
A New Parallel Asynchronous Cellular Genetic Algorithm
for Scheduling in Grids

Fréd́eric Pinel, Bernab́e Dorronsoro, and Pascal Bouvry
Faculty of Science, Technology, and Communications

University of Luxembourg
{frederic.pinel, bernabe.dorronsoro, pascal.bouvry}@uni.lu

Abstract

We propose a new parallel asynchronous cellular ge-
netic algorithm for multi-core processors. The algorithm
is applied to the scheduling of independent tasks in a
grid. Finding such optimal schedules is in general an NP-
hard problem, to which evolutionary algorithms can find
near-optimal solutions. We analyze the parallelism of the
algorithm, as well as different recombination and new local
search operators. The proposed algorithm improves previous
schedules on benchmark problems. The parallelism of this
algorithm suits it to bigger problem instances.

1. Introduction

Genetic algorithms (GAs) are population based algorithms
that explore the search space by iteratively applying a
set of stochastic operators on the solutions composing the
population. Cellular genetic algorithms (CGAs) are a kind of
GA with decentralized population that have demonstrated to
outperform regular GAs in a large number of problems with
different features and belonging to distinct domains [1]. In
CGAs, the number of individuals that can mate to a given
one is restricted to only those ones that are located next
to it, i.e., to its neighborhood (as it is shown in Fig. 1).
By adopting this simple idea, we achieve a slow spread of
solutions through the population, and different regions of
the population will therefore converge to different areas of
the search space. The effect is that the population diversity
is kept for longer while at the same time different niches
appear in the population.

From the appearance of the first CGA by Robertson
in 1987 [2], different parallel implementations have been
proposed for CGAs in the literature (a complete survey on
parallel CGAs can be found in [1]). From those designed
for massively parallel computers (with SIMD architecture)
having thousands of processors [3] to the ones recently
proposed for clusters of computers by Luque et al. [4], [5].
However, very few parallel designs have been proposed for
CGAs, despite their parallel nature. The reason is probably
the high communication level required due to the tight
relations among individuals. In this paper, we propose a new

parallel CGA for multi-core processors. Due to the shared
memory existing in this kind of architectures, the tight
communications among individuals is less of a problem.
Therefore, it allows us to take profit of the high performance
of parallel implementations without the typical problems at
the communication level existing in CGAs.

The main contributions of this paper are the application
to task scheduling in grids [6] of a parallel CGA [7], and a
new local search operator suited to this problem is proposed.
The resulting algorithms are faster than the state-of-the-art
meta-heuristics in the literature, providing better results.

This paper is organized as follows: Section 2 describes
the problem of scheduling in grids. Section 3 presents the
new asynchronous cellular genetic algorithm. In Section 4,
we provide results, analyze the behavior of our algorithm,
and compare it to other well-known and current state-of-the-
art algorithms. Finally, we summarize our main conclusions
and future works.

2. Batch Scheduling in Grids

Task scheduling in computational grids is a family of
problems that capture the most important needs of grid
applications for efficiently allocating tasks to resourcesin a
global and dynamic environment. Therefore, several versions
of the problem can be formulated according to the needs of
such applications.

We give in Section 2.1 a description of the problem we are
considering in this work, while Section 2.2 mathematically
describes the problem we are optimizing.

2.1. Problem description

In this work, we consider a version of the problem that
arises quite frequently in parameter sweep applications,
such as Monte-Carlo simulations [8]. In these applications,
many tasks with almost no interdependencies are generated
and submitted to the grid system. In fact, more generally,
the scenario in which the submission of independent tasks
to a grid system is quite natural given that grid users
independently submit their tasks to the grid system and
expect an efficient allocation of their tasks. We notice that

efficiency means to allocate tasks as fast as possible and
to optimize some criterion, such as makespan or flowtime.
Makespan is among the most important optimization criteria
of a grid system. Indeed, it is a measure of its productivity
(throughput).

In our scenario, the tasks originate from different users
or applications. They have to be individually processed
by a single resource unless it drops from the grid due
to its dynamic environment (non-preemptivemode). They
are independent of each other and could specify hardware
and/or software requirements over resources. Also, resources
could dynamically be added/dropped from the grid. They can
process one task at a time, and have their own computing
characteristics regarding the consistency of computing. More
precisely, assuming that the computing time needed to
perform a task is known (assumption that is usually made
in the literature [9], [10], [11]), we use the Expected Time
to Compute (ETC) model by Braun et al. [9] to formalize
the instance definition of the problem as follows:

• A numberof independent (user/application)tasksto be
scheduled.

