
Abstract— The surface quality of steel rollers is a key factor 
determining the quality of final products such as metal sheets 
and foils in the rolling industry. It is important to examine the 
surface quality of rollers since rollers with optical defects will 
always duplicate the defects onto the metal sheet or foil during 
rolling. The typical optical defects of rollers after finish grinding 
include speckles, chatter marks, swirl marks and combination of 
all of the above. They can hardly be modeled or shaped by the 
approach of micro topography or SEM (scanning electrical 
microscope). In this paper, an on-site machine vision system is 
firstly applied for stable inspection for the optical defects on 
roller surfaces. Then, an improved optical defect segmentation 
algorithm is developed based on the active contour model and 
the images including chatter marks and swirl marks. The 
normal surface state is classified by the combination of methods 
of Gabor filters, KPCA method and ELM neural networks. 
Finally, experiment are carried out to verify the efficiency of the 
improved segmentation method and the recognition rate of the 
combined classification algorithm. 

Keywords: optical defect detection, machine vision, big data, 
roller  surface monitoring. 

I. INTRODUCTION 

In the field of extraordinary precision rolling, the surface 
quality of steel roller has significant influence on the surface 
integrity of products, which has been widely used in the 
military industry such as battery plates, military wire wrap 
foil. Since rollers’ surface finish is always reduced gradually 
in use and the surface defect will reflect on the work piece 
surface, which always causes low quality products. Therefore, 
surface inspection is a critical step in the field of not only 
metal sheet or foil but also roller. 

Most of the defects are too small to be visible for naked 
eye. However, current roller surface inspection still mainly 
relies on naked eye, which has low consistency, time 
consumption and high error rate. Therefore, there is a growing 
need for a real-time on-site roller surface-monitoring system. 
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Machine vision is regarded as a suitable technology for stable 
and precise surface inspection. However, it is difficult to 
capture roller surface image due to large and high-gloss 
cylindrical roller surface and fine visual defects. Therefore, it 
requires an effective algorithm for defect identification, 
segmentation and classification. The existing classification 
algorithms are Gabor filters, Kernel Principal Component 
analysis (KPCA) and extreme learning machine (ELM), 
which can achieve a relatively high recognition rates. 

For image segmentation, Kass et al. first proposed an 
active contour model (ACM) in 1988, also called Snake[1]. It 
relies on curve evaluation to detect interested objects based on 
the gradient of object edges. Malladi et al. proposed geometric 
active contours, taking advantages of level set method, which 
can effectively change curve shape in topology [2]. Shi et al. 
proposed a fast method without the need of solving the partial 
differential equations [3]. Caselles et al. proposed a geodesic 
active contour model [4]. Above mentioned algorithms are all 
edge-based models, which often use an edge indicator to 
attract the curve towards the target boundaries. They are 
efficient for series of image segmentation. However, they have 
difficulty detecting edges without obvious gradients, like roller 
surface’s fuzzy and blur boundary. 

Chan et al. proposed another well-known region-based 
model, called active contour model without edges (Chan-Vese 
model) [5]. This model is based on image region instead of 
edges, using global image gray intensity rather than edge 
gradient. They further proposed Piecewise Constant (PC) 
model and used the level set function to solve multiphase 
segmentation [6]. Both Chan-Vese and PC models cannot 
work effectively when illumination is inhomogeneous and 
image pattern is complex [7]. 

In order to deal with complex image patterns, Chan et al. 
proposed Piecewise Smooth (PS) model [5]. Unfortunately, 
the PS model based on Euler-Lagrange and gradient descent is 
so complex that it costs a lot of computation time [8].Li et al. 
proposed Local Binary Fitting (LBF) model, which uses local 
information as constrains to deal with inhomogeneous regions 
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[9]. Bresson et al. [7] proposed a similar model to LBF, which 
combines information on edge and global intensity with an 
edge indicator function. Zhang et al.[10] proposed the Local 
Image Fitting (LIF) energy function by minimizing the 
difference between an original image and the fitted image. In 
the above mentioned segmentation models, initial curve is 
always randomly chosen, which may lead to a local 
optimization rather than a global one. Optical defects on roller 
surface are usually hard to be detected because of the low 
contrast between the fine defects and the large high-glaze 
texture background and between the fuzzy defect boundary 
and the random spread pattern. Above mentioned models 
usually cannot work effectively for defect segmentation with 
low contrasts. 

