A New Parallel Asynchronous Cellular Genetic Algorithm
for Schedulingin Grids

Fréceric Pinel, Bernabé Dorronsoro, and Pascal Bouvry
Faculty of Science, Technology, and Communications
University of Luxembourg
{frederic.pinel, bernabe.dorronsoro, pascal.bouM@uni.lu

Abstract parallel CGA for multi-core processors. Due to the shared
memory existing in this kind of architectures, the tight
We propose a new parallel asynchronous cellular ge-communications among individuals is less of a problem.
netic algorithm for multi-core processors. The algorithm Therefore, it allows us to take profit of the high performance
is applied to the scheduling of independent tasks in aof parallel implementations without the typical problents a
grid. Finding such optimal schedules is in general an NP-the communication level existing in CGAs.
hard problem, to which evolutionary algorithms can find The main contributions of this paper are the application
near-optimal solutions. We analyze the parallelism of theto task scheduling in grids [6] of a parallel CGA [7], and a
algorithm, as well as different recombination and new localnew local search operator suited to this problem is proposed
search operators. The proposed algorithm improves prewiouThe resulting algorithms are faster than the state-ofattie-
schedules on benchmark problems. The parallelism of thiseta-heuristics in the literature, providing better resul

algorithm suits it to bigger problem instances. This paper is organized as follows: Section 2 describes
the problem of scheduling in grids. Section 3 presents the
1. Introduction new asynchronous cellular genetic algorithm. In Section 4,

we provide results, analyze the behavior of our algorithm,

Genetic algorithms (GAs) are population based algorithmsind compare it to other well-known and current state-of-the
that explore the search space by iteratively applying art algorithms. Finally, we summarize our main conclusions
set of stochastic operators on the solutions composing thand future works.
population. Cellular genetic algorithms (CGAs) are a kifd o
GA with decentralized population that have demonstrated t®. Batch Scheduling in Grids
outperform regular GAs in a large number of problems with
different features and belonging to distinct domains [h]. | Task scheduling in computational grids is a family of
CGAs, the number of individuals that can mate to a givenproblems that capture the most important needs of grid
one is restricted to only those ones that are located nexpplications for efficiently allocating tasks to resourges
to it, i.e., to its neighborhood (as it is shown in Fig. 1). global and dynamic environment. Therefore, several vassio
By adopting this simple idea, we achieve a slow spread obf the problem can be formulated according to the needs of
solutions through the population, and different regions ofsuch applications.
the population will therefore converge to different arefs o We give in Section 2.1 a description of the problem we are
the search space. The effect is that the population diyersitconsidering in this work, while Section 2.2 mathematically
is kept for longer while at the same time different nichesdescribes the problem we are optimizing.
appear in the population.

From the appearance of the first CGA by Robertsor2.1. Problem description
in 1987 [2], different parallel implementations have been
proposed for CGAs in the literature (a complete survey on In this work, we consider a version of the problem that
parallel CGAs can be found in [1]). From those designedarises quite frequently in parameter sweep applications,
for massively parallel computers (with SIMD architecture) such as Monte-Carlo simulations [8]. In these applications
having thousands of processors [3] to the ones recentlynany tasks with almost no interdependencies are generated
proposed for clusters of computers by Luque et al. [4], [5].and submitted to the grid system. In fact, more generally,
However, very few parallel designs have been proposed fathe scenario in which the submission of independent tasks
CGAs, despite their parallel nature. The reason is probablyo a grid system is quite natural given that grid users
the high communication level required due to the tightindependently submit their tasks to the grid system and
relations among individuals. In this paper, we propose a nevexpect an efficient allocation of their tasks. We notice that

efficiency means to allocate tasks as fast as possible and Selection -

to optimize some criterion, such as makespan or flowtime.
Makespan is among the most important optimization criteria
of a grid system. Indeed, it is a measure of its productivity
(throughput).