• A number of heterogeneousmachine candidates to
participate in the planning.

• Theworkloadof each task (in millions of instructions).
• The computing capacityof each machine (inmips).
• Ready timereadym indicates when machinem will

have finished the previously assigned tasks.
• The Expected Time to Compute (ETC) matrix

(nb tasks × nb machines) in which ETC[t][m] is
the expected execution time of taskt on machinem.

2.2. Optimization criterion

We consider the task scheduling as a single objective
optimization problem, in which the makespan is minimized.
Makespan, the finishing time of latest task, is defined as

min
S

max{Ft : t ∈ Tasks} , (1)

whereFt is the finishing time of taskt in scheduleS.
For a given schedule, it is quite useful to define the

completion timeof a machine. This time indicates when the
machine will finalize the processing of the previous assigned
tasks as well as of those already planned. Formally, for a
machinem and a scheduleS, the completion time ofm is
defined as follows:

completion[m] = readym +
∑

t∈S−1(m)

ETC[t][m] . (2)

We can then use the values of completion times to
compute the makespan as follows:

min
S

max{completion[m] | m ∈ Machines} . (3)

Selection Recombination

Mutation

Replacement

Figure 1: In cellular GAs, individuals are only allowed to
interact with their neighbors.

3. The Proposed Algorithm

In this section, we present the parallel asynchronous
CGA we used for this problem. First, Section 3.1 briefly
introduces a regular canonical cellular GA. Then, Section 3.2
presents our proposed parallel approach. Finally, Section3.3
describes our representation of the scheduling problem, and
the new local search operator.

3.1. Cellular GAs

Cellular GAs [1], [3], [12] are structured population
algorithms with a high explorative capacity. The individuals
composing their population are (usually) arranged in a two
dimensional toroidal mesh. This mesh is also called grid.
Only neighboring individuals (i.e., the closest ones measured
in Manhattan distance) are allowed to interact during the
breeding loop (see Figure 1). This way, we introduce a
form of isolation in the population that depends on the
distance between individuals. Hence, the genetic information
of a given individual spreads slowly through the population
(since neighborhoods overlap). The genetic information of
an individual will need a high number of generations to reach
distant individuals, thus avoiding premature convergenceof
the population. By structuring the population in this way,
we achieve a good exploration/exploitation trade-off on the
search space. This improves the capacity of the algorithm to
solve complex problems [1], [13].

Algorithm 1 Pseudo-code for a canonical CGA (asyn-
chronous).

1: while ! StopCondition() do
2: for all ind in populationdo
3: neigh← get neighborhood(ind);
4: parents← select(neigh);
5: offspring ← recombine(p comb, parents);
6: mutate(p mut, offspring);
7: evaluate(offspring);
8: replace(ind, offspring);
9: end for

10: end while

A canonical CGA follows the pseudo-code of Algo-
rithm 1. In this basic CGA, Each individual in the grid is
iteratively evolved (line 2). A generation is the evolutionof
all individuals of the population. Individuals may only inter-
act with individuals belonging to their neighborhood (line3),
so parents are chosen among the neighbors (line 4) with a
given criterion. Recombination and mutation operators are
applied to the individuals in lines 5 and 6, with probabilities
p comb andp mut, respectively. Afterwards, the algorithm
computes the fitness value of the new offspring individual (or
individuals) (line 7), and replaces the current individual(or
individuals) in the population (line 8), according to a given
replacement policy. This loop is repeated until a termination
condition is met (line 1), for example: the total elapsed
processing time or a number of generations.

The CGA described by Algorithm 1 is called asyn-
chronous, because the population is updated with next gener-
ation individuals immediately after their creation. Thesenew
individuals can interact with those belonging to their parent’s
generation. Alternatively, we can place all the offspring
individuals into an auxiliary population, and then replace
all the individuals of the population, with those from the
auxiliary population, at once. This last version is referred to
as the synchronous CGA model. As it was studied in [1],
[14], the asynchronous CGAs converge the population faster
than the synchronous CGAs.