For image classification, the most important task is to build 
proper eigenvectors, which can describe the image features 
accurately and achieve a certain degree of differentiation. 
Gabor filters are proved efficient to defect image processing. 
Mallat et al. [11] proposed the theoretical breakthrough of 
wavelet, which has been widely used since the 1990s. 
Daugman [12] proposed the discrete Gabor wavelet for image 
processing. Muller et al.[13] raised that Gabor can grasp the 
spatial frequency and local structure characteristics of multiple 
directions in the local area of an image. Vetterli et al. [14] 
raised that amplitude feature is mostly used in image 
processing because amplitude changes are relatively smooth 
and steady while space position changes recurrently. However, 
the extracted eigenvectors are redundant and the dimension is 
too high to be suitable for operation and training. Jolliffeit et 
al. [15] proposed the principal component analysis (PCA) 
method, which is based on the assumption of high information 
corresponds to high variance [16, 17]. In PCA, original data 
are projected to a new coordinate space after PCA feature 
extraction [18, 19]. Each coordinate axis in the new coordinate 
space represents a principal component vector. The first 
principal component vector contains the maximum variance; 
the second one is orthogonal to the first [20, 21]. Therefore, 
the number of dimensions can be reduced effectively.  

BP (back propagation neural network) and SVM (support 
vector machine) are the popular classification algorithms. 
However, BP is complex and SVM is slow in training. That  
limits their applications in real-time monitoring. Lowe et al. 
[22] proposed RBF (Radial basis function) neural network, 
which can adaptively adjust connection weights between 
neurons. However, RBF neural network is slow in learning. 
Pao. et al. [23] proposed Random Vector Functional Link 
(RVFL) algorithm, in which training only requires output 
weight. Huang et al. [24] proposed extreme learning machine 
(ELM) algorithm. Which are feedforward neural network for 
classification and feature learning with a single layer or 
multiple hidden layers, where a parameters of hidden nodes 
need not be tuned. Huynh et al. [25] pointed out that ELM 
randomly generates and selects the parameters for the hidden 
layer according to a certain continuous probability distribution 
[-1, 1]. Comparing to SVM and traditional neural networks, 
ELM requires less manual intervention and has a strong 
generalization ability for heterogeneous data sets. Furthermore, 
Huang et al. [26] advanced ELM based on kernel functions. 

Comprehending the existing works, we propose an on-site 
machine vision system for stable inspection of the optical 

defects on roller surface. The remaining of the paper is 
organized as follows. Section 2 proposes an improved 
segmentation and classification model by introducing a 
penalty term and a convolution kernel with alternative sizes. 
Section 3 designs an on-site machine vision system to capture 
the surface images. Section 4 carries out experiments to verify 
the efficiency of our improved segmentation and classification 
algorithms. Section 5 concludes the paper. 

II. IMPROVED SEGMENTATION METHOD 

A. Seed contour generation by morphology methods 
Segmentation for roller surface, requires an image 

segmentation model, which is effective for processing 
complex pattern, fuzzy boundary and inhomogeneous 
intensity. Active contour model seems suitable. However, this 
model randomly sets initial contours so that it may cause 
wrong results for roller surfaces which contain fuzzy defects. 
Because the energy function may not converge to the global 
optimization but the local one. Therefore, we propose a 
method to generate several “seed contours” as possible defect 
areas. 

Three steps for the morphology pretreatment of an original 
image are as follows: 

 Enhancing the image by “top hat” and “black hat” 
operations. 

 Eliminating salt-and-pepper noise in images with 
adaptive median filters. 