In our scenario, the tasks originate from different users
or applications. They have to be individually processed
by a single resource unless it drops from the grid due
to its dynamic environmentnpn-preemptivenode). They
are independent of each other and could specify hardware, .
and/or software requirements over resources. Also, reseur 19ure 1: In cellular GAs, individuals are only allowed to
could dynamically be added/dropped from the grid. They caritéract with their neighbors.
process one task at a time, and have their own computing
characteristics regarding the consistency of computingeM 3. The Proposed Algorithm
precisely, assuming that the computing time needed to
perform a task is known (assumption that is usually made |, his section, we present the parallel asynchronous
in the literature [9], [10], [11]), we use the Expected Time cga we used for this problem. First, Section 3.1 briefly

to Compute (ETC) model by Braun et al. [9] to.formalize introduces a regular canonical cellular GA. Then, Secti@n 3
the instance definition of the problem as follows: presents our proposed parallel approach. Finally, Se&ti®n
« A numberof independent (user/applicatiogsksto be gescribes our representation of the scheduling problemh, an

scheduled. . . the new local search operator.
« A number of heterogeneousnachine candidates to

participate in the planning.

« Theworkloadof each task (in millions of instructions).

« The computing capacityf each machine (imips.

« Ready timeready,, indicates when machine: will Cellular GAs [1], [3], [12] are structured population
have finished the previously assigned tasks. algorithms with a high explorative capacity. The indivithia

« The Expected Time to ComputeE{C) matrix composing their population are (usually) arranged in a two
(nb_tasks x nb_machines) in which ETC|t][m] is dimensional toroidal mesh. This mesh is also called grid.

", Recombination

Mutation

Replacement

3.1. Cdlular GAs

the expected execution time of taslon machinem. Only neighboring individuals (i.e., the closest ones mezsu
in Manhattan distance) are allowed to interact during the
2.2. Optimization criterion breeding loop (see Figure 1). This way, we introduce a

form of isolation in the population that depends on the

We consider the task scheduling as a single objectivgjistance between individuals. Hence, the genetic infdonat
optimization problem, in which the makespan is minimized.of 3 given individual spreads slowly through the population
Makespanthe finishing time of latest task, is defined as (since neighborhoods overlap). The genetic information of
. an individual will need a high number of generations to reach

minmax{F, : t € Tasks} (1) distant individuals, thus avoiding premature convergesfce

where F; is the finishing time of task in schedulesS. the pop_ulation. By structuripg the PF’P“_'a“O” in this way,
For a given schedule, it is quite useful to define thee achieve a good exploration/exploitation trade-off oa th

completion timeof a machine. This time indicates when the S€arch space. This improves the capacity of the algorithm to
machine will finalize the processing of the previous assigne SOIV& complex problems [1], [13].

tasks as well as of those already planned. Formally, for a
machinem and a schedul®, the completion time ofn is ~ Algorithm 1 Pseudo-code for a canonical CGA (asyn-

defined as follows: chronous).
1: while ! StopConditiof) do
2: for all ind in populationdo

completion|m| = ready,, + Z ETClt)[m] . (2) 3 neigh «— get neighborhoo¢ind);
tesS—1(m) 4: parents «— selectneigh);
. . 5: of fspring < recombinép_comb, parents);
We can then use the values of completion times to mutatdp_mut, of f spring);
compute the makespan as follows: 7: evaluatéof f spring);
8: replac€ind, of f spring);
9: end for

méin max{completion[m| | m € Machines} . (3) 10 end while

A canonical CGA follows the pseudo-code of Algo-
rithm 1. In this basic CGA, Each individual in the grid is
iteratively evolved (line 2). A generation is the evolutioh
all individuals of the population. Individuals may only ént
act with individuals belonging to their neighborhood (I8
so parents are chosen among the neighbors (line 4) with a
given criterion. Recombination and mutation operators are
applied to the individuals in lines 5 and 6, with probaleidi
p_comb andp_mut, respectively. Afterwards, the algorithm
computes the fitness value of the new offspring individual (o
individuals) (line 7), and replaces the current individ(ad
individuals) in the population (line 8), according to a give
replacement policy. This loop is repeated until a termorati
condition is met (line 1), for example: the total elapsed
processing time or a number of generations.

