests
personal data and how the pattern of its requests (called app
signature in what follows) is different from the “regular”
one. To determine the “regular behavior”, we analyze which
personal data the majority of the apps with the same business
goal (e.g., social network, shopping, sports, etc.) requires. We
then estimate to what extent the target app signature diverges
from the usual access pattern of the corresponding group of
similar apps (denoted in what follows as category signature).

To determine an app signature, we analyze the app’s source
code to detect API functions or constants that exploit personal
data. Instead of dynamic code analysis, we use a static analysis
approach, since it is easier to be deployed on a large number
of apps (cfr. Section IV). Static analysis is fine-grain in that
we consider functions/constants usage for each API, rather
than only classes and APIs usage. In this way, we are able to
precisely determine which personal data an app collects.

A. App signature

To determine which personal data an app a collects, we rely
on static analysis of its source code. In parsing the source code,
we are interested only in those instructions used to collect
personal data. As such, we have conducted a review of Google-
supported APIs for determining the functions/constants used
to collect personal information. In particular, we target seven
types of personal data, namely: user location (e.g., city,
country), public places (i.e., public places where users have
been); media (e.g., users’ image, video, audio); connection
(e.g., wifi name, used to infer user location in case of public
wifi, activity on Bluetooth, NFC); hardware (e.g., camera, USB
devices); telephony (e.g., contacts info, phone number); user
profile (e.g., birthday, gender, name); and health and fitness
(e.g., heart rate, step counts, body fat). For each of these
seven data types, we identified all APIs that have at least a
function/constant collecting personal data of that type.

In total, we identified 66 APIs. The results of the analysis is
reported in Table I, where, for each data type, we present only
some of the corresponding collected data, and the number of
analyzed APIs, classes and functions/constants.

Given an app a, we model its behavior with respect to
the collection of data of a given type dt as a vector V dt

a ,
containing an element for each distinct function/constant able
to retrieve a data of dt type. V dt

a ’s elements have value 1, if the
corresponding function/constant is present in a’s source code;
0, otherwise. As such, the behavior of an app w.r.t personal
data usage is represented as a set Sa of seven vectors, one for
each data type dt, to which we refer to as app signature.

Example 1. The first five rows of Table II show the signatures
of five different apps. For the sake of simplicity, each row
presents only a portion of the vector associated with the
location data type, i.e., V location. In particular, we focus on
five functions related to: address, city, country, postal code,
and last location.

B. Category signature

To estimate the risk of an app, we compare it against
what is expected to be its typical behavior w.r.t personal data
usage. Acknowledging that apps behave differently based on
their business goals, we generate a different behavior for each
distinct category available in app stores. In this paper, we
exploited the categories available at Google Play store.

To build this behavior, for each of the considered category,
we analyzed a set of apps belonging to the same category,
say Cat. As it will be described in Section IV, this set,
referred to as training dataset, is generated by selecting apps
from the top 10% of the most-downloaded apps in a given
category. We run the static analysis on the training dataset
to generate a set of app signatures, one for each app in the
training dataset. Then, we extract from this set some common
patterns, representing the typical behavior for Cat, denoted in
what follows as category signature. More precisely, given a
category Cat the corresponding signature SCat consists of 7
vectors, one for each data type dt, denoted in what follows as
V dt
Cat. V

dt
Cat is generated by considering all V dt

a ∈ Sa, for each
app a of the training dataset. Elements of V dt

Cat are set to 1,
if at least 50% of the values of the corresponding elements in
V dt
a computed on all apps in the training dataset are set to 1,

they are set to 0, otherwise.
For instance, the last row in Table II presents the signature

of the Sport category, built assuming as training dataset only
the 5 apps whose signatures are listed in the first five rows of
the table.

III. RISK ESTIMATION

To estimate the risk of a target app a belonging to a category
Cat, we compare its signature Sa, with Cat’s signature SCat.
According to our approach, the lower is the deviation of Sa

from SCat, the lower is the risk that a collects not-necessary
personal data. As such, we need a distance function DF able
to compare the two signatures Sa and SCat. More precisely,
for each dt in the 7 considered data types, we first evaluate
separately DF on a’s vector V dt

a ∈ Sa and the corresponding
vector V dt

Cat ∈ SCat. The final risk estimation is then given by
averaging the obtained 7 distance values.