 Eroding and dilating. 

Compared with previous random initial contour, seed 
contour can roughly locate the defects and then evolve towards 
the boundary of object more precisely. 

B. Improved active contour without edges 
  Chan-Vese model [5] uses the arithmetic mean values of 

inside and outside of the current contour as domain intensity 
i.e., ݉௜௡ or  ݉௢௨௧  
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Formula (1) and (2) only take the global intensity into 
consideration. That is less effective for image segmentation 
with complex fuzzy boundaries and inhomogeneous intensity. 
To achieve effective segmentation, we not only takes local 
information into consideration by bringing a convolution 
operation with an alterable kernel size, but also propose a 
penalty term δ  in order to make every pixel intensity 
contribution more appropriate. 

Penalty term: 
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We use a Gaussian convention kernel K(ݑ) to slide around  
each pixel to consider its local intensity. Different from the 
constant kernel size in LBF model, the convention kernel size 
in our model is adjustable according to the penalty term δ(x, y). 
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Where ߪ  is the Gaussian parameter and r is the size of 
convention kernel (r × r) , ௥ܹ×௥  is a r ×r square window  with 
Gaussian coefficients. The domain intensity is as the following: 
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Comparing with  the Chan-Vese model, our model makes 
use of local image information so that it outperforms the Chan-
Vese model when processing images with complex blur 
boundaries and intensity inhomogeneity. 

Using Heaviside function and level set function, the energy 
function becomes: 
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Where H (z) and ∂ are expressed as follows: 
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Level set function ϕ is positive outside a curve and 
negative inside a curve. It calculates the shortest distance 
between a pixel position p(x, y) and a current curve. It is 
calculated as follows: 
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Formula (13) calculates the threshold for stopping the 
iteration in our algorithm: 

P =
∑ |∅௫,௬

௜ାଵ − ∅௫,௬
௜ ||∅ೣ,೤

೔ |ழ௛

,ݔ)}݉ݑ݊ ห∅௫,௬(ݕ
௜ ห < ℎ}

< ℎଶ߬     (13) 

Where ݊ݔ)}݉ݑ, ห∅௫,௬(ݕ
௜ ห < ℎ} means the number of pixel 

(x, y) in the condition of ห∅௫,௬
௜ ห < ℎ, indicating that the given 

curve converges into the  boundary of an object. ℎଶ߬  is 
decreasingly set to be 0.1-0.01 on image features. 

III. IMPROVED CLASSIFICATION METHOD 

A.  Gabor Filter Feature Vector Extraction 
Gabor filter has its special advantage on image feature 

extraction and texture analysis. Gabor features include 
amplitude and power. Amplitude is often used in image feature 
recognition because amplitude change is relatively smooth and 
steady while the space position shows a periodic change. 
Amplitude reflects the image energy spectrum, Gabor 
amplitude is usually called Gabor energy, which is defined as 
follows: 
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λ: Sine wave length 

θ: The direction of the Gabor kernel 

ψ: phase deviation 

σ: The standard deviation of the gaussian 

γ: Space aspect ratio 

Gabor filter is often used in practice. The Gabor function 
is a wave function actually restricted by Gaussian function. A 
group of Gabor filters can be obtained by defining different 
kernel functions. 

Gabor kernel function: 
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Gabor filter can be defined as  

2
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Where: 
2 2 2exp / 2jk x : Gaussian function.  

x : location 

 ( )I x : value of the image field 

jk  : the different response of filters to different scales and 
directions 

A series of Gabor filters can be obtained through the 
selection of jk . jk can be defined as follows: 
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v controls the wavelength of a window, so it controls 
sampling length (frequency).  controls sampling direction 
by controlling the oscillation direction of an oscillating 
function. The Gabor filter uses the convolution formula to 
obtain different filtering results for each image position. 

B. Kernel Principal Component Analysis 
KPCA feature extraction will take the following four steps: 

 Map the original sample to a linearly separable high 
dimensional space 

   X = ൣΦ൫ ,ܺ൯, Φ(ܺଶ) … Φ(ܺ௠)൧                  (20) 

 Where Φ(x) is the selected kernel function. 

 Use the positive nucleation K.to calculate the 
eigenvalues of matrix R and select the eigenvalues 
after ranking, then calculate its corresponding 
eigenvector. 

R K K M M K M K M      (21) 

 Compute the eigenvalues and eigenvectors of 
covariance matrix C based on formula (22) 

1/2 ( 1,2, d)i i iw Qv i        (22) 

where C = ݉ିଵ்ܳܳ  is the covariance matrix.  
1 2, , pW w w w is the feature extraction matrix  

used in feature extraction algorithm. 

 For ix X i=1,2, m, calculate 1 2, my y y  
according to ݕ௜ = ்ܹΦ(ݔ௜) 1 2, , mY y y y is 
the output feature set, the algorithm end. 

C. ELM neural networks 
Assume there are N arbitrary samples(ݔ௜, ௜ ).Among themݐ

௜ܺ = ,௜ଵݔ] ,௜ଶݔ … , ்[௜௡ݔ ∈ ܴ௡ ௜ݐ , = ,௜ଵݐ] ௜ଶݐ … , ்[௜௠ݐ ∈ ܴ௠ . A 
SLFN (Single-hidden Layer Feed forward Neural Networks) 
with L nodes on the hidden layer (Fig.1) can be expressed as 
formula (23) 
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       g(x): activaion function 
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 ௜:Output weightsߚ

ܾ௜:Bias of the i-th implicit layer unit 

Figure 1 . the schematic diagram of the ELM algorithm 
 

The training process is as follows: 

a. Input: Training sample set {(ݔ௜, ௜)}௜ୀଵݐ
ே ⊂ ܴ௡ × ܴ௠ , 

hidden layer output function G(a, b, x) and number of 
nodes in the hidden layer. 

b. Generate parameters ( ܽ௜, ܾ௜ ) randomly for hidden 
layer nodes, i=1,2…L 

c. Calculate hidden layer output matrix H(ensure H is 
with full rank) 

d. Output: Network optimal power β: β =  ்ܶܪ

Although ELM originates from the BP neural network, but 
it randomly generates parameters for the hidden layer nodes,  
which greatly simplifies the complex iterative process in 
traditional neural network.It can satisfy the double 
requirements of accuracy rate and calculation speed. 

IV. EXPERIMENT SETUP AND RESULTS ANALYSIS 

Fig. 2 illustrates an on-site machine vision inspection 
system, which contains a linear blue light source, a line-scan 
camera, an encoder and a computer. The parameters of the 
light source and specifications of the line-scan camera are 
shown in Fig. 3. 

The imaging process is as follows: the monochromatic 
light source emits linear blue light, which projects on the 



grinding roller surface along the axial direction. The reflected 
light will be received by the line-scan camera, which has only 
one row of CMOS photosensitive cell and gets pixel rows as 
the roller rotates simultaneously. Then the camera splices the 
pixel rows into an entire image and transmit the image to the 
computer for further processing.  

We carried out experiments several times for the roller 
surface defect inspection. Finally we chose 30 kHz as the data 
acquisition frequency and 40rpm as the roller rotation speed. 
The algorithms run on the MATLAB R2017a. The program 
runs on a ThinkPad P50s with Core i7@ 2.5GHz CPU and 
16GB memory. 

. 

 
Figure 2  Real-time machine vision-based roller surface monitoring system 

 
Figure 3  Experiment setting 

The part images with defects are also shown as Fig. 4(a), 
(b) and (c). Note that the images in Fig. 4 are cropped in 
different scale for better visualization. ((a): 600×600; 
(b):1200×1200; (c): 1800×1800) 

 
(a)                  (b)                 (c) 

Figure 4 Images defects 
(a) speckles (b)chatters (c) combination of chatters and feed traces. 
As illustrated in Fig. 4, the optical defects on roller surface 

has low intensity contrast, with fuzzy blur boundary and 
random or regular complex pattern, which is hard to segment 
directly. Therefore, before executing segmentation, we pre-
process original images to augment defect features. Fig. 5 
presents the preprocessed results for the above three defects. 