The CGA described by Algorithm 1 is called asyn- N)
chronous, because the population is updated with next gener Figure 2: Partition of an 8x8 population over 4 threads.
ation individuals immediately after their creation. Thessv
individuals can interact with those belonging to their pdse
generation. Alternatively, we can place all the offspring The combination of a concurrent execution model with the
individuals into an auxiliary population, and then replaceneighborhoods crossing block boundaries leads to conaurre
all the individuals of the population, with those from the access to shared memory. For example, the neighlwdran
auxiliary population, at once. This last version is refdrte individual might belong to a different block. The thread
as the synchronous CGA model. As it was studied in [1],evolving this other block could be updating individual
[14], the asynchronous CGAs converge the population fasteprecisely when the thread evolvirigs accessing it. Without

than the synchronous CGAs. care, this can result in incorrect results. This error can
occur when selecting a parent from a neighborhood (non-
3.2. Parallel Asynchronous Cellular GA atomic read operation), or recombining (a non-atomic read

operation of the parent) that belongs to another block and

In this paper, we present our parallel asynchronous CGAs currently being replaced (a non-atomic write operation)
(PA-CGA), based on [7]. We partition the population into a To enable safe concurrent memory access, we synchronize
number of contiguous blocks with a similar number of indi- access to individuals with a POSIX [15] read-write lock.
viduals (Figure 2). Each block contaipsp_size/#threads ~ This high-level mechanism allows concurrent reads from
individuals, where#threads represents the number of different threads, but not concurrent reads with writes, no
concurrent threads executed. We partition the populatiogoncurrent writes. In the two latter cases, the operatioas a
by assigning successive individuals to the same block. Thé&erialized.
successor of an individual is its right neighbor. We move to Asynchronous CGAs can visit individuals in different
the next row when we reach the end of a row (our grid isorders [14]. In this work, all threads will sweep through
2-dimensional). We assign each block to a different threadtheir population in the same fixed order. This means that
which will evolve the individuals of its block. we are using the line sweep policy in every block. Note

In order to preserve the exploration characteristics othat this is not exactly the same as the line sweep policy
the CGA, communication between individuals of differenttypically used in asynchronous CGAs. In our case, all blocks
blocks is made possible. As mentioned in the previousare updated concurrently. We experimented different sweep
section, at each evolution step of an individual, we defime it orders for different blocks, in hope of limiting memory con-
neighborhood. This neighborhood may include individualstention, but we did not notice any significant improvement
from other population blocks. This allows an individual's in the algorithm’s execution speed. We attribute this to the
genetic information to cross block boundaries. unpredictable nature of the thread’'s execution, while the

Threads evolve their population block independently.alternative sweep policies per thread assumed a predictabl
They do not wait on the other threads to complete theiffixed, thread execution by the operating system.
generation (the evolution of all the individuals in their Algorithms 2 and 3 provide a more detailed description
block) before pursuing their evolution. Hence, if a bregdin of the algorithm. Functiondo_parallel(f, parm) means
loop takes longer for an individual of a given thread, thethat f(parm) is executed by all threads in parallel, but
individuals evolved by the other threads may go throughon different data items. All threads join before the next
more generations. instruction.

Algorithm 2 Pseudo-code for our proposed parallel asyn-

chronous CGA (PA-CGA). [== >) (> O)
1: to < time(); // record the start time —
2: pop «— setup_pop(); I/ initialize population - _ Completion
3: par — setup_blocks(pop); I set parameters for all threads Machine i) (Machinel [Timet
4: do_parallel(initial_evaluation, par); Il each thread evalu- (== (1) (
ates its block |] | ﬁ ﬁ D
5: do_parallel(evolve, par, to); Il each thread evolves its block, . Completion
see Algorithm 3 \ Task 2 | Machine) Machine2 | Tme2 |

Algorithm 3 Pseudo-code fogvolve().