In the following, we first present the distance function DF
for a single data type.

A. Distance function for a single data type

Given a data type dt and a target app a, a naive way to
measure the distance between V dt

a and V dt
Cat is to compute the

Hamming distance among the two vectors. This would help
to determine the mismatch between the signature of the target
app a and the corresponding category signature. However, this



Table I
EXAMPLES OF COLLECTED DATA FOR EACH DATA TYPE, THE NUMBER OF ANALYZED APIS, CLASSES, AND FUNCTIONS/CONSTANTS

Data type Collected data APIs Classes Functions/Constants
Location Longitude, latitude, address, public places 6 92 1189
Media Image, media metadata, audio, video 24 588 5362
Connection IP address, wifi, bluetooth, http, nfc 13 329 3215
Hardware Device name, camera, mobile sensors 8 84 1146
Telephony Send/receive SMS, contact, phone number 8 127 1637
User profile Birthday, gender, name, organization 2 58 354
Health&fitness Fitness activities, height, weight, body fat 5 82 632

Table II
EXAMPLES OF A PORTION OF THE SIGNATURES OF FIVE APPS IN THE SPORT CATEGORY AND RELATED CATEGORY SIGNATURE

getAddress() getCity() getCountry() getPostalCode() getLastLocation()
App 1 signature 1 1 1 1 0
App 2 signature 1 0 1 1 0
App 3 signature 1 0 1 1 1
App 4 signature 1 0 1 1 0
App 5 signature 1 0 1 1 0

Sports category signature 1 0 1 1 0

is not enough for our scenario, since we have to consider that
not all the deviations from the regular behavior have the same
importance, as the following example clarifies.

Example 2. Let us consider the signature of the first and
third app in Table II (i.e., first and third row of the table).
They both have only one element different from the corre-
sponding category signature represented in the last row, that
is: getCity() and getLastLocation(). As such, the
two apps have the same Hamming distance. However, we can
notice that, in the first app, the anomaly is due to a data
item (i.e., city name) which is similar to another information
considered normal for the sports category (i.e., postal code). In
contrast, the third app collects a data item (i.e., last location)
which is not similar to any of the other information considered
normal for the sports category, according to the category
signature. Therefore, the third app must be considered more
risky than the first one.

In order to understand the relevance of a deviation, we
need to be able to catch the semantic similarity between
different data items collected by apps. At this purpose, for
each considered data type, we build a taxonomy exploiting the
hierarchy of APIs related to that data type. In the taxonomy,
the root node denotes the data type (e.g., location), whereas
first-level nodes represent the APIs considered for that data
type, whereas second-level nodes model the classes belonging
to each API in the first-level. Finally, leaves indicate the
functions/constants belonging to the class represented by the
parent node, that is, the personal data items collected by that
function/constant. Each element in V dt

a and V dt
Cat correspond

to a leaf of the corresponding dt taxonomy.

Example 3. Figure 1 shows a portion of the taxonomy built for
the location data type, where the root node is called location
info, first-level nodes represent the considered APIs (e.g.,
location.places API), second-level nodes model the
classes belonging to those APIs (e.g., Place, Location

classes), whereas leaves represent the functions/constants that
allow the collection of location data (e.g., getName()).

Given a data type dt and a target app a beloging to category
Cat, the proposed distance function DF takes as input vectors
V dt
a and V dt

Cat and compares each pair of corresponding ele-
ments, that is, V dt

a [i] and V dt
Cat[i]. In particular, DF associates

a risk value to all possible combinations of values of V dt
a [i]

and V dt
Cat[i]. Hereafter, we analyze the four possible cases

by discussing the risk value we propose for each of them.
We recall that V dt

a [i] = 1 means that the target app collects
a data item of type dt by exploiting the function/constant
corresponding to the i-th position in the vector. Similarly,
V dt
Cat[i] = 1 implies that the majority of the apps in Cat in the

training dataset collect the same data item.
V dt
a [i] = 1 and V dt

Cat[i] = 1. This implies that both the target
app a and the majority of the apps in the same category
belonging to the training dataset exploit the function/constant
corresponding to the vector’s i-th position. There is no devia-
tion of the target app a from the category behavior, as such,
the distance function DF associates a 0 risk value.
V dt
a [i] = 0 and V dt

