
Please cite the Published Version

Lloyd, Huw (2020) Decentralized Parallel Ant Colony Optimization for Distributed Memory Sys-
tems. In: IEEE Scalable Computing and Communications Conference (ScalCom) 2019, 19 August
2019 - 23 August 2019, Leicester, UK.

DOI: https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00280

Downloaded from: https://e-space.mmu.ac.uk/623021/

Additional Information: Copyright IEEE

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://orcid.org/0000-0001-6537-4036
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00280
https://e-space.mmu.ac.uk/623021/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


Decentralized Parallel Ant Colony Optimization for
Distributed Memory Systems

Huw Lloyd
School of Computing, Mathematics and Digital Technology

Manchester Metropolitan University
Manchester, United Kingdom
huw.lloyd@mmu.ac.uk

Abstract—Ant Colony System (ACS) is a well-established vari-
ant of the Ant Colony Optimization (ACO) nature inspired meta-
heuristic for solving combinatorial optimization problems. We
present the DMACS (Distributed Memory Ant Colony System) al-
gorithm, which is a parallelization of ACS for distributed memory
architectures. The system is decentralized, with each processor
running an identical agent process which administers a part of
the pheromone matrix used to record the movements of simulated
ants over a graph. We evaluate a Message Passing Interface (MPI)
implementation of the algorithm on the well-known Travelling
Salesman Problem (TSP), running on a distributed memory
cluster. The results show that the algorithm scales at least as
well as previous agent-based distributed implementations of ACS,
without the need to sacrifice core features of the algorithm such
as local search. However, our results also demonstrate that scaling
the ACS algorithm to large numbers of processes in distributed
memory architectures remains a significant challenge.

Index Terms—Ant colony optimization; Parallel algorithms;
Message passing; Scalability

I. INTRODUCTION

Ant Colony Optimization (ACO) is a population-based
metaheuristic method for approximate solution of a wide range
of combinatorial optimization problems. It has been success-
fully applied to a number of NP-hard problems, such as the
Travelling Salesman Problem (TSP), Quadratic Assignment
Problem and scheduling problems [1], and more recently to
real world problems such as virtual machine placement in the
cloud [2]. In ACO, a population of agents construct solutions
on a graph, guided by a global pheromone matrix which
encodes solutions found by previous ants. In the case of the
TSP, each entry in the pheromone matrix corresponds to an
edge in the complete graph; edges which form part of a good
solution receive more pheromone and are more likely to be
chosen by following ants.

The ACO metaheuristic includes a number of different
algorithms, which combine standard ACO operators in dif-
ferent ways [3]. Two of the most sucessful are Max-Min Ant
System (MMAS) [4] and Ant Colony System (ACS) [5]. In
this paper, we focus on parallelizing the ACS algorithm. Two
features of the ACS algorithm make it difficult to parallelize.
Firstly, the default parameter settings for ACS stipulate a
relatively small number of ants (of order 10) which makes
fine-grained parallelism difficult. Secondly, ACS includes a
local pheromone update operator, which requires that ants
have concurrent write access to the pheromone matrix while

constructing their tours. Here, we address the first issue by
proposing a method to change the parameter settings of ACS
with the aim of maintaining perfomance while increasing
the number of ants, and the second issue by distributing
the pheromone matrix across multiple nodes in a distributed
system.

The contributions of this paper are; 1) a novel parallelization
of the ACS algorithm which includes all features of the
original algorithm, notably local search which has to date been
omitted from many parallel implementations, and 2) a method
for modifying the ACS parameters in order to maintain the
balance of local and global pheromone updates when scaling
the solution by increasing the number of ants to maintain fine-
grained parallelism.