1: while time() — to < time do
2. for all ind in a thread’s blockdo

neigh «— get_neighborhood(ind); =
parents «— select(neigh); absly = = D
of fspring «— recombine(p_comb, parents);

N

3:
4.
5:
6: mutate(p_mut, of fspring); T ol Co_‘r_ri\z::on
7: H2LL(p_ser,iter,of fspring);
8: evaluate(of fspring);
1?):- engef%lrace(md’ of fspring); Figure 3: Representation of solutions. In addition to the

11: end while task-machine assignments (left-hand side), we store the
completion time for every machine too (right-hand side).
Variation operators are only applied on the task-machine

Function initial_evaluation() computes the fithess of assignments.
all individuals in the initial population. The stop conditi
for this grid scheduling problem is a wall clock time. The
asynchronous model moves the stop condition verification The representation we use for independent task scheduling

into evolve. on grids is shown in Figure 3. It is composed of:
From Algorithm 3, we notice that the thread checks the « an arrayS of integers,S[t] = m, representing the
current time after evolving all the individuals of its block assignment of task to machinem,

This could let the thread run for longer than the allowed « an arrayCT of floating point valuesCT[m] = ¢,
time. We accept this approximation since one generation of representing the completion time of each machine
the entire block takes less than 6 ms in our experimentsyhe completion times are often used, therefore maintaining
while the time is expressed in tens of seconds. The eVO"JtiOUp-to-date completion times for all machines speeds up
step also p_erforms a local sea_rch operation. This opergtion computations. Thevaluate() function of Algorithm 3 only
presented in the next subsection. We parametéfiz€L(), finds the maximum completion time. The completion times
our local search, with a number of iteration®r, which 5e kept up-to-date by each operator (recombine, mutation,
sets the number of passes. Finaltyaluate() computes the |ocal search). Such updates are efficiently performed by
makespan of the schedule. adding or removing the ETC of a task on a machine to
the appropriate completion time. As can be noticed from
Algorithm 4, we use the transposed ETC matrix. This
increases the cache hit rate, and thus the overall perfa@nan
of the algorithm. Indeed, when accessing an ETC for a task
We also propose a new local search operator for then a machine, this ETC value is cached, but so are the
problem considered. neighboring values (caches operate on cachelines). If we
We refer to a machine’s completion time as Itad. store the transposed ETC matrix, then these neighboring
The local search operator moves a task, randomly chosemalues are the ETC values for the next few tasks on the
from the most loaded machine to a selected candidateame machine (exactly how many depends on the size of a
machine (the most loaded machine’s completion time definesacheline). So, if the schedule assigns one of the next tasks
makespan). The candidate machines areNhkeast loaded to the same machine, then this ETC value is present in cache.
(IV is a parameter). A candidate machine is selected if itd4Ve measured an improvement in the algorithm’s execution
new completion time, with the addition of the task moved,time of 5-10%. Indeed, this improvement is comparable to
is the smallest of all the candidates. This new completiorthe uniform probability for such an event (next task assigne
time must also remain inferior to the makespan. Algorithm 4to same machine)l /#machines, we use 16 machines in
describes this operator. our experiments.

3.3. Local Search and Solution Representation

Algorithm 4 Pseudo-code foH/2LL, our local search. The benchmark instances consist of 512 tasks and 16
1: for all iter iterationsdo o machines. These instances represent different classes of
2: sortmachines on ascending completion time ETC matrices. The classification is based on three parame-

3 task — random task from lasmachines; ters: task heterogeneity, machine heterogeneity and ssonsi

4: best_score — CTllast machines]; I/ makespan ’ 9 Y, 9 Y ’

5. for all mac in pop_size/2 first machines do tency [17]. Instances are labelled asx_yyzz.k where:

6 new_score « CT[mac] + ETC[mac][task]; u stands for uniform distribution (used in generating

7 if new_score < best_score then .

- the matrix).

8 best_mac +— mac; . .