Cat[i] = 0. Similarly to the previous case,
there is no deviation of a’s behavior w.r.t. the one of the apps
in the same category. Therefore, the risk is set to 0.
V dt
a [i] = 0 and V dt

Cat[i] = 1. This represents the case where the
majority of apps in the same category of a collect a data item
that the app a does not request. Even if this is a deviation of
a from the category behavior, we do not consider this as risky
since, in terms of personal data collection, a does not collect
a data item that similar apps collect. Therefore, function DF
assigns a 0 risk value for this case.
V dt
a [i] = 1 and V dt

Cat[i] = 0. In this case, a requests a data item
that is not normally required by similar apps. As such, a non-
zero risk value has to be assigned for this case. However, as
Example 2 highlights, not all deviations are equally relevant.
To understand the importance of the mismatch, we first search
among the data items that are usually required by the apps



Figure 1. A portion of the location taxonomy

in the considered category (i.e., those elements in V dt
Cat with

values 1) the item that, based on dt taxonomy, is more similar
to V dt

a [i]. Hereafter, we refer to this item as the closest
collected data item of V dt

a [i], denoted as ccd(V dt
a [i]). The risk

value is then estimated based on the similarity between V dt
a [i]

and ccd(V dt
a [i]). More similar are the two data items less risky

is the collection of V dt
a [i] by a. This is the case, for instance, of

data items getCity(), getLastLocation() (Exp. 2).
Therefore, in order to estimate the risk value of a target

app, we need to introduce: a function ccd() that, given a data
item, returns its closest collected data item; and a similarity
function sim(), to estimate the distance between the two on
a taxonomy. The two functions are presented in what follows.

Given V dt
a [i], to find its closest collected data item we

exploit the dt taxonomy, where V dt
a [i] represents a leaf node.

The purpose of ccd() is to traverse the taxonomy to find an
element that in V dt

Cat is set to 1 and is the closest element
for V dt

a [i]. In particular, starting from the leaf corresponding
to V dt

a [i], ccd() traverses the taxonomy up to V dt
a [i]’s father

node f , and searches among the leaves in the subtree rooted
at f an item whose corresponding value in V dt

Cat is set to 1.3

If the search fails, ccd() goes up to f ’s father to search among
leaves in the subtree rooted at it. This is repeated till finding
a data item in V dt

Cat with value 1 or reaching the root. In this
latter case, ccd(V dt

a ) is set to the root element.

Figure 2. A sample of the location data type taxonomy

Example 4. Figure 2 describes a portion of the taxonomy

3If more than one leaf has value 1, ccd() returns the first one. Indeed,
according to the adopted similarity measure, leaves in the same subtree have
the same distance w.r.t. a target node.

for the location data type. For the sake of simplicity, labels
of second-level nodes and leaves have been replaced by a
single letter. Let us first consider an app app1 with signature
{1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1}. Let us assume that the signa-
ture associated with app1’s category is {0, 1, 0, 1, 0, 1, 0, 0, 0,
1, 0, 0}. For simplicity, in Figure 2, we reported the category
signature values on the corresponding leaves of the taxonomy
tree. Let us consider the 1-st element in app1’s signature (i.e.,
V location
app1

[1]=1) corresponding to node G in the taxonomy.
According to Figure 2, the corresponding element in the
category signature is equal to 0. This implies to search G’s
closest collected data item. At first, we look among leaves in
the subtree rooted at G’s father node (i.e., A), that is, H. Since
H’s value is 1, ccd(V location

app1
[1]) is H.

In contrast, sim() computes the semantic similarity between
two nodes (i.e., V dt

a [i] and ccd(V dt
a [i])). At this purpose

we exploit dt taxonomy, having V dt
a [i] and ccd(V dt

a [i]) be
two leaves of it (or a leaf and the root). Literature offers
several methods to measure the similarity among terms of
a taxonomy [2]. Among them, we select the Wu&Palmer
similarity measure [3]. This measure takes into account the
leaves’ lowest common ancestor node, which, in our taxonomy
is a class or API, as such the distance takes into account
whether the two functions/constants belong or not to the same
class/API. More precisely, given two leaf nodes n1 and n2 in
a taxonomy, Wu&Palmer similarity is defined as follows:

WP (n1, n2) =
2 ∗ depth(lca)

dist(n1) + dist(n2) + 2 ∗ depth(lca)
(1)

where lca is the lowest common ancestor between n1 and n2,
depth (lca) is the length of the path from lca to the root of
the tree, whereas dist(n1) (i.e., dist(n2)) is the length of the
path from n1 to lca (i.e., n2 to lca).