3.2. Parallel Asynchronous Cellular GA

In this paper, we present our parallel asynchronous CGA
(PA-CGA), based on [7]. We partition the population into a
number of contiguous blocks with a similar number of indi-
viduals (Figure 2). Each block containspop size/#threads
individuals, where#threads represents the number of
concurrent threads executed. We partition the population
by assigning successive individuals to the same block. The
successor of an individual is its right neighbor. We move to
the next row when we reach the end of a row (our grid is
2-dimensional). We assign each block to a different thread,
which will evolve the individuals of its block.

In order to preserve the exploration characteristics of
the CGA, communication between individuals of different
blocks is made possible. As mentioned in the previous
section, at each evolution step of an individual, we define its
neighborhood. This neighborhood may include individuals
from other population blocks. This allows an individual’s
genetic information to cross block boundaries.

Threads evolve their population block independently.
They do not wait on the other threads to complete their
generation (the evolution of all the individuals in their
block) before pursuing their evolution. Hence, if a breeding
loop takes longer for an individual of a given thread, the
individuals evolved by the other threads may go through
more generations.

Figure 2: Partition of an 8x8 population over 4 threads.

The combination of a concurrent execution model with the
neighborhoods crossing block boundaries leads to concurrent
access to shared memory. For example, the neighborn of an
individual i might belong to a different block. The thread
evolving this other block could be updating individualn
precisely when the thread evolvingi is accessing it. Without
care, this can result in incorrect results. This error can
occur when selecting a parent from a neighborhood (non-
atomic read operation), or recombining (a non-atomic read
operation of the parent) that belongs to another block and
is currently being replaced (a non-atomic write operation).
To enable safe concurrent memory access, we synchronize
access to individuals with a POSIX [15] read-write lock.
This high-level mechanism allows concurrent reads from
different threads, but not concurrent reads with writes, nor
concurrent writes. In the two latter cases, the operations are
serialized.

Asynchronous CGAs can visit individuals in different
orders [14]. In this work, all threads will sweep through
their population in the same fixed order. This means that
we are using the line sweep policy in every block. Note
that this is not exactly the same as the line sweep policy
typically used in asynchronous CGAs. In our case, all blocks
are updated concurrently. We experimented different sweep
orders for different blocks, in hope of limiting memory con-
tention, but we did not notice any significant improvement
in the algorithm’s execution speed. We attribute this to the
unpredictable nature of the thread’s execution, while the
alternative sweep policies per thread assumed a predictable,
fixed, thread execution by the operating system.

Algorithms 2 and 3 provide a more detailed description
of the algorithm. Functiondo parallel(f, parm) means
that f(parm) is executed by all threads in parallel, but
on different data items. All threads join before the next
instruction.

Algorithm 2 Pseudo-code for our proposed parallel asyn-
chronous CGA (PA-CGA).

1: t0 ← time(); // record the start time
2: pop← setup pop(); // initialize population
3: par ← setup blocks(pop); // set parameters for all threads
4: do parallel(initial evaluation, par); // each thread evalu-

ates its block
5: do parallel(evolve, par, t0); // each thread evolves its block,

see Algorithm 3

Algorithm 3 Pseudo-code forevolve().
1: while time()− t0 ≤ time do
2: for all ind in a thread’s blockdo
3: neigh← get neighborhood(ind);
4: parents← select(neigh);
5: offspring ← recombine(p comb, parents);
6: mutate(p mut, offspring);
7: H2LL(p ser, iter, offspring);
8: evaluate(offspring);
9: replace(ind, offspring);

10: end for
11: end while

Function initial evaluation() computes the fitness of
all individuals in the initial population. The stop condition
for this grid scheduling problem is a wall clock time. The
asynchronous model moves the stop condition verification
into evolve.

From Algorithm 3, we notice that the thread checks the
current time after evolving all the individuals of its block.
This could let the thread run for longer than the allowed
time. We accept this approximation since one generation of
the entire block takes less than 6 ms in our experiments,
while the time is expressed in tens of seconds. The evolution
step also performs a local search operation. This operationis
presented in the next subsection. We parameterizeH2LL(),
our local search, with a number of iterationsiter, which
sets the number of passes. Finally,evaluate() computes the
makespan of the schedule.