II. RELATED WORK

The ACO metaheuristic offers up an obvious approach
to parallelization; the algorithm uses agents which can act
independently of each other in constructing solutions, so it
would seem natural to decompose the calculation by assigning
one ant to each process. This task parallel approach, often
in the form of a master-slave system, has formed the basis
of many parallel ACO implementations [6]. However, there
are a number of potential issues with this approach. Firstly,
there must be a large enough population of ants to provide a
sufficiently fine-grained parallel decomposition; for Graphics
Processing Units (GPUs), with many thousands of threads,
this is not the case and a data-parallel approach is preferred
[7]–[10]. In the data parallel approach, the task of selecting
the next city is divided between the threads using various
vectorized versions of the classical roulette wheel algorithm.
Secondly, the ACS variant under consideration here includes
a local pheromone update operator which requires ants to
continually modify the pheromone matrix as they construct
their tours. This means that ants can no longer complete the
task of constructing a full tour of the graph independently, and
synchronization is required in accessing the pheromone matrix.
One approach to this is to ignore the synchronization, as in the
GPU implementation of ACS presented by [10]. In this case,
errors may occur in the pheromone matrix, but experiments
show that in most cases there is not a large effect on solution
quality (although the effect is clear in some cases).



Distributed parallel implementations of ACO have a long
history; the earliest approaches used multiple colonies [11]
or independent runs [12] across processes. This latter, “em-
barrassingly parallel” approach simply spreads the task of an
ensemble of runs with different seeds across a distributed
architecture. In the multiple colony approach, independent ant
colonies are run in parallel, with various schemes for sharing
solutions or pheromone information. A survey of parallel
approaches to ACO up to 2011 can be found in [6]; of the
fourteen proposals based on ACS surveyed in that paper, two
used parallel independent runs , five multiple colonies , six
master-slave and one a hybrid method .

More recently, agent-based approaches to ACO have been
evaluated using middleware solutions for agent-based pro-
gramming [13]–[16]. In [13]’s implementation of the Ant
Colony System (ACS) algorithm, each agent is responsible
for a part of the computational domain, and ants are passed
between agents as they navigate the graph. This algorithm is
asynchronous, so that ants do not finish constructing their tours
at the same time. This approach allows for local pheromone
update, since each agent is responsible for its own part of the
pheromone matrix, but the asynchronous nature of the calcu-
lation means that an important feature of the ACS algorithm,
local search, is not implemented. [16] present another agent-
based implementation of ACS, on the Siebog platform. Results
are presented for small instances of the TSP (up to 150 cities)
which demonstrate that representing ants as messages, rather
than as agents, gives the best performance.

A decentralized, distributed ACO algorithm for TSP with
an adaptive fuzzy parameter controller is presented in [17].
Although the algorithm is decentralized, one process is des-
ignated a ‘master’ process and is responsible for coordination
tasks, but not tour construction. Results are presented for small
instances of the TSP (up to 299 vertices) on up to 32 processes.
Results are given for solution quality but not timing, making it
difficult to judge the efficiency or scalability of this approach.

In this work, we present a novel parallelization of the
ACS algorithm which retains all the original features of
the algorithm, including local pheromone update and local
search. The solution shares some features with agent-based
algorithms, such as the distribution of the pheromone matrix
between agent processes, and the passing of ant movements
between agents; however our system is synchronous and the
distributed processes carry out tour construction in step.

III. ALGORITHM

A. Ant Colony System (ACS)

The ACS algorithm [5] is one of the most effective variants
of ACO for the TSP. The algorithm differs from earlier ACO
algorithms in the use of the random proportional rule for
selecting vertices during tour construction, the introduction
of a local pheromone update operator, and the replacement
of pheromone evaporation with a novel pheromone update
operator which updates only the edges which form part of
the best-so-far tour.

The algorithm starts by initializing the pheromone matrix,
a square matrix (n× n, where n is the number of vertices in
the problem instance) to a constant value τ0 = 1/Cnn, where
Cnn is the length of a tour found using the nearest-neighbour
heuristic. The elements τij of the pheromone matrix represent
the amount of pheromone associated with the edges connecting
vertices i and j.