Example 5. Considering again Example 4, the Wu&Palmer



similarity between nodes G and H is:

WP (G,H) =
2× depth (A)

dist (G) + dist (H) + 2× depth (A)

=
2× 2

1 + 1 + 2× 2
=

4

6
= 0.667

app1 signature has also elements V location
app1

[8] = 1 and
V location
app1

[12] = 0 having values different from those of the
category signature (see elements P and S in Figure 2). For
both of them, the closest collected item is Q. Therefore,
WP (P,Q)= 0.667, and WP (S,Q)=0.333.

B. Risk estimation for a target app

To compute the risk of a target app, we first compute the risk
for each single data type dt considered in the app signature.
We then combine the computed risk values to obtain the app
risk level.

Definition 1. Risk based on a single dt. Let a be a target
app and Cat be its category. Let dt be one of the considered
data types, and let V dt

a ∈ Sa and V dt
Cat ∈ SCat be the vectors

corresponding to dt in a’s signature Sa and in Cat’s signature
SCat, respectively. The risk of app a w.r.t. data type dt is
estimated as follows:

DFdt(a) =

∑
i∈V dt

a
df(V dt

a [i], V dt
Cat[i])

|V dt
a |

(2)

where df(V dt
a [i], V dt

Cat[i]) is computed as follows:

{
1−WP (V dt

a [i], ccd(V dt
a [i])) ifV dt

a [i] = 1, V dt
Cat[i] = 0;

0 otherwise.

Example 6. Let us consider again app1, assuming for the
location data type the taxonomy in Figure 2. The signatures
of app1 and of its category are reported in Table II. The risk
of app1 w.r.t Location is as follows:

DFLocation(app1) =
WP (G,H) +WP (P,Q) +WP (S,Q)

12

=
0.667 + 0.667 + 0.333

12
= 0.1389

Once the risk values for each of the considered seven data
types have been computed, we compute the final risk value of
an app.

Definition 2. Risk of an app. Let a be a target app, and Cat
be its category. The risk of a is defined as:

Risk(a) =

∑
∀dtDF

dt(a)

7
(3)

IV. IMPLEMENTATION AND DATASETS

Given an app a, we first retrieve the app’s Java code by
decompiling its Android apk files. We exploit the apktool
tool to obtain the dex files, and then the dex2jar tool
to obtain a conventional jar file.4 This permits retrieving

4http://ibotpeaches.github.io/Apktool/ http://github.com/pxb1988/dex2jar

Table III
TRAINING AND TARGET SET

Category Training set Target set
1 Food and drink 437 49
2 Health and fitness 2558 285
3 Map and navigation 622 70
4 Music and audio 563 63
5 Social networks 162 18
6 Beauty 547 61
7 Business 1039 116
8 Shopping 1071 119
9 Entertainment 1588 177

10 Finance 385 43
11 Medical 1521 170
12 Tools 1683 188
13 Sport 2002 203
14 Travel 989 110
15 Education 1434 160

the app’s class files. Finally, we obtain the Java code
corresponding to each app by using the jadx tool.5 Then, we
parse the obtained Java code to detect the invoked/declared
APIs, classes, functions, and constants, based on the keyword
import and their activity scope specified in "{" . . . "}".

The amount of functions/constants to be analyzed is very
high (i.e., 17,117). To have a more efficient analysis, we
focused only on functions/constants related to the seven se-
lected personal data types (cfr. Table I). This results in 13,535
functions/constants used in the static analysis to generate the
apps’ signature.

To run the experiments, we create two datasets: the training
set (TrainingSet), used to build the category signatures,
and the set of target apps (TargetSet), used to evaluate the
proposed approach. To generate both of them, in November
2019, we downloaded some apps from the first 10% of the
list of the most-downloaded apps for each of the considered
categories,6 in particular, those whose APK files were available
in the app market.7 This resulted in 21,784 apps,on which we
run the static analysis. Among them, 18,098 were successfully
decompiled (83.08%).8 The whole reverse process required
about 519.54 hours, i.e., approximately 85.86 seconds per app.