9 best score mew score: x stands for the type of consistenayfér consistent,
10: end if B i for inconsistent, and for semi-consistent). An
11: end for _ ETC matrix is considered consistent when the
E: (Tfovetask to best_mac if any following is true: if a machinen; executes a task

ren or

faster than maching:;, thenm; executes all tasks
faster thann;. Inconsistency means that a machine
) is faster for some tasks and slower for some others.
4. Experiments An ETC matrix is considered semi-consistent if it
contains a consistent sub-matrix.
This section presents the results of our experiments with 4 indicates the heterogeneity of the tasks eans

PA-CGA. Section 4.1 describes both the parameterization high, andlo means low).
of the algorithm and the instances of the problem we are ., indicates the heterogeneity of the resourcés (
solving. Section 4.2 reports and discusses the results. means high, andb means low).
k numbers the instances of the same type.
4.1. Parameters and Problem Instances We report computational results for the following 12 in-

stances, for which we provide their Blazewicz [18] notation
The algorithm parameters are summarized in Table 1. We u_c_hihi.0: Q16]26.48 < p; < 2892648.25|Cypyaq
are using a population of 256 individuals. The population is u_c_hilo.0: Q16/10.01 < p; < 29316.04|Croas;
initialized randomly, except for one individual. The schkxd u_c_lohi.0: Q16]12.59 < p; < 99633.62|Cinaq;
for this individual results from théMin-min heuristic [16]. u_c_lolo.0: Q16]1.44 < p; < 975.30|Cynaa;
The linear 5 (LS) neighborhood, also called Von Neumann | o, i pini.0: R16/75.44 < p; < 2968769.25|Cran;
neighborhood, is composed of the 4 nearest individuals, , ; pil0.0: R16]16.00 < p; < 29914.19|Cyraa’
p|US the individual evolved. This neighborhood is chosen o u_i_lohi.0: R16‘1321 Spj < 9832366|Cm,n«,
to reduce concurrent memory access. The 2 best neighbors u_i_l0lo.0: R16]1.03 < p; < 973.09|Cyaa:
are selected as parents. The recombination operators used, u_s_hihi.0: R16/185.37 < p; < 2980246.00|Cpan;
are the one-pointopx) and the two-point crossovet). u_s_hilo.0: R16(5.63 < p; < 29346.51|Chag;
The mutation operator moves one randomly chosen task to , , s 15n4.0: R16/4.02 < p; < 98586.44|Cynaq
a randomly chosen machine. The newly generated offspring , , s j4/0.0: R16|1.69 < p; < 969.27|Cqz-
replaces the current individual if it improves the fithess
value. Finally, the termination condition is an execution
time of 90 seconds. The number of threads used in all oud.2. Results
experiments ranges from 1 to 4. All threads run on one
processor. The processor used for the experiments is dn Inte We now present and discuss the results of our compu-
Xeon E5440 clocked at 2.8 GHz, with 6 MB L2 cache. This o4i5na| experiments. The discussion includes a compariso
processor has 4 cores. It was released in 2007.

with other algorithms in the literature.
We first study the speedup of the algorithm as an indica-
tion of its scalability: how performance improves with the

__Table 1: Parameterization of PA-CGA. number of threads. This study helps tune the optimal number
Eggg:g{:gﬂ tisliation Moo @ ind) of threads for the experiments. Speedup is usually defined as
Cell update policy fixed line sweep per block
Neighborhood linear 5
Selection best 2 S(TL) = time(l)/time(n) , (4)
Recombination one-point and two-point crossover,comb = 1.0
Mutation move,p_mut = 1.0
Local search H2LL, p_ser = 1.0, iter = 5,10
Replacement replace if better wheren is the number of machines, or processors. In the
Stopping criterion 90 seconds, wall time i)) .