3.3. Local Search and Solution Representation

We also propose a new local search operator for the
problem considered.

We refer to a machine’s completion time as itsload.
The local search operator moves a task, randomly chosen,
from the most loaded machine to a selected candidate
machine (the most loaded machine’s completion time defines
makespan). The candidate machines are theN least loaded
(N is a parameter). A candidate machine is selected if its
new completion time, with the addition of the task moved,
is the smallest of all the candidates. This new completion
time must also remain inferior to the makespan. Algorithm 4
describes this operator.

Task 1

Task 2

Task N

Completion

Time 1Machine i

Machine j

Machine k

Machine 1

Completion

Time 2Machine 2

Completion

Time mMachine m

Figure 3: Representation of solutions. In addition to the
task-machine assignments (left-hand side), we store the
completion time for every machine too (right-hand side).
Variation operators are only applied on the task-machine
assignments.

The representation we use for independent task scheduling
on grids is shown in Figure 3. It is composed of:

• an arrayS of integers,S[t] = m, representing the
assignment of taskt to machinem,

• an arrayCT of floating point values,CT [m] = c,
representing the completion time of each machinem.

The completion times are often used, therefore maintaining
up-to-date completion times for all machines speeds up
computations. Theevaluate() function of Algorithm 3 only
finds the maximum completion time. The completion times
are kept up-to-date by each operator (recombine, mutation,
local search). Such updates are efficiently performed by
adding or removing the ETC of a task on a machine to
the appropriate completion time. As can be noticed from
Algorithm 4, we use the transposed ETC matrix. This
increases the cache hit rate, and thus the overall performance
of the algorithm. Indeed, when accessing an ETC for a task
on a machine, this ETC value is cached, but so are the
neighboring values (caches operate on cachelines). If we
store the transposed ETC matrix, then these neighboring
values are the ETC values for the next few tasks on the
same machine (exactly how many depends on the size of a
cacheline). So, if the schedule assigns one of the next tasks
to the same machine, then this ETC value is present in cache.
We measured an improvement in the algorithm’s execution
time of 5-10%. Indeed, this improvement is comparable to
the uniform probability for such an event (next task assigned
to same machine),1/#machines, we use 16 machines in
our experiments.

Algorithm 4 Pseudo-code forH2LL, our local search.
1: for all iter iterationsdo
2: sort machines on ascending completion time
3: task ← random task from lastmachines;
4: best score← CT [last machines]; // makespan
5: for all mac in pop size/2 first machines do
6: new score← CT [mac] + ETC[mac][task];
7: if new score < best score then
8: best mac← mac;
9: best score← new score;

10: end if
11: end for
12: move task to best mac if any
13: end for

4. Experiments

This section presents the results of our experiments with
PA-CGA. Section 4.1 describes both the parameterization
of the algorithm and the instances of the problem we are
solving. Section 4.2 reports and discusses the results.

4.1. Parameters and Problem Instances

The algorithm parameters are summarized in Table 1. We
are using a population of 256 individuals. The population is
initialized randomly, except for one individual. The schedule
for this individual results from theMin-min heuristic [16].
The linear 5 (L5) neighborhood, also called Von Neumann
neighborhood, is composed of the 4 nearest individuals,
plus the individual evolved. This neighborhood is chosen
to reduce concurrent memory access. The 2 best neighbors
are selected as parents. The recombination operators used
are the one-point (opx) and the two-point crossover (tpx).
The mutation operator moves one randomly chosen task to
a randomly chosen machine. The newly generated offspring
replaces the current individual if it improves the fitness
value. Finally, the termination condition is an execution
time of 90 seconds. The number of threads used in all our
experiments ranges from 1 to 4. All threads run on one
processor. The processor used for the experiments is an Intel
Xeon E5440 clocked at 2.8 GHz, with 6 MB L2 cache. This
processor has 4 cores. It was released in 2007.