The resulting apps were then randomly divided into two
disjoint datasets, namely training set (90%) and target set
(10%). Table III shows, for each category, the number of apps
in the training set and in the target set, respectively.

V. EXPERIMENTAL EVALUATION

The purpose of our evaluation is to validate the proposed
risk measure against risk users’ perspective. Therefore, we
acquire user feedback to check if users consider risky those
apps collecting not appropriate data (out of scope wrt app
category). We developed a web application to show to each
participant a predefined set of apps. At first, participants are

5https://github.com/skylot/jadx
6https://www.appbrain.com/stats/google-play-rankings/
7APK files have been downloaded at https://apkpure.com/
8Manual inspection revealed that failures are due to code obfuscation.



asked to read information about these apps (i.e., description,
category name) that we consider useful to judge the risk level.
Before asking to associate a risk level with a target app, we
ask participants to rate whether they feel necessary or not
that the target app collects a given data item. This is done
for each single data item (e.g, address, image, audio, video)
required by the app. Participants can express this with a label,
ranging from Very unnecessary to Very necessary.
This step ensures that each participant carefully considers
which data items are indeed collected by the target app, and
thus makes a more conscious judgment of the app’s risk
level. Moreover, the collected information is used to verify the
quality of participant feedback, in that we manually inspected
all feedback to check consistency between associated risk level
and collected labels to remove possible random answers.

In the last step, participants are asked to select a risk
level for the target apps (by selecting a value from a five-
point Likert scale. Very low - Very high)9 As a further
quality check, we have asked each participant to write a short
motivation for the selected risk level. The time for each survey
is about 40 minutes.

A. Participants

We use two groups of participants to better understand
the performance of our approach and how they are impacted
by user characteristics. The first group has been selected to
test our risk measure with expert users. At this purpose, we
collected the feedback of 64 experts, all of them working in the
Computer Science field. These experts work in both academic
(45 users) and industrial institutions (19 users) in different
countries (e.g., USA, Italy, Switzerland, Germany, Sweden,
France, Cyrus, Greece, Vietnam, Morocco, and Singapore).
Participants have an average age of 28.9 (from 24 to 37).
Among the 45 participants working in academic institutions,
14 are lecturers/professors, whereas the others are Ph.D stu-
dents and post-docs. For the participants working in industry,
they are junior and senior developers.

The second group of participants has been selected to ensure
the involvement of a good number of participants of different
nationalities, ages, and educational levels. At this purpose,
we exploit the Microworkers crowdsourcing platform10 for the
enrollment of participants (called workers). We select only the
workers with the best rating in Microworkers platform.

We received 131 participants’ feedback; however, we used
only 101 of them, since 30 workers’ contributions do not pass
our quality checks (i.e., the worker used answer automation
tools). The participants came from different countries (e.g.,
UK, Italy, India, Spain, Portugal, USA), with an average age
of 29.4, being the oldest worker 52, and the youngest 18.
They have different educational levels (e.g., student, bachelor)
and background (e.g., accountant, teacher, manager). 60% of
the participants were reported to have a bachelor degree or

9We used a five-point Likert scale, since it is a good trade-off between
required users’ effort and response quality [4].

10https://www.microworkers.com/

equivalent, whereas 6% of them had a master degree or a Ph.D.
Workers were compensated $4.5 for each successful feedback.

B. Metrics

Since we consider 5 risk levels (i.e., Very Low, Low,
Neutral, High and Very High), we exploit a 5X5 con-
fusion matrix to measure the effectiveness of our measure (see
Table IV). The columns describe the risk levels estimated by
our approach, the rows represent possible actual level given
by the experiment participants. Finally, the cells denote error
value (E) or true positive (TP). From the confusion matrix, we
define the evaluation metrics given in Table V.

C. Experimental settings

We run a set of preliminary experiments to determine to
what extent the information we provide to users to judge the
risk of an app impacts the user final decision. We conduct
three experiments, by varying the provided information, and
we analyze its impact on the selected app risk level. In all the
experiments, we use a fixed set of apps (10 apps), randomly
selected from the Targetset.

In exp0, for each target app, each participant is informed
only on the requested personal data. In contrast, in exp1, we
provide to each participant the information provided in exp0 as
well as the category to which the target app belongs to. Finally,
in exp2, we provide all the information provided in exp1, plus
the description of the target app as well as its features.11

The number of participants is the same for all the settings,
that is, 15 Microworkers and 15 experts. We start from exp0
and then we go on with exp1 and exp2 to see whether having
more information about the target app influences the user
feedback. To limit the case that workers/experts can remember
their decisions in previous experiments, we run the three
experiments ten days apart.

Figure 3. Crowdsourcing-based and expert-based accuracy for exp0, exp1
and exp2

Figure 3 shows that the accuracy for the expert-based is
higher than that of the crowdsourcing-based dataset for all the
three settings. In addition, the greater increase in accuracy is
obtained by changing from exp1 to exp2 setting. Moreover,
also the feedback we received from participants show that
they do not consider the information provided in the first

11App features denote the main service characteristics provided by the app.



Table IV
CONFUSION MATRIX

Estimated value: V L Estimated value: L Estimated value: N Estimated value: H Estimated value: V H
Actual value: V L TPV L EV,L EV L,N EV L,H EV L,V H

Actual value: L EL,V L TPL EL,N EL,H EL,V H

Actual value: N EN,V L EN,L TPN EN,H EN,V H

Actual value: H EH,V L EH,L EH,L TPH EH,V H

Actual value: V H EV H,V L EV H,L EV H,N EV H,H TPV H

Table V
METRICS DEFINITION

Acc (TPV L + TPL + TPN + TPH + TPV H ) / # samples
PreV L TPV L/(TPV L+EL,V L+EN,V L+EH,V L+EV H,V L)
PreL TPL/(TPL+EV L,L+EN,L+EH,L+EV H,L)
PreN TPN /(TPN+EV L,N+EL,N+EH,L+EV H,N )
PreH TPH /(TPH+EV L,H+EL,H+EN,H+EV H,H )
PreV H TPV H /(TPV H+EV L,V H+EL,V H+EN,V H+EH,V H )
ReV L TPV L/(TPV L+EV L,L+EV L,N+EV L,H+EV L,V H )
ReL TPL/(TPL+EL,V L+EL,N+EL,H+EL,V H )
ReN TPN /(TPN+EN,V L+EN,L+EN,H+EN,V H )
ReH TPH /(TPH+EH,V L+EH,L+EH,L+EH,V H )
ReV H TPV H /(TPV H+EV H,V L+EV H,L+EV H,N+EV H,H )
F1C 2*(PreC*ReC )/(PreC+RecC ), C ∈ {V L,L,N,H, V H}

two settings enough for evaluating the risk of a target app.12

Therefore, we run our subsequent experiments by considering
exp2 setting.

D. Results

We compare the risk level computed by our approach with
the risk level given by the participants. for both datasets.

Table VI reports the result for both datasets. Generally,
the accuracy of experts (82.188%) is higher than that of
the crowdsourcing dataset (79.009%). For both the datasets
this experiment confirms that our risk measure is usually in
line with the participants’ feedback. We also measure the F1
score (cfr. Table V) for each class (i.e. Very Low, Low,
Neutral, High and Very High) for both datasets. As
we can see from Table VI, we have the lowest value for the
F1 score for Neutral in both the datasets. The reason can
be that users assign the Neutral rating when they lack the
knowledge/background to assess the risk level of the target
apps. In contrast, F1 low value for Very low level for the
crowdsourcing-based dataset can be explained by the little
awareness that not skilled users have on the privacy risks
related to Android app.

VI. RELATED WORK

For instance, Sarma et al. [5] and Peng et al. [6] used
probabilistic models to detect malicious apps, based on the
requested permissions and their categories. Wu et al. [7]
developed a framework that leverages on deep learning to
identify correlations between the app’s description and the

12For example: Crow29:”In my opinion, this app is a privacy violation, so
my choice is ”High”. Because it requires a lot of medical info. However, if it
is a healthcare app, my answer is ”Low”...”points out that knowing the app
category (which is provided by exp2 and exp1) is fundamental for assessing
its risk level.

requested permissions. These correlations assist users in de-
termining whether an app description is accurate. In addition
to permissions, Chia et al. [8] exploited app popularity, user
ratings, and external community ratings to determine an app
privacy risk. However, metadata do not accurately describe the
actual behavior of an app w.r.t. the consumption of personal
data. Indeed, many studies (e.g., [9]) have showed that apps
can actually exploit more permissions than what they provide
in their metadata. To take into account this issue, our approach
exploits both metadata (e.g., app category) as well as input
from the static analysis.

Other proposals focus on the requested permissions. For
instance, Felt et al. [10] determined whether an Android app
is over-privileged via static analysis. They classified an app
as over-privileged if it requires permissions that are never
actually used. Moutaz et al. [11], and Jianmao et al. [12]
considered the set of 30 permissions provided by Google
LLC [13], by labelling as critical those that have significant
security/privacy impact. If any app requests these critical
permissions, it is labelled as risky. Enck et al. [14] developed
a system that detects whether an app makes use of risky
combination of permissions. To do this, they manually defined
a set of permission combinations, such as WRITE_SMS and
SEND_SMS, to be considered risky. Then, they performed
static analysis to label an app as malicious if it makes use of
these combinations. All the above mentioned approaches deter-
mined the app’s risk based only on its requested permissions.
However, these solutions are not robust against malicious apps
able to circumvent the permission system and gain access to
protected data by applying side channels [1], such as using
device sensors to uniquely identify users [15] or using the
MAC address of the WiFi access point to infer user’s location
[16]. To overcome this limitation, our solution relies on static
analysis to detect APIs/libraries usage.

Other proposals have also attempted to identify malicious
apps and the leakage of private information by analysing
the API usage. For example, the approaches proposed by
[17], [18], [19], [20], [21] are based on the assumption that
APIs/libraries are secure (i.e., “regular”) when pervasively
used by many apps (e.g., more than 60% in [19]). Exploiting
this assumption, they cluster apps based on their APIs/libraries
usage. They label an app as not risky, if it belongs to a cluster,
or risky in case it is an outlier. Zhuo et al. [22] and Abhishek
et al. [23] exploited static analysis to generate a graph repre-
sentation of the data flow among API classes and possible
data collection. These is done on a set of malicious apps



Table VI
COMPARISON OF OUR METRIC WITH CROWDSOURCING-BASED AND EXPERT PARTICIPANTS FEEDBACK

Crowdsourcing-based dataset Expert-based dataset
VL L N H VH VL L N H VH

Precision 71.724% 78.947% 87.654% 82.589% 76.884% 79.412% 82.775% 77.778% 83.333% 83.019%
Recall 69.799% 84.071% 68.269% 79.399% 82.703% 80.597% 83.981% 63.636% 78.125% 93.617%

F1 70.748% 81.429% 76.757% 80.963% 79.688% 80.000% 83.373% 70.000% 80.645% 88.000%
Accuracy 79.009% 82.188%

and a set of apps considered to be safe. The two graphs are
then compared to determine the set of APIs to be considered
dangerous. The above mentioned approaches provided a binary
definition of risky/not risky app. This might not be so practical
in supporting users in their decisions. In contrast, we estimate
the risk as a measure of the deviation of the target app’s
behavior from the one built on the corresponding category.
Moreover, differently from the above-mentioned papers, our
proposal considers app behaviour w.r.t data collection at a fine-
grain level, considering more than 13K functions/constants
usage rather than simply APIs/classes. Additionally, our focus
is not malicious apps detection, rather providing a user a risk
estimation wrt the app’s personal data consumption.

VII. CONCLUSIONS

This paper has addressed the challenging issue of estimating
the privacy risk related to installing an Android app. We have
proposed an approach based on the static analysis of the app’s
code, able to combine the need to design a scalable solution
(since most of the computation can be done offline) with the
ability to provide a fine-grain assessment of the app’s personal
data usage. We have tested our approach by using both expert
feedback as well as feedback obtained via a crowdsourcing
platform. The achieved experimental results are promising. In
the future, we plan to perform a more extensive experimental
evaluation and compare our method with others mentioned in
Sect. VI. We also plan to extend our approach to be used
to detect mismatches between an app privacy policy and its
actual behavior w.r.t personal data usage.
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