Number of Threads 1to4 problem studied here, time is fixed to 90 seconds. We

therefore replace time with the total number of evaluations

200 : : Table 2: Comparison versus other algorithms in the litera-

O iteration —— o

s ieraion - ture. Mean makespan values.
10 iterations &
180 P | instance Stru?%? GA cMA[2+O]LTH P%CSSCA PA-CGA
160 |] u_c_hini.0 7752349.4 7554119.4 7518600.7 74375913
" o u_c_hilo.0 155571.48 154057.6 154963.6 154392.8
% e u_c_lohi.0 250550.9 247421.3 245012.9 242061.8
g wr e] u_c_lolo.0 5240.1 5184.8 5261.4 5247.9
0 u_s hihi.0 4371324.5 4337494.6 4277497.3 4229018.4
u_s_hilo.0 983334.6 97426.2 978416 974248
E u_s_lohi.0 1277625 128216.1 126397.9 1255793
u_s lolo.0 3539.4 3488.3 3535.0 3525.6
u_i_hihi.0 3080025.8 3054137.7 3030250.8 3011581.3
u_i_hilo.0 76307.9 75005.5 74752.8 74476.8
u_i_lohi.0 107294.2 106158.7 104987.8 104490.1
u_i_lolo.0 2610.2 2597.0 2605.5 2602.5
60 L
1 2 3 4
Threads all running threads. Increasing the number of threads with

little data locality negatively impacts performance. Frima
speedup results, we notice that 3 threads reach the maximum
number of evaluations, so we adopt this model for the next

With time, a performance improvement corresponds to étud|es in this paper. _ o
smaller execution time, but with evaluations, an improve- Next, we examine the impact of the recombination opera-

ment corresponds to more evaluations. This leads to thE?rs epz andtpz), and the number of local search iterations
following definition of speedup used in this paper: (5 and 10). Figure 5 presents these results. They are odtaine
over 100 independent runs. Three threads are used. A box

S(n) = #evaluations(n)/#evaluations(l) , (5) plot is provided for each instance file. In these plots, when
)]) the notches in the boxes does not overlap, we can conclude,
where#evaluations(n) is the mean number of evaluations \yith 9594 confidence, that the true medians differ. We notice
over 100 independent runs, ands the number of threads. hat gverall, thetps recombination operator provides better

Figure 4: Speedup of the algorithm.

Figure 4 shows how performance evolves with the: mean makespan results thame. Furthermore, 10 iterations
o number of threads, of our local searchH2L L achieve a better mean makespan
« number of local search iterations. than 5. With statistical significance, we can state tha/ 10

We first observe that without local search (0 iteration)performs better thampz/5 for all instances. It finds the
the performance decreases with the number of thread§est mean makespans in most instances, but not in all. For
This result is essentially due to thread synchronizationthe consistent instancespz and tpz find similar mean
Without local search, the evolution of an individual regsir Makespan values. For the next studies in this paper, we use
less computation, but the same amount of synchronizatiofhe tpz recombination and 10 local search iterations.

(for recombination and replacement). So the proportion of Table 2 presents a comparison of our results with others
computation under synchronization increases. In additionfound in the literature. Results for cMA + LTH (a CGA
increasing the number of threads reduces eace. Given thybridized with Tabu search) [20] and struggle GA (a non-
partition of the population, a smaller block means that moredecentralized population GA) [19] are averages over 10
individuals are on the boundary of the block, where theindependent runs, and they were taken from the original
neighborhood therefore crosses block boundaries and mayapers. We propose 2 sets of results for our algorithm,
cause synchronization delays. The combination of thes®A-CGA. One for runs of 10 seconds, another for runs of
factors lead to more synchronization delays, which deeseas 90 seconds. For both run times, the results presented are
performance when the number of threads increases. averages of 100 independent runs. Makespan values in bold

As the number of local search iterations increases, mor#dicate the best results for an instance, or if 10 seconds
computation outside synchronization is performed (localof runtime of our algorithm achieves better results than the
search is performed on the offspring). This reduces synliterature.
chronization delays, and we achieve positive speedups. Yet We present results for runs of 10 seconds because of the
we notice that with 5 or 10 local search iterations, there idifference in computing platforms used in [20] and in our
no more performance gained when increasing the number @xperiments. In [20], all experiments were conducted on
threads from 3 to 4. This is caused by the smaller block sizea AMD K6 450 Mhz processor. This machine is slower
Although more time is spent in local search, the proportionthan the one we use. To account for this difference, we
of individuals on the boundary of their block increases, andvish to reduce the runtime in our experiments, in the
with fewer individuals to process, synchronization is moresame proportion. We therefore benchmark both machines,
frequent. Finally, the processor level 2 cache is shareasacr compute the performance ratio of the 2 machines, and apply

o Instance u_c_hihi.0 . Instance u_c_hilo.0 e Instance u_c_lohi.0 Instance u_c_lol0.0
1558