The algorithm then proceeds in iterations. During each
iteration, each of the ants in the system constructs a tour
of the graph. This is carried out in parallel; that is, the
system repeatedly iterates over the ants, performing one step
of the tour construction for each ant. This is important for
the functioning of the local pheromone update mechanism,
in which the pheromone is reduced on edges as they are
traversed, to discourage following ants from taking the same
path, and hence improve diversity in the solution set.

At the start of the tour construction phase, each of the
m ants is placed on a random city, and then constructs a
tour of the graph by making random choices of vertices to
visit next. These random choices are weighted, using weights
derived from a combination of pheromone values and heuristic
information (the edge costs). The weight assigned to the edge
connecting vertex i to vertex j is

wij = ταijη
β
ij (1)

where the heuristic ηij = 1/dij where dij is the length of edge
ij and τij is the pheromone value associated with the edge.
The constants α and β therefore control the relative importance
of pheromone and heuristic information in constructing the
edge weights. For an ant placed on vertex i, the next vertex
to visit is chosen using the random proportional rule. With
probability q0 ∈ [0, 1], the ant is moved to the vertex connected
to i by the highest weighted edge, subject to the constraint that
the vertex is not already in the tour. That is, after generating
a random deviate q ∈ [0, 1], the selected vertex isel is

isel = argmax
j∈Nk

i

wij if q < q0 (2)

where Nk
i is the feasible region for ant k on vertex i (i.e., the

set of vertices not already visited by ant k in its current tour).
If q ≥ q0, the next vertex is selected using the roulette wheel
method, with the probability of selecting vertex j given by

pki,j =

{
wij/

∑
i∈Nk

i
wij i ∈ Nk

i

0 otherwise.
(3)

After each step in the tour construction process, the local
pheromone operator is applied. For the edge just traversed, the
pheromone is modified according to

τij ← τij(1− ξ) + τ0ξ (4)

where ξ ∈ [0, 1] is a constant parameter.
Finally, when all ants have completed their tours, the best

tour found so far is used to update the pheromone matrix using
the global pheromone operator:

τij ← τij(1− ρ) + ∆τ bsij ρ∀(i, j) ∈ T bs (5)



where T bs is the best-so-far tour with length Cbs, and ∆τ bsij =
1/Cbs.

1) Nearest-neighbour lists: We use a standard extension to
the basic ACO algorithm in which each vertex selection is first
made by considering vertices in the nearest neighbour list of
mnn vertices of the current vertex. If all of the vertices in the
nearest-neighbour list have already been visited, the highest
weighted vertex is chosen from all the other unvisited vertices.

B. Distributed Memory Ant Colony System (DMACS)

The DMACS system operates in Single Program, Multiple
Data (SPMD) mode; that is, each process runs an identical
program. We call this program the DMACS Agent. The system
comprises N processes in a distributed system, each running a
DMACS Agent, and we enforce the constraint that the number
of ants, m, evenly divides N . We assume that the number of
vertices n > N . Apart from input/output operations (which are
carried out by a single process), no process has a special status
or role in coordinating the others. After some initial setup,
during which one agent is responsible for loading the problem
instance and broadcasting it to the others, the N agents execute
the same program.

1) Overview: Each agent is responsible for a subset of the
n vertices of the TSP instance; that is, it stores the rows of
the pheromone matrix corresponding to edges which start at
vertices in its vertex set, and is responsible for determining any
ant movements which start at vertices in this set. During tour
construction, each agent knows the position of all ants in the
system and their partial tours. At the start of each step, an agent
will determine the next moves of all ants in its own domain. At
the end of each step, information on ant movements is shared
between all agents, and each agent applies the local pheromone
update operator on any of the new tour edges which lie in its
domain. The process is repeated until all tours are complete.
Each agent then applies a local search operator to an equal
share of the ants’ tours, after which the agents communicate
collectively to determine if there is a new best solution. Finally,
all agents apply the global pheromone operator to their parts of
the pheromone matrix. The process is run for a fixed number
of iterations.