Table 1: Parameterization of PA-CGA.
Population 16× 16

Population initialization Min-min (1 ind)
Cell update policy fixed line sweep per block
Neighborhood linear 5
Selection best 2
Recombination one-point and two-point crossover,p comb = 1.0

Mutation move,p mut = 1.0

Local search H2LL, p ser = 1.0, iter = 5, 10

Replacement replace if better
Stopping criterion 90 seconds, wall time
Number of Threads 1 to 4

The benchmark instances consist of 512 tasks and 16
machines. These instances represent different classes of
ETC matrices. The classification is based on three parame-
ters: task heterogeneity, machine heterogeneity and consis-
tency [17]. Instances are labelled asu x yyzz.k where:

u stands for uniform distribution (used in generating
the matrix).

x stands for the type of consistency (c for consistent,
i for inconsistent, ands for semi-consistent). An
ETC matrix is considered consistent when the
following is true: if a machinemi executes a taskj
faster than machinemj , thenmi executes all tasks
faster thanmj . Inconsistency means that a machine
is faster for some tasks and slower for some others.
An ETC matrix is considered semi-consistent if it
contains a consistent sub-matrix.

yy indicates the heterogeneity of the tasks (hi means
high, andlo means low).

zz indicates the heterogeneity of the resources (hi
means high, andlo means low).

k numbers the instances of the same type.

We report computational results for the following 12 in-
stances, for which we provide their Blazewicz [18] notation:

• u c hihi.0: Q16|26.48 ≤ pj ≤ 2892648.25|Cmax;
• u c hilo.0: Q16|10.01 ≤ pj ≤ 29316.04|Cmax;
• u c lohi.0: Q16|12.59 ≤ pj ≤ 99633.62|Cmax;
• u c lolo.0: Q16|1.44 ≤ pj ≤ 975.30|Cmax;
• u i hihi.0: R16|75.44 ≤ pj ≤ 2968769.25|Cmax;
• u i hilo.0: R16|16.00 ≤ pj ≤ 29914.19|Cmax;
• u i lohi.0: R16|13.21 ≤ pj ≤ 98323.66|Cmax;
• u i lolo.0: R16|1.03 ≤ pj ≤ 973.09|Cmax;
• u s hihi.0: R16|185.37 ≤ pj ≤ 2980246.00|Cmax;
• u s hilo.0: R16|5.63 ≤ pj ≤ 29346.51|Cmax;
• u s lohi.0: R16|4.02 ≤ pj ≤ 98586.44|Cmax;
• u s lolo.0: R16|1.69 ≤ pj ≤ 969.27|Cmax.

4.2. Results

We now present and discuss the results of our compu-
tational experiments. The discussion includes a comparison
with other algorithms in the literature.

We first study the speedup of the algorithm as an indica-
tion of its scalability: how performance improves with the
number of threads. This study helps tune the optimal number
of threads for the experiments. Speedup is usually defined as:

S(n) = time(1)/time(n) , (4)

wheren is the number of machines, or processors. In the
problem studied here, time is fixed to 90 seconds. We
therefore replace time with the total number of evaluations.

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4

E
va

lu
at

io
ns

 in
cr

ea
se

 %

Threads

0 iteration
1 iteration

5 iterations
10 iterations

Figure 4: Speedup of the algorithm.

With time, a performance improvement corresponds to a
smaller execution time, but with evaluations, an improve-
ment corresponds to more evaluations. This leads to the
following definition of speedup used in this paper:

S(n) = #evaluations(n)/#evaluations(1) , (5)

where#evaluations(n) is the mean number of evaluations
over 100 independent runs, andn is the number of threads.

Figure 4 shows how performance evolves with the:

• number of threads,
• number of local search iterations.

We first observe that without local search (0 iteration)
the performance decreases with the number of threads.
This result is essentially due to thread synchronization.
Without local search, the evolution of an individual requires
less computation, but the same amount of synchronization
(for recombination and replacement). So the proportion of
computation under synchronization increases. In addition,
increasing the number of threads reduces eace. Given the
partition of the population, a smaller block means that more
individuals are on the boundary of the block, where the
neighborhood therefore crosses block boundaries and may
cause synchronization delays. The combination of these
factors lead to more synchronization delays, which decreases
performance when the number of threads increases.