 
(a)                 (b)                  (c) 
Figure 5 Preprocessed results  

(a) speckles (b) chatter marks (c) combination of chatter marks and feed 
traces. 

Fig. 6 presents the results with our improved segmentation 
model: 

 
(a)                    (b)                      (c) 

Figure 6 Segmentation results with our improved model 
(a) speckles (b) chatters (c) combination of chatter and feed traces. 

TABLE 1.  ITERATION STEPS AND TIME. 

Segmentation results in Fig. 6 show that our segmentation 
method can effectively get correct results. Table1 shows the 
iteration steps and consuming time. We set the same iteration 
stop condition for different defects. The energy variation is 
less than a constant threshold, ℎଶ߬ = 0.016. Our method can 
converge under global optimization with an acceptable time. 

 
 

         
                                (a)                                (b) 

           
                         (c)                                 (d) 

Figure 7 Image samples with different defects 
(a)Cross grains (b) swirl mark (c) chatters (d)  normal image 

The above mentioned algorithm requires to operate on 
square images. However, the amount of sample images cannot 
meet the condition, Meanwhile, partial original image area do 
not contain defects or is under exposed on the edge. So we 



capture 100 images with each defects and non-defective 
images (the pixel resolution is 256*256), for  validation testing. 
Table 2 present the parameters and recognition rates. 

TABLE 2 RECOGNITION RATES UNDER DIFFERENT CONDITIONS 

Parameter 

Group 

kernel repetition Verified 
image 

recognitio
n rate 

1 Gaussian 50 1 82.92% 
2 Gaussian 50 2 81.26% 
3 Gaussian 100 1 84.53% 
4 Gaussian 100 2 82.67% 
5 polynomia

l 
50 1 74.50% 

6 polynomia
l 

50 2 72.75% 

7 polynomia
l 

100 1 77.45% 

8 polynomia
l 

100 2 76.83% 

 
Figure 8 Recognition rates 

As shown in Table 2, the para-meters contain kernel, 
repetition times and the number of verified image. The kernel 
in the experiment are Gaussian and polynomial. The repetition 
is determined by the recognition times and the sample number. 
The number of images represents the number of validations in 
each group. The results show that with the Gaussian kernel, 
100 repetitions and 1 verified image, the recognition can reach 
the highest recognition rate (Fig. 8). 

In the experiment, the recognition rate is about 80%, which 
is not very good. The reason might be as follows: the adopted 
Gabor filters mainly extract texture features. Although chatter 
and swirl marks are similar to texture, they may cause mis-
classification.  

V. CONCLUSION 
The surface quality of steel roller is significant for finish 

products. This paper proposes an improved method for 
monitoring grinding roller surface. First, we build an on-site 
machine vision-based roller surface inspection platform for 
capturing roller surface images. Second, we propose an 
improved defect segmentation model, which takes the 
penalty term and the convolution kernel into consideration. 
In defect classification, we adopt the Gabor wavelet method 
with KPCA algorithm to extract image features, which 
reduces redundant eigenvectors greatly. In the experiment, 

we test our defect segmentation method for three typical 
defects: speckles, chatter marks and the combination of 
chatter marks and feed traces. Each type of defect has fuzzy 
boundary, complex pattern and intensity homogeneity, which 
are hard to segment. Results verify that the energy function 
proposed in our model can converge under global 
optimization instead of local one, with an acceptable 
inspection time. In the defect classification of the images with   
cross grain, chatter marks and swirl marks, we adopt three 
parameters — kernel, repetition and the number of verified 
image. The results show that the classification under 
Gaussian kernel, 100 repetitions and 1 verified image can 
reach the highest rate at 84.53%.  
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