2) Initialization: Once all agents have a copy of the prob-
lem instance (for a Euclidean TSP, this is the set of x, y
coordinates for the n vertices of the instance) each agent
calculates the range of vertices for which it is responsible.
Since N does not necessarily evenly divide n, we distribute
the remainder r = n mod N over the first r processes. The
inclusive range of vertices [j0, j1], where vertices are labelled
j ∈ [0 . . . n− 1], administered by process i ∈ [0 . . . N − 1] is
therefore

[j0, j1] =

{
[ibn/Nc+ i, (i+ 1)bn/Nc+ i] i < r

[ibn/Nc+ r, (i+ 1)bn/Nc+ r − 1] otherwise
(6)

Each agent process allocates memory for rows j0 to j1 of the
pheromone matrix, initializing the pheromone values to τ0.

3) Tour Construction: The ants are initially placed on
random vertices of the graph. Each agent randomly allocates
m/N ants to starting cities, and the positions of all ants
are then distributed among the processes. This is achieved
as follows: each process allocates an array of integers of
length m to represent the ant positions, and initializes each
element to −1. The vertices for any ants placed by an agent
are written into the array, and the positions are shared globally
by performing a reduction (with operator max) on this array
using the MPI_Allreduce function. Each agent then has a
complete list of the positions of all ants.

Tour construction proceeds a step at a time, with each agent
iterating over all ants. If an ant is currently placed in an agent’s
vertex range, the pheromone matrix is used to select the next
vertex in its tour. Edge lengths are calculated directly from
the (x, y) coordinates of the TSP instance vertices. The new
positions of all ants are then shared using the same reduction
mechanism as the initial placement. Each agent then updates
the ants’ tours, and applies the local pheromone update to any
edges that lie in its part of the pheromone matrix.

The tour construction process is represented schematically
in Figure 1. In this example, an instance of 51 vertices, such
as the TSPLIB [18] instance eil51, is solved by four agents
using 8 ants. The instance is shown in Figure 2; the vertex
labels correspond to those in Figure 1, and the optimum tour
is shown as a line connecting the vertices. The current vertices
of the ants are stored in the array curVerts. Here, Agent 0
is responsible for moving two of the ants (on vertices 3 and
8), Agent 1 has four ants (vertices 19, 14, 24 and 22) and so
on. The agents determine new vertices for their ants based
on the ACS process, and populate the array nextVerts
with these values. Values for ants outside an agent’s domain
remain at −1. After the reduction process, all agents have
the positions of all ants, and the process repeats. Note that
since MPI_Allreduce includes an implicit barrier, the tour
construction is synchronous.

4) Local Search and Pheromone Update: After tour con-
struction, each agent performs local search on a number of
ants’ tours. Since the number of agents evenly divides the
number of ants, agent i is responsible for running local search
on the tours found by ants im/N to (i+1)m/N−1 inclusive.
We use the 3-opt local search function from the ACOTSP
code [19]. After local search, the final tour lengths are shared
using a similar reduction process to that used in the tour
construction; each agent prepares a vector of tour lengths
initially filled with zeros, sets the tour lengths of the ants
for which it performed the local search, then reduces this
array using MPI_Allreduce with the max operator. All
agents can then determine if there is a new best tour, and
on which agent it resides. If there is a new best, this tour
is communicated to all agents using a broadcast. Pheromone
update in ACS is carried out using the global best tour
only. Each agent updates the elements in its own part of the
pheromone matrix using equation 5.



Fig. 1. Schematic representation of the distributed tour construction process in DMACS. In this case, four agents are solving an instance with 51 vertices
(for example, the TSPLIB instance eil51), with eight ants.

Fig. 2. The TSPLIB instance eil51, with the optimum tour shown as a line
connecting the vertices.

IV. EVALUATION

We have implemented the DMACS algorithm in C++ using
the Message Passing Interface (MPI) library to handle the
communication between agents. We conducted experiments
with the code on a distributed memory cluster, running on
up to 32 cores. The cluster nodes are equipped with Intel
Xeon ES2650 processors running at 2.6GHz, and nodes are
connected with QDR Infiniband. We evaluated the code on
standard instances from the TSPLIB [18] library, with vertex
counts n between 1002 and 11849. The code was run with
numbers of MPI ranks from 1 to 32, while maintaining the
total number of tour evaluations as a constant. To achieve this,
we scaled the number of ants with the number of processes
while reducing the total number of algorithm iterations by the
same factor.

A. Algorithm Parameters

We adopt standard values for the ACS parameters (α = 1,
β = 2, q0 = 0.9, ρ = 0.1, ξ = 0.1, mnn = 20), however we
modify ρ and ξ to compensate for the varying number of ants.
We do this because with a larger number of ants, the effect of
local pheromone update is increased relative to global update
(since with more ants there are fewer global updates per tour
evaluation). In order for the effect of local pheromone update
per iteration to remain constant when increasing the number
of ants by a factor N , it is straightforward to show that the
value of ξ should be replaced by ξN , given by

ξN = 1− (1− ξ)1/N (7)



Fig. 3. Plots of execution time versus number of MPI ranks for the parallel runs. Data points represent the mean value from 10 runs per instance for each
configuration.

Fig. 4. Plots of speedup versus number of ranks for the parallel runs. Data points represent the mean value from 10 runs per instance for each configuration.

Alternatively, we could keep ξ constant, and modify ρ to
account for the reduced number of global pheromone updates
per tour evaluation according to

ρN = 1− (1− ρ)N . (8)

A third alternative, which we use in the experiments which
follow, is to change both ξ and ρ by amounts which maintain
the balance between local and global pheromone update. We
choose to apply the correction for a factor

√
N to both

parameters, which is equivalent to the correction for a factor N
in either parameter, and which maintains the balance between

the local and global updates while minimizing the change in
either parameter from their default values. The modified values
of ξ and ρ are given by

ξ′ = 1− (1− ξ)1/
√
N ; ρ′ = 1− (1− ρ)

√
N (9)

B. Experimental Setup
Apart from the runs on a single core, we ensured that all

runs were split over at least two nodes of the cluster, so that
network communication is necessary; running MPI in a effec-
tive shared memory environment where all the ranks are on
the same physical machine would give an unrealistically low



Fig. 5. Plots of solution quality versus number of MPI ranks for the parallel runs. Data points represent the mean value from 10 runs per instance for each
configuration; error bars show the standard deviation. The solution quality is defined as the ratio of the length of the best tour found to the known optimum
for the instance.

TABLE I
CONFIGURATION OF RANKS (Nproc), NODES (Nnode) , PROCESSORS PER

NODE (Nppn), AND ACS PARAMETERS FOR THE PARALLEL RUNS. Niter IS
THE NUMBER OF ACS ITERATIONS.

Nproc Nnode Nppn ξ ρ m Niter

1 1 1 0.1 0.1 8 4096
2 2 1 0.072 0.138 16 2048
4 2 2 0.051 0.19 32 1024
8 2 4 0.037 0.258 64 512
16 4 4 0.026 0.344 128 256
32 4 8 0.018 0.449 256 128

communication time. The configurations used for the runs on
1, 2, 4, 8, 16 and 32 ranks are given in Table I, along with the
values of the ACS parameters. We used six instances from the
TSPLIB library of TSP instances [18], pr1002, pr2392,
pcb3038, fnl4461, pla7397 and rl11849, and car-
ried out ten runs on each instance for each number of ranks.

C. Results

Figures 3, 4 and 5 show the mean total runtime, mean
speedup and mean solution quality for each instance over the
10 runs per process count. Error bars represent the standard
deviation. We see that in all cases, adding more processes
leads to a decrease in execution time, although the gains
are less for the larger instances. For the smaller instances,
pr1002, pr2392 and pcb3038 there is a speedup factor
of approximately 17-20 between 1 and 32 processes, whereas
for the larger instance this speedup ranges from around 7
to 12, with the lowest value in the case of rl11849, the
largest instance. For all instances, the speedup between 1 and
2 processes is small compared to the speedup from 2 to 4.

This is to be expected since the single-rank runs are in shared
memory, with effectively zero communication overhead.

Solution quality is roughly constant for the three smaller
instances, but in the larger instances we see a steady decline
in quality of solution as more processes are added, although
in the worst case this is a change of only approximately 1%.
This is maybe due to the restricted number of iterations in
these instances; even though the number of tour evaluations
is constant, the pheromone feedback mechanism has less
iterations in which to establish solutions, despite the increased
value of ρ. Overall the system generates very high quality
solutions (in many cases hitting the optimum value. The
inclusion of 3-opt local search in the algorithm is essential
in producing nearly optimal solutions in these relatively large
TSP instances.

D. Comparison with Agent-Based Approaches

The results compare favourably with those found by [13]–
[15]. Firstly, we note that DMACS shows an increasing
speedup with number of ranks up to 32, whereas in [13],
the maximum speedup is found using 11 processes with
increasing execution time for larger numbers of processes.
In [14], the maximum speedup is with 15 processes, with a
slight slowdown in moving to 20 processes. The only instance
in common with the present work is pr1002, for which
results are given in [14] and [15]. The maximum speedup
found for this instance by [15] is 14.9, on 15 processes, which
suggests that their approach scales very well for small number
of processes, but not beyond 10-15 processes. The best average
solution qualities for pr1002 found by [14] and [15] are
1.17 and 1.19 respectively, compared to 1.001 in this work.
This discrepency is due to the inclusion of local search in



our solution, which is omitted in the agent-based systems due
to the asynchronous nature of the tour construction in those
approaches.

V. CONCLUSION

In this paper, we describe a decentralized, distributed ver-
sion of the Ant Colony System (ACS) algorithm which retains
all the distinctive features of the original algorithm including
local pheromone update and local search. We present exper-
iments with an MPI implementation of the algorithm which
shows that the computation scales well on up to 32 processes,
although on large instances there is some loss of solution
quality. We scale the computation by increasing the size of the
ant population, while maintaining a constant number of tour
evaluations. In order to enable the increase in population size,
we present a simple mechanism for modifying the algorithm
parameters which maintains the balance between the local and
global pheromone update processes. Scaling the computation
to larger numbers of processes remains a challenge since, to
keep the size of the problem constant by reducing the number
of iterations while increasing the number of ants, too few
iterations will be carried out to converge to a solution.

Scaling the algorithm to larger numbers of processes may
be possible by including some ideas from earlier attempts at
parallel ACO, such as multiple colonies. This may enable
the solution of very large instances of the TSP, such as the
Art TSP instances [20], with vertex counts of order 105. The
distribution of the pheromone matrix over multiple nodes is
also a benefit here, since the memory requirement for this
matrix scales with n2.

REFERENCES

[1] T. Stützle, M. López-Ibáñez, and M. Dorigo, A Concise Overview of
Applications of Ant Colony Optimization. John Wiley & Sons, Inc.,
2010. [Online]. Available: http://dx.doi.org/10.1002/9780470400531.
eorms0001

[2] X. Liu, Z. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “An energy
efficient ant colony system for virtual machine placement in cloud
computing,” IEEE Transactions on Evolutionary Computation, vol. 22,
no. 1, pp. 113–128, Feb 2018.

[3] M. López-Ibáñez, T. Stützle, and M. Dorigo, Ant Colony
Optimization: A Component-Wise Overview. Cham: Springer
International Publishing, 2016, pp. 1–37. [Online]. Available:
https://doi.org/10.1007/978-3-319-07153-4 21-1

[4] T. Stützle and H. Hoos, “MAX-MIN ant system and local search for
the Traveling Salesman Problem,” in Evolutionary Computation, 1997.,
IEEE International Conference on, Apr 1997, pp. 309–314.

[5] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the Traveling Salesman Problem,” IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, Apr 1997.

[6] M. Pedemonte, S. Nesmachnow, and H. Cancela, “A survey on
parallel ant colony optimization,” Appl. Soft Comput., vol. 11,
no. 8, pp. 5181–5197, Dec. 2011. [Online]. Available: http:
//dx.doi.org/10.1016/j.asoc.2011.05.042

[7] J. M. Cecilia, A. Nisbet, M. Amos, J. M. Garcı́a, and M. Ujaldón,
“Enhancing GPU parallelism in nature-inspired algorithms,” The Journal
of Supercomputing, vol. 63, no. 3, pp. 773–789, 2013.

[8] J. M. Cecilia, A. Llanes, J. L. Abelln, J. Gmez-Luna, L.-W.
Chang, and W.-M. W. Hwu, “High-throughput ant colony optimization
on graphics processing units,” Journal of Parallel and Distributed
Computing, vol. 113, pp. 261 – 274, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731517303337

[9] L. Dawson and I. A. Stewart, “Improving Ant Colony Optimization
performance on the GPU using CUDA,” in 2013 IEEE Congress on
Evolutionary Computation, June 2013, pp. 1901–1908.

[10] R. Skinderowicz, “The GPU-based parallel Ant Colony System,”
Journal of Parallel and Distributed Computing, vol. 98, no.
Supplement C, pp. 48 – 60, 2016. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0743731516300284

[11] M. Middendorf, F. Reischle, and H. Schmeck, “Multi colony ant
algorithms,” Journal of Heuristics, vol. 8, no. 3, pp. 305–320, May
2002. [Online]. Available: https://doi.org/10.1023/A:1015057701750

[12] T. Stützle, “Parallelization strategies for Ant Colony Optimization,” in
PPSN V: Proceedings of the 5th International Conference on Parallel
Problem Solving from Nature. London, UK: Springer-Verlag, 1998, pp.
722–731.

[13] S. Ilie and C. Bdic, “A comparison of the island and acoda approaches
for distributing aco,” in 2013 17th International Conference on System
Theory, Control and Computing (ICSTCC), Oct 2013, pp. 757–762.

[14] S. Ilie and C. Bdic, “Multi-agent approach to distributed ant colony
optimization,” Science of Computer Programming, vol. 78, no. 6,
pp. 762 – 774, 2013, special section: The Programming Languages
track at the 26th ACM Symposium on Applied Computing (SAC
2011) & Special section on Agent-oriented Design Methods and
Programming Techniques for Distributed Computing in Dynamic and
Complex Environments. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167642311001717

[15] ——, “Multi-agent distributed framework for swarm intelligence,”
Procedia Computer Science, vol. 18, pp. 611 – 620, 2013, 2013
International Conference on Computational Science. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050913003682

[16] A. Kaplar, M. Vidakovi, N. Luburi, and M. Ivanovi, “Improving a
distributed agent-based ant colony optimization for solving traveling
salesman problem,” in 2017 40th International Convention on Informa-
tion and Communication Technology, Electronics and Microelectronics
(MIPRO), May 2017, pp. 1144–1148.

[17] J. Collings and E. Kim, “A distributed and decentralized approach for
ant colony optimization with fuzzy parameter adaptation in traveling
salesman problem,” in 2014 IEEE Symposium on Swarm Intelligence,
Dec 2014, pp. 1–9.

[18] G. Reinelt, “TSPLIB - a Traveling Salesman Problem library,” ORSA
Journal on Computing, vol. 3, no. 4, pp. 376–384, 1991.

[19] T. Stützle, “ACOTSP,” Available at http://iridia.ulb.ac.be/∼mdorigo/
ACO/downloads/ACOTSP-1.03.tgz (2005/06/12).

[20] “TSP Art Instances,” http://www.math.uwaterloo.ca/tsp/data/art/, ac-
cessed: 2019-03-29.