As the number of local search iterations increases, more
computation outside synchronization is performed (local
search is performed on the offspring). This reduces syn-
chronization delays, and we achieve positive speedups. Yet,
we notice that with 5 or 10 local search iterations, there is
no more performance gained when increasing the number of
threads from 3 to 4. This is caused by the smaller block sizes.
Although more time is spent in local search, the proportion
of individuals on the boundary of their block increases, and
with fewer individuals to process, synchronization is more
frequent. Finally, the processor level 2 cache is shared across

Table 2: Comparison versus other algorithms in the litera-
ture. Mean makespan values.

instance Struggle GA cMA + LTH PA-CGA PA-CGA[19] [20] 10 sec
u c hihi.0 7752349.4 7554119.4 7518600.7 7437591.3
u c hilo.0 155571.48 154057.6 154963.6 154392.8
u c lohi.0 250550.9 247421.3 245012.9 242061.8
u c lolo.0 5240.1 5184.8 5261.4 5247.9
u s hihi.0 4371324.5 4337494.6 4277497.3 4229018.4
u s hilo.0 983334.6 97426.2 97841.6 97424.8
u s lohi.0 127762.5 128216.1 126397.9 125579.3
u s lolo.0 3539.4 3488.3 3535.0 3525.6
u i hihi.0 3080025.8 3054137.7 3030250.8 3011581.3
u i hilo.0 76307.9 75005.5 74752.8 74476.8
u i lohi.0 107294.2 106158.7 104987.8 104490.1
u i lolo.0 2610.2 2597.0 2605.5 2602.5

all running threads. Increasing the number of threads with
little data locality negatively impacts performance. Fromthe
speedup results, we notice that 3 threads reach the maximum
number of evaluations, so we adopt this model for the next
studies in this paper.

Next, we examine the impact of the recombination opera-
tors (opx andtpx), and the number of local search iterations
(5 and 10). Figure 5 presents these results. They are obtained
over 100 independent runs. Three threads are used. A box
plot is provided for each instance file. In these plots, when
the notches in the boxes does not overlap, we can conclude,
with 95% confidence, that the true medians differ. We notice
that overall, thetpx recombination operator provides better
mean makespan results thanopx. Furthermore, 10 iterations
of our local searchH2LL achieve a better mean makespan
than 5. With statistical significance, we can state thattpx/10
performs better thanopx/5 for all instances. It finds the
best mean makespans in most instances, but not in all. For
the consistent instances,opx and tpx find similar mean
makespan values. For the next studies in this paper, we use
the tpx recombination and 10 local search iterations.

Table 2 presents a comparison of our results with others
found in the literature. Results for cMA + LTH (a CGA
hybridized with Tabu search) [20] and struggle GA (a non-
decentralized population GA) [19] are averages over 10
independent runs, and they were taken from the original
papers. We propose 2 sets of results for our algorithm,
PA-CGA. One for runs of 10 seconds, another for runs of
90 seconds. For both run times, the results presented are
averages of 100 independent runs. Makespan values in bold
indicate the best results for an instance, or if 10 seconds
of runtime of our algorithm achieves better results than the
literature.

We present results for runs of 10 seconds because of the
difference in computing platforms used in [20] and in our
experiments. In [20], all experiments were conducted on
a AMD K6 450 Mhz processor. This machine is slower
than the one we use. To account for this difference, we
wish to reduce the runtime in our experiments, in the
same proportion. We therefore benchmark both machines,
compute the performance ratio of the 2 machines, and apply

opx/5 tpx/5 opx/10 tpx/10

7.42

7.44

7.46

7.48

7.5

7.52

x 10
6

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_c_hihi.0

opx/5 tpx/5 opx/10 tpx/10

1.54

1.542

1.544

1.546

1.548

1.55

1.552

1.554

1.556

1.558
x 10

5

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_c_hilo.0

opx/5 tpx/5 opx/10 tpx/10
2.4

2.41

2.42

2.43

2.44

2.45

2.46

2.47

x 10
5

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_c_lohi.0

opx/5 tpx/5 opx/10 tpx/10

5220

5230

5240

5250

5260

5270

5280

5290

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_c_lolo.0

opx/5 tpx/5 opx/10 tpx/10

4.18

4.2

4.22

4.24

4.26

4.28

4.3

4.32

4.34

x 10
6

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_s_hihi.0

opx/5 tpx/5 opx/10 tpx/10

9.7

9.75

9.8

9.85

9.9

9.95

x 10
4

A
ve

ra
ge

 M
ak

es
pa

n
Instance u_s_hilo.0

opx/5 tpx/5 opx/10 tpx/10
1.24

1.245

1.25

1.255

1.26

1.265

1.27

1.275

1.28

x 10
5

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_s_lohi.0

opx/5 tpx/5 opx/10 tpx/10

3500

3520

3540

3560

3580

3600

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_s_lolo.0

opx/5 tpx/5 opx/10 tpx/10

2.98

3

3.02

3.04

3.06

3.08

3.1

x 10
6

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_i_hihi.0

opx/5 tpx/5 opx/10 tpx/10

7.4

7.42

7.44

7.46

7.48

7.5

7.52

7.54

7.56

x 10
4

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_i_hilo.0

opx/5 tpx/5 opx/10 tpx/10
1.03

1.035

1.04

1.045

1.05

1.055

1.06

1.065

1.07

x 10
5

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_i_lohi.0

opx/5 tpx/5 opx/10 tpx/10
2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

A
ve

ra
ge

 M
ak

es
pa

n

Instance u_i_lolo.0

Figure 5: Comparison of recombination operators and local search iterations.

it to our runtime. Unfortunately, we do not have access
to a AMD K6 450 Mhz machine. However, there exists
one benchmark whose results for this machine have been
published, and is available for execution on our machine.
It is the program TSCP 1.7.3 [21]. One advantage of this
benchmark is that it implements a combinatorial algorithm,
and does not test a specific processor feature. Executing the
benchmark shows a performance ratio of 9 between the 2
machines. Therefore, we provide results for runs of90/9
seconds, as a comparison point.

Table 2 shows that PA-CGA improves most previous re-
sults. Particularly, it provides the best results for inconsistent
instances (where the performance of a machine varies from
one task to another) and for instances of high heterogeneity
in tasks and resources. It improves half of the results for con-
sistent, and semi-consistent instances. It does not improve
results for instances where the tasks and resources have a
low heterogeneity (homogeneous). These results are useful
because inconsistent instances, and instances with high task
and resource heterogeneity, represent the more complex
problem formulation of independent task scheduling. Also,
scheduling independent near-homogeneous tasks on near-
homogeneous machines can be effectively addressed with
alternative simpler and faster methods, such as heuristics[9].

 7.44e+06

 7.45e+06

 7.46e+06

 7.47e+06

 7.48e+06

 7.49e+06

 7.5e+06

 7.51e+06

 7.52e+06

 7.53e+06

 7.54e+06

 5000 10000 15000 20000 25000 30000

M
ea

n
M

ak
es

pa
n

Generations

1 thread
2 threads
3 threads
4 threads

Figure 6: Evolution of the algorithm.

We can also notice that our algorithm improves the results
for instances with greater makespan values.

Figure 6 shows how makespan, averaged across the
population (all threads) and over 100 independent runs,
evolves with the number of generations. All runs process the
u c hihi.0 instance file. The stop condition is 90 seconds
wall time. Each line corresponds to a different number of
threads. In order to display differences, a subset of the
domain (generations) is plotted. First, we notice that running
the algorithm with 1 thread evolves for less generations than

with more threads, in the allocated time. Also, 1 thread finds
worse average makespan, at any generation. It is important to
note that our algorithm configured for 1 thread represents the
canonical asynchronous CGA of Section 3.1. With 4 threads,
we observe that the algorithm converges faster initially, but
fails to reach the best solutions. Running the algorithm with
3 threads finds the best solutions.

5. Conclusion and Future Work

We presented in this paper a new parallel asynchronous
CGA algorithm for multi-core processors. This algorithm
was applied to the problem of independent task scheduling
on a grid. We evaluated the performance of this algorithm
on benchmark instances, and improved previous results.
Future work will focus on increasing the parallelism of the
algorithm. This means both providing greater parallelism
and improving its ability to find good solutions. Since the
evaluation will require machines with many cores, we will
target GPU processors. Also, we will apply future parallel
models on bigger benchmark instances of the independent
task scheduling on grids problem.

References

[1] E. Alba and B. Dorronsoro,Cellular Genetic Algorithms, ser.
Operations Research/Compuer Science Interfaces. Springer-
Verlag Heidelberg, 2008.

[2] G. Robertson, “Parallel implementation of genetic algorithms
in a classifier system,” inProc. of the Second International
Conference on Genetic Algorithms (ICGA), J. J. Grefenstette,
Ed. L. Erlbaum Associates Inc., 1987, pp. 140–147.

[3] B. Manderick and P. Spiessens, “Fine-grained parallel genetic
algorithm,” in Third International Conference on Genetic
Algorithms (ICGA), J. Schaffer, Ed. Morgan Kaufmann,
1989, pp. 428–433.

[4] G. Luque, E. Alba, and B. Dorronsoro,Optimization Tech-
niques for Solving Complex Problems. Wiley, 2009, ch.
Analyzing Parallel Cellular Genetic Algorithms, pp. 49–62.

[5] ——, “An asynchronous parallel implementation of a cel-
lular genetic algorithm for combinatorial optimization,” in
Proceedings of the International Genetic and Evolutionary
Computation Conference (GECCO). ACM, 2009, pp. 1395–
1402.

[6] I. Foster and C. Kesselman,The GRID: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 1998.

[7] F. Pinel, B. Dorronsoro, and P. Bouvry, “A new parallel
asynchronous cellular genetic algorithm for de novo genomic
sequencing,” inProceedings of the IEEE International Con-
ference on Soft Computing and Pattern Recognition (SOC-
PAR09), 2009, pp. 178–183.

[8] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman,
“Heuristics for scheduling parameter sweep applications in
grid environments,” inHeterogeneous Computing Workshop,
2000, pp. 349–363.

[9] T. D. Braun, H. J. Siegel, N. Beck, L. L. B̈olöni, M. Mah-
eswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao,
D. Hengsen, and R. F. Freund, “A comparison of eleven
static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems,”Journal
of Parallel and Distributed Computing, vol. 61, no. 6, pp.
810–837, 2001.

[10] A. Ghafoor and J. Yang, “Distributed heterogeneous super-
computing management system,”IEEE Comput., vol. 26,
no. 6, pp. 78–86, 1993.

[11] M. Kafil and I. Ahmad, “Optimal task assignment in hetero-
geneous distributed computing systems,”IEEE Concurrency,
vol. 6, no. 3, pp. 42–51, 1998.

[12] D. Whitley, “Cellular genetic algorithms,” inFifth Interna-
tional Conference on Genetic Algorithms (ICGA), S. Forrest,
Ed. California, CA, USA: Morgan Kaufmann, 1993, p. 658.

[13] E. Alba and M. Tomassini, “Parallelism and evolutionary al-
gorithms,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 5, pp. 443–462, October 2002.

[14] E. Alba, B. Dorronsoro, M. Giacobini, and M. Tomassini,
Handbook of Bioinspired Algorithms and Applications. CRC
Press, 2006, ch. Decentralized Cellular Evolutionary Algo-
rithms, pp. 103–120.

[15] IEEE and The Open Group, “Posix (ieee std 1003.1-2008,
open group base specifications issue 7),” http://www.unix.org,
2008.

[16] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for schedul-
ing independent tasks on nonidentical processors,”Journal of
the ACM, vol. 24, no. 2, pp. 280–289, 1977.

[17] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and
S. Ali, “Representing task and machine heterogeneities for
heterogeneous,”Journal of Science and Engineering, Special
50 th Anniversary Issue, vol. 3, pp. 195–207, 2000.

[18] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan,
“Scheduling subject to resource constraints: classification and
complexity,”Discrete Applied Mathematics, vol. 5, pp. 11–24,
1983.

[19] F. Xhafa, “An experimental study on GA replacement op-
erators for scheduling on grids,” inThe 2nd International
Conference on Bioinspired Optimization Methods and their
Applications (BIOMA), Ljubljana, Slovenia, October 2006,
pp. 212–130.

[20] F. Xhafa, E. Alba, B. Dorronsoro, and B. Duran, “Efficient
batch job scheduling in grids using cellular memetic algo-
rithms,” Journal of Mathematical Modelling and Algorithms,
vol. 7, pp. 217–236, 2008.

[21] T. Kerrigan, “Tom kerrigan’s simple chess program,”
http://www.tckerrigan.com/Chess/TSCP/.