752 . 1556 . 247 5200) +
1554 i — a8 5260 i ! -
& | . ! j | !
J— + 1.552] I + ' ! i
< < i I . < < 5270 i
§ :] g ! i R S— § ! '
9 749 i I T & 155 I ' i - g j _ g ! !
K !] z i ! | ! g : 1 € 550 ' 1
] ! | - 2 I | I S2m i + g
= I I i = | sug I ! = I | =
g ! ! ! g ! | g ! ' - g |
& 7.49] i I | & ! & i § 5250 I
g 1 g 1549 g 1 1 2 ! 1
: o < < 5240 ' !
4 24 ' 4 ! '
I | I !
: i 152 | o]] 5230 ! 1 '
742 I I !] - ! ! 241 ! : !] o ! 1
' - '] 154 i I 1] s220) 1 -
- —_ - —_ — —_ — —_
24
opis s opxi10 w10 ops w5 opwi1o P10 opis s opxi10 w10 ops o5 opwi10 w10
<10 Instance u_s_hihi.0 10t Instance u_s_hilo.0 <10 Instance u_s_lohi.0 Instance u_s_lol0.0
995
434] 18 T
3600)
amb 1275 —

126

e
L
-
-
= m !
=
L
s
00
et
(1
-
==
Y}
-

i i : sl : sl | i
42 ! i i !
- I I T
s i ' o 122 1 1 . - ! 1
I - i o I
. e 3500 e
1
opis s opwi10 a0 o5 w05 P10 w10 onis s op10 w10 o5 w05 opwi10 pu10
w0 Instance u_i_hihi.0 ot Instance u_i_hilo.0 g Instance u_i_lohi.0 Instance u_i_lolo.0
759 2660
a1 107
7saf — 2650

3,08

§Avevage§ Makespan
00
0
O
-
| A‘g'age EMakesr)an
00
[
}' : ‘ge’ag;:akespan
e
e}
B¢
Average Makesp:
0
-
s}
o-

1035 | I I ! — I

opui5 [opx10 P10 opii5. 95 opu/10 pu/10 opiis [opK10 P10 opxi5. 195 opu/10 px/10

Figure 5: Comparison of recombination operators and loeatch iterations.

it to our runtime. Unfortunately, we do not have access e R —
to a AMD K6 450 Mhz machine. However, there exists resete g Gieade T
one benchmark whose results for this machine have been 7526406 I 1
published, and is available for execution on our machine. 7510406 1
It is the program TSCP 1.7.3 [21]. One advantage of this : s |
benchmark is that it implements a combinatorial algorithm, £ 7400406 |
and does not test a specific processor feature. Executing the z B |
benchmark shows a performance ratio of 9 between the 2
machines. Therefore, we provide results for runs9of9 e]
seconds, as a comparison point. apeee —]
Table 2 shows that PA-CGA improves most previous re- e
sults. Particularly, it provides the best results for ingistent T o o0 mw wem mw0 300
instances (where the performance of a machine varies from Figure 6: EVO|utioﬁneg¥nsthe algorithm.

one task to another) and for instances of high heterogeneity

in tasks and resources. It improves half of the results far co We can also notice that our algorithm improves the results
sistent, and semi-consistent instances. It does not ineprovfor instances with greater makespan values.

results for instances where the tasks and resources have aFigure 6 shows how makespan, averaged across the
low heterogeneity (homogeneous). These results are usefpbpulation (all threads) and over 100 independent runs,
because inconsistent instances, and instances with ragh taevolves with the number of generations. All runs process the
and resource heterogeneity, represent the more complex ¢_hihi.0 instance file. The stop condition is 90 seconds
problem formulation of independent task scheduling. Alsowall time. Each line corresponds to a different number of
scheduling independent near-homogeneous tasks on nedinreads. In order to display differences, a subset of the
homogeneous machines can be effectively addressed wittomain (generations) is plotted. First, we notice that ivgin
alