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Abstract— We present a new approach to tackle the problem
of task assignment and scheduling in human-robot teams that
undertake collaborative device disassembly tasks. The proposed
approach is a hybrid between a global search metaheuristic
and an adaptive greedy operation assignment and scheduling
algorithm. We propose the concept of an Adaptive (work)Cell,
(aCell), which becomes the basis for the hierarchical organiza-
tion of the proposed search approach. At high level, metaheuris-
tic search establishes resource constraints for each aCell and de-
termines parameters for the task-level operation scheduling. At
low level, the task-level scheduling algorithm produces feasible
assignments and schedules within a single aCell by backtracking
through feasible time slots using an adaptive score metric. The
advantage of the proposed approach is that it clearly delineates
between higher level state space exploration and focused, task-
oriented exploitation. We validate the proposed approach on
a class of novel multi-objective benchmark problems involving
human-robot teams collaborating throughout a factory floor,
addressing specifically for the first time the problem of device
disassembly tasks, relevant to WEEE recycling, with additional
constraints, where we obtain favorable results.

Index Terms— Factory Automation, Intelligent and Flexi-
ble Manufacturing, Planning, Scheduling and Coordination,
Human-Robot Collaboration

I. INTRODUCTION
Human-Robot Collaboration (HRC) is a major research

direction that is gaining ever-increasing attention over the
past years owing to the proliferation of industry 4.0 as a
prominent research agenda. Within this setting, an important
research topic is the orchestration of human-robot agent
teams undertaking collaborative tasks. One example of such
application is HRC in device assembly scenarios, where
versatile teams of robots and humans carry out assembly of
devices of varying specifications characterized by flexible,
agile assembly processes. A much less explored application
in the field of HRC concerns the disassembly of electric and
electronic devices, which is highly relevant to Waste Electric
and Electronic Equipment (WEEE) recycling. Despite the
ever-increasing importance of WEEE recycling, much of the
disassembly is still performed by human workers. WEEE
recycling presents a series of challenges that render close
HRC throughout a factory floor the only possibility towards
automation. Indicatively, WEEE coming as an input to the
plant are highly diverse, while not all of their components are
expected to be extracted by a robot in an efficient manner,
e.g. small, delicate parts of device sub-components).

Coordination of small human-robot teams undertaking
collaborative tasks is a well-studied topic in the literature

1Authors are with the Centre for Research and Technology
Hellas / Information Technologies Institute (CERTH / ITI)
(ihatz,dgiakoum,Dimitrios.Tzovaras)@iti.gr

[1], [2], [3], [4]. In this type of problem, small teams of
humans and robots collaborate on a single task, and the
goal is to assign and sequence operations so as to achieve a
problem-dependent objective, such as minimizing makespan
or cost. On the other hand, the problem of orchestrating large
groups comprising multiple human-robot teams undertaking
multiple collaborative tasks simultaneously, is one that has
received less attention so far, even though efficient orches-
tration in such large scale collaborative scenarios is key to
achieving factory-wide efficiency [5].

Efficient orchestration of resources at a factory-level is
a commonly occurring problem in resource assignment and
scheduling literature [6]. The goal is to assign a number
of operations each of which belongs to a task, to suitable
resources, and schedule their processing so as to optimize
one or more defined objectives. It is possible to have more
than a single type of resource, in which case each operation
is assigned a resource of each type [7], [8]. Operations
within a task are typically determined by a strict precedence
relationship. Resource assignment and scheduling is a class
of problems that is proven to be NP-Hard [6], and several
categories of methods are proposed to address them, such as
exact [9], heuristic [5], [10] and metaheuristic [11], [12].

The problem of large-scale human-robot team orches-
tration addressed in this paper shares many common fea-
tures with assignment and scheduling problems, but also
presents significant differences. The co-existence of human
and robotic agents introduces a resource category, that of
the robots, which is diversified with respect to (i.) skills per-
taining to different operations necessary for task completion
and (ii.) mobility characteristics (e.g. mobile robotic agents
versus agents fixed to workstations), both of which impose
additional constraints to resource assignment and scheduling.
Second, when considering a full factory shopfloor, work is
performed on significantly more than one physical worksta-
tions that are topologically located according to a specific
floor plan; this imposes temporal constraints in resource
exchange between workstations and possible task operation
distribution among workstations. Third, precedence relations
among operations are optional, and dictated according to the
device disassembly process; a separation of device compo-
nents early on offers the opportunity for two or more agents
to work in component extraction in parallel. Finally, the
problem is characterized by multiple conflicting objectives
pertaining to aspects such as completion times, production
costs and environmental factors, which are in turn more
complex in definition due to the diversity of the resources
involved; i.e. human and robot workers.
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A. Contribution

The contribution of this paper is twofold: First, we pro-
pose a novel multi-objective problem definition that in-
cludes aspects necessary to tackle real-world, large-scale
collaborative human-robot team orchestration, i.e. factory-
wide, as required to achieve efficiency on the scale of a
factory conforming to industry 4.0 realizations. Second, we
propose a novel approach that is able to address this class
of problems effectively. The proposed approach comprises a
hybrid resource assignment and scheduling algorithm com-
bining high-level global metaheuristic search and adaptive
greedy operation assignment. We introduce the concept of an
“Adaptive Workcell” (aCell), a flexible hierarchical boundary
between the global and the local search counterparts. Within
this context search operates first at high level, construct-
ing the aCells by determining resources and scheduling
parameters for each of them. In this stage global search
is performed by an Multi-Objective Evolutionary Algorithm
(MOEA). Subsequently, at low level, local search identifies
optimal assignments and schedules within each aCell. Local
search operates using dispatch rules with adaptive goals.
Our aCell-based approach favors solutions with compact
temporal distribution of task operations, by incorporating
task continuity into the solution’s definition. In addition, the
distinction of global and task-level optimization strikes an
efficient balance between exploration and exploitation, as is
evident by the results of the computational experiments.

B. Paper Outline

The rest of the paper is organized as follows. Sec-
tion II presents the state of art in collaborative human-
robot team orchestration and in multi-objective dual-resource
constrained jobshop scheduling. Section III elaborates the
problem definition, including objective functions and Mixed
Integer-Linear Programming. Section IV presents in different
subsections an overview of the proposed architecture as
well as elaboration on each component. Section V presents
experimental results. Section VI concludes the paper.

II. RELATED WORK

The problem of efficiently orchestrating multiple collab-
orating human-robot teams is strongly related to resource
assignment and scheduling in operations research. In this
problem, a series of tasks comprising multiple operations
need to be executed considering limited resources, with
the aim of minimizing one or more objectives. The prob-
lem addressed here includes two limiting resource types,
namely agents and workstations, which is known in op-
erations research as a Dual-Resource Constrained Flexible
Jobshop Scheduling Problem (DRCFJSP) [7]. DRCFJSP is
a well-studied problem with extensive coverage in literature
[7], [8], [13]. In DRCFJSP two resource types constrain
the scheduling operation. Each operation is assigned to
one candidate of each resource type. The multi-objective
variant of DRCFJSP has gained attention recently, due to
the increased considerations in reducing production costs,
environmental emissions etc. Hamedi et al. [14] proposed

a Multi-Objective Tabu Search algorithm based on Goal
Programming. Lei and Tan [15] proposed a hybrid Genetic
Algorithm with Local Search with Controlled Deterioration
for the multi-objective DRCFJSP. The algorithm in question
performs global search using the Genetic Algorithm and
incorporates a local search step using VNS in a similar
fashion to previous work of Lei and Guo [11], but also
accepting dominated solutions in addition to dominating
ones, with a deteriorating factor. Finally, Xixing and Yi
[16] propose an algorithm for the multi-objective DRCFJSP
problem based on Multi-Objective Optimization Algorithm
with Decomposition (MOEA/D) [17] with the objectives
of minimizing makespan, minimizing equipment load and
minimizing processing cost.

HRC is a research field relevant to this work that is
rapidly gaining attention in the literature, largely owing to
the proliferation of industry 4.0-related research. In a recent
work, Johannsmeier et al. [1] demonstrated efficient human-
robot interaction planning at the device assembly task level.
Their approach employs a graph traversal algorithm based on
A* applied on AND/OR graphs corresponding to assembly
sequences. Chen et al. [2] propose a Multi-Objective Genetic
Algorithm for task planning in small human-robot teams
on one and two assembly stream problems. Zhang and
Shah [5] develop multi-abstraction search for addressing the
multi-agent placement and task orchestration problem, where
agent placement, task assignment and task scheduling happen
sequentially and form the starting point for a satisficing
scheduler. Bogner et al. [4] present a Mixed-Integer Linear
Programming (MILP) formulation for single- and multi-task
HRC with application in PCB production, a set of efficient
heuristics and a metaheuristic approach.

Despite the relevance of existing approaches, HRC in
factory-scale device disassembly applications entails a com-
bination of unique characteristics, namely: i. the presence
of heterogeneous agents, including humans and robots with
varying skills and mobility characteristics, ii. the topological
organization of workstations in a factory floor, and the
temporal constraints that they impose with respect to mobile
agents, iii. precedence constraints for operations within a
single task that are optional and thus allow for parallelism,
iv. multiple conflicting objectives and, v. operations carried
out at scale and through multiple collaborating agent teams.
To the best of the authors’ knowledge, there does not exist a
work that addresses all of the above aspects simultaneously.

III. PROBLEM FORMULATION
A. Illustrative Domain

In line with the vision of industry 4.0, collaborative
robotics can expand applications of robots to a diverse
range of industrial settings where the application of cur-
rent industrial automation is infeasible. HRC in industrial
settings has the potential to alleviate production costs by
allowing robots to undertake tasks requiring skilled labor
in collaboration with humans [18]. The examplary task
examined in the present paper is that of skilled disassembly
of WEEE devices in recycling factories, which is of major



importance for increasing the volume of reclaimed materials
per device. Despite it’s importance, it is a task handled
almost exclusively through manual labor, as it entails skillfull
manipulation and high degree of uncertainty, challenges that
industrial robots cannot easily overcome. Novel collaborative
robots, on the other hand, are able to work alongside humans
with the required precision and increased confidence, as is
evident by studies on collaborative device assembly by small
human-robot teams [1]. However, despite attention to small-
scale HRC, the problem of orchestrating multiple human-
robot teams has not yet been sufficiently addressed.

In WEEE disassembly, device dismantling takes place
on workstations organized within a factory floor, where
device parts are separated and relevant components extracted
through a series of operations. Optional precedence relation-
ships exist between operations, enabling parallel operation
execution in some cases within a single task. Each agent
involved in the process has different skill levels with respect
to the operations required for task completion, including
some agents not having certain skills. Mobility of agents
imposes temporal constraints that are in direct relation to
the topological organization of the shopfloor and agent mo-
bility characteristics. In addition, while some agents such as
humans and AGVs possess mobility, typical robotic manipu-
lators are fixed to workstations and thus immobile, enforcing
tasks to be assigned to a limited number of workstations.

In our optimization problem we consider two objectives,
namely minimization of makespan and minimization of
disassembly cost. Minimization of makespan ensures that
all operations are performed in a timely manner taking full
advantage of the shopfloor capabilities. Disassembly cost is
defined as the sum of labor cost and robot operation cost, for
the periods that an agent (human or robot) is executing an
operation. Outside these periods agents are considered not to
incur costs.

B. MILP Formulation

The following problem inputs are defined:
• T , a set of tasks.
• A, a set of agents, including humans and robots.
• C, a set of operations relevant to the tasks at hand.
• K, a matrix of values denoting times to complete an

exemplar operation corresponding to a skill, indexed
by agent and skill, K ∈ R|A|,|C|. Lower values denote
better times, thus higher skill level. If agent a does not
possess skill relevant to operation c, then Ka,c =∞.

• V , a list of values denoting achievable agent speed for
inter-workstation mobility, indexed by agent, V ∈ R|A|.

• W , a set of workstations that are suitable for carrying
out any one of the operations defined in C.

• Zt, a list comprising required operations in sequence,
indexed by task, t ∈ T,Zti ∈ C∀i ∈ {1, ..., |Zt|}.

• Ψt, a matrix of boolean values denoting requirements
on operation precedence. For any two operations i and
j in task t if i precedes j, then Ψt;ij=1.

• F , a matrix of boolean values, indexed by agent and
workstation, indicating whether an agent is allowed at

a workstation. If agent a is allowed in workstation w,
then Fa,w = 1, else Fa,w = 0. a ∈ A,w ∈ W,Fa ∈
Z|A|,|W |2 .

• Dw,w′, a matrix of inter-workstation travel distances.
• Qa, a vector of agent costs per unit time, indexed by

agent.
In addition, the following decision variables are defined:
• Cmax ∈ R+, the makespan, i.e. total processing time

for all tasks.
• Qtot ∈ R+, the total production cost, which translates

to the sum of cost per unit time for each of the invovled
agents and operations.

• τSc,t ∈ R+, starting time of operation c in task t.
• τEc,t ∈ R+, ending time of operation c in task t.
• P(c1,t1),(c2,t2) ∈ {0, 1}, operation precedence matrix

of binary values. If c1 in t1 precedes c2 in t2 then
P(c1,t1),(c2,t2) = 1. P ∈ Z|Z|,|Z|2

• SA
a,c,t ∈ {0, 1}, assignment of operation c in task t to

agent a.
• SW

w,c,t ∈ {0, 1}, assignment of operation c in task t to
workstation w.

The Mixed-Integer Linear Problem is formulated as fol-
lows:

min{Cmax, Qtot} (1)

s.t. ∑
a∈A

SA
a,c,t = 1,∀c ∈ Zt; t ∈ T (2)

∑
w∈W

SW
w,c,t = 1,∀c ∈ Zt; t ∈ T (3)

Cmax ≥ τEc,t,∀c ∈ Zt; t ∈ T (4)

Qtot ≥
∑

a∈A,c∈Zt;t∈T
SA
a,c,t ×Qa,c (5)

τScb,tb ≥ τ
E
ca,ta −M(2− SA

aa,ca,ta − S
A
ab,cb,tb

+

Pca,ta,cb,tb),∀aa, ab ∈ A; ca, cb ∈ Zt; t ∈ T (6)

τSca,ta ≥ τ
E
cb,tb
−M(3− SA

aa,ca,ta − S
A
ab,cb,tb

−
Pca,ta,cb,tb),∀aa, ab ∈ A; ca, cb ∈ Zt; t ∈ T (7)

τScb,tb ≥ τ
E
ca,ta +Dwa,wb

−M(2− SW
wa,ca,ta − S

W
wb,cb,tb

+

Pca,ta,cb,tb),∀wa, wb ∈W ; ca, cb ∈ Zt; t ∈ T (8)

τSca,ta ≥ τ
E
cb,tb

+Dwa,wb
−M(3− SW

aa,ca,ta − S
W
ab,cb,tb

−
Pca,ta,cb,tb),∀aa, ab ∈ A; ca, cb ∈ Zt; t ∈ T (9)

τEc,t ≥ τSc,t +Ka,c × SA
a,c,t,∀a ∈ A, c ∈ Zt; t ∈ T (10)

τSca,ta ≥ τ
E
cb,tb
−M(1−Ψt;ca,cb),

∀aa, ab ∈ A; ca, cb ∈ Zt; t ∈ T (11)



1 + Fa,w − SA
a,c,t − SW

w,c,t ≥ 0,

∀a ∈ A,w ∈W, c ∈ Zt; t ∈ T (12)

Equations 2 and 3 ensure all operations are assigned
an agent and workstation. Inequalities 4 and 5 constrain
the makespan and cost values respectively. Inequalities 6,
7 and 8, 9 ensure that operations assigned to same agents
and workstations respectively, do not overlap. Inequality
10 ensures operation endtimes are assigned according to
operation duration. Inequality 11 ensures operations within a
task that need to be ordered maintain start and end time order.
Inequality 12 ensures agents are only assigned to allowed
workstations. M is a large positive number for encoding
conditional constraints.

IV. OPTIMIZATION APPROACH

A. Architecture

The proposed approach is organized in a two-level hi-
erarchical architecture. At high level a MOEA evolves a
population of solutions. Solution genomes represent assign-
ments of resources, namely human and robot agents and
workstations, for each of the tasks. In addition, each solution
contains information that determines the order that each task
will be considered for scheduling by the low-level scheduler.
For each of the prescribed tasks the corresponding resource
assignments forms an abstraction over the detailed schedule
that is termed Adaptive Workcell, or aCell. The importance
of aCell is that it abstracts away information regarding
the detailed schedule from the metaheuristic search. In this
sense, it simplifies the search space by offloading detailed
scheduling decisions to the low-level scheduling.

The low-level scheduler processes each individual of the
global search population in the sequence determined at high
level, greedily assigning operations in a fashion similar to
dispatch rules [19], however with two notable differences:
i. the scheduler considers potential time slots earlier than
the last scheduled operation, and, ii. the dispatch rule itself
is adaptive, with adaptation parameters being part of the
individual genome. The latter allows the low-level scheduler
to accommodate varying objectives with different priority,
while the balance of objectives becomes itself a matter of
evolution. The performance of each individual according to
both objectives is measured on the basis of the final schedule
derived by the low-level scheduler.

B. Global Search

Global search occurs at the combined state space of
resource assignment and task scheduling order. We employ
a MOEA, wherein the encoding of each individual reflects
resource availability, order of scheduling for each of the tasks
defined in the problem, and parameter values for the task-
level assignment. One advantage of using a population-based
optimization algorithm is that in real-world problems with
multiple objectives such as the one presented in this paper,
obtaining a set of Pareto-optimal solutions is straightforward,
which is not the case with a trajectory-based algorithm such

Fig. 1: Architecture overview of the proposed HRC schedul-
ing approach

as VNS [11]. The overall scheme of the proposed search
algorithm is available in Fig. 2.

Fig. 2: Flowchart of global search with task-level (aCell)
orchestration

The encoding comprises four parts: A vector that deter-
mines scheduling order of each task using Random Key en-
coding [20]; a matrix of agents by tasks that determines agent
constraints for each task; a matrix of workstations by tasks
that determines workstation constraints; and a vector of task-
level assignment parameters. The total length of encoding is
λ = |T | × (1 + |SA|+ |SW |) + |p|, where p corresponds to
the vector of task-level scheduling parameters, in our case
|p| = 4 as will be discussed in section IV-C.

In our experiments we combine aCell with two different
MOEAs, namely NSGA-II [21] and MOEA/D [17], in order
to draw comparative results and evaluate the contribution of
the aCell approach. NSGA-II employs tournament selection



TABLE I: HRC Orchestration Problem Parameters

n mh mr h nop heq req ph pr

C2 5 2 4 4 [2, 6] 3 2 [1, 7] [5, 15]
C3 8 4 4 5 [3, 6] 4 2 [1, 7] [5, 15]
C4 12 4 7 8 [5, 10] 8 4 [1, 7] [5, 20]
C5 16 5 15 15 [5, 15] 10 5 [1, 10] [10, 20]

Where n number of tasks, mh number of human workers, mr number
of robot workers, h number of workstations, nop number of operations
per task, heq minimum operation types human agents can perform, heq

minimum operation types robot agents can perform, ph processing times
for human agents, pr processing times for robot agents

Simulated Binary Crossover (SBX) and Polynomial Muta-
tion. The MOEA/D makes use of the rand/2/exp Differential
Evolution operator and Polynomial Mutation as recombina-
tion strategies.

Two constraints are defined which correspond to equations
2 and 3. The constraints are defined on the basis of the
definite schedule that is generated for each individual. We
handle constraints through a tournament operator that em-
ploys lexicographical ordering of solutions such as proposed
in [22].

C. Low-Level Operation Scheduling

The low-level operation scheduling algorithm operates
by following a myopic optimization rule that schedules
each operation within a task, going through tasks one at a
time. The low-level objective is a weighted summation of
four criteria that bear similarity to dispatch rules [19]. The
low-level scheduler maintains a series of feasible timeslots
for each agent and workstation, defined by the quintuplet
(a,w, τS , t, i), where a is an agent, w is a workstation, τ is
the starting time of the timeslot, t is the corresponding task
and i is the operation index. The optimal scheduling time
slot is defined as follows:

Ksel = argmink∈Kr
w1QaKa,ti

+ w2τ
S + w3(τS +Ka,ti) + w4Ka,ti (13)

The weights wj are part of the genome of each individual
in the global search population, and thus are subject to
evolution themselves. Each time an operation gets assigned
to a timeslot, the occupied timeslot is replaced with one or
more non-overlapping timeslots, depending on the tempo-
ral proximity of preceding and following operations. Even
though this process increases computational complexity of
the scheduling operation, we have observed that by limiting
the workstation and agent assignment seats available to the
low level scheduler only to the k highest random key values,
it is possible to manage complexity with minimal impact to
solution quality.

V. EXPERIMENTAL RESULTS

We introduce a new class of benchmark problems that ac-
count for idiosyncrasies of the shopfloor HRC orchestration
problem, in the context of device disassembly. The premise

is that, overall, robots exhibit lower skill levels compared
to human skilled workers and are only capable of some
operations; at the same time the operation cost per unit time
of a robotic agent is significantly lower than the labor cost per
unit time of a skilled worker. Thus, the tradeoff between cost
and makespan is established. We consider that some robots
are fixed, while humans can move among workstations,
and define five instances representing increasingly complex
orchestration scenarios. Labor cost assumes values qh ∼
U(1.0, 1.1) and robot operation cost qr = 0.05. Workstations
are topologically arranged in a single row with neighbor
distance of d = 1.0. The attributes of proposed problem
instances are available in Table I.

The proposed aCell approach is compared with Ran-
dom Key encoding NSGA-II and MOEA/D in minimizing
makespan and production cost. The population size is 200 in
all cases and each algorithm was allowed to run a total of
500 generations. For each problem instance, the mean and
best of each objective value was established over a series
of 10 experimental runs. The algorithms are implemented in
Python and make use of the PAGMO framework [23]. The
results are presented in table II and indicative objective space
distribution of each algorithm is available in figure 3.

Results indicate that the aCell configuration is advanta-
geous over the pure random key encoding. For all except one
problem instances both aCell algorithms (aCell-NSGAII and
aCell-MOEA/D) are able to achieve mostly dominant results
over their pure random key counterparts, which suggests that
the advantage of aCell is independent of algorithm selection.
In addition, in most cases aCell converges faster to the
Pareto front. NSGA-II performs better than MOEA/D in all
problem instances except C2 and in both aCell and pure
random key cases. Interestingly it is seen that in some larger
problem instances aCell solutions dominate the makespan
objective, while Random Key solutions dominate the cost
objective. It is possible that this is due to the limitations
imposed as described in subsection IV-C. In this respect,
one step towards achieving a wider Pareto front would be
the relaxation of agent selection limits for the low-level
scheduler at the expense of computation time.

VI. CONCLUSIONS

This paper presented a new optimization approach for
addressing human-robot collaborative (HRC) orchestration
problems, focusing in the application field of device dis-
assembly. The proposed problem definition is derived after
real-world use cases to address the specific aspects that
a large-scale collaborative human-robot operation presents.
The proposed optimization approach introduces the concept
of Adaptive Workcell (aCell), which proves beneficial in
reducing search complexity. Through considering operations
within a task in a continuous sequencing order, we prioritize
solutions that favor task coherency, both in the temporal
as well as in the spatial domain, effectively reducing the
complexity of search, while maintaining identification of
feasible, and favorable solutions. The proposed optimiza-
tion approach achieves favorable results compared to two



TABLE II: Comparison of Experimental Results

Makespan Cost
aCell-NSGAII aCell-MOEA/D RK-NSGAII RK-MOEAD aCell-NSGAII aCell-MOEA/D RK-NSGAII RK-MOEAD

Instance Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean Best Mean

C2 13.2 20.2 13.2 20.7 16.7 25.3 17.2 25.6 4.3 5.1 4.3 5.3 4.6 5.9 6.0 13.4
C3 21.1 32.2 21.8 32.4 41.0 57.4 46.9 66.1 31.2 35.5 41.1 56.3 23.4 37.3 37.2 52.9
C4 59.4 72.3 62.5 82.1 130.9 153.6 149.7 165.3 121.8 90.0 122.2 206.6 134.1 177.0 131.9 160.8
C5 131.5 170.6 170.9 179.9 254.6 294.2 299.8 368.7 345.1 383.9 408.1 535.6 229.0 282.6 334.1 409.1

Fig. 3: Indicative objective space distributions. Yellow tri:
aCell-NSGAII, orange circle: aCell-MOEAD, light blue tri:
RK-NSGAII, dark blue circle: RK-MOEAD

Random Key-coded MOEAs, and produces schedules that
minimize undesirable aspects such as agent mobility and
maintaining task coherency.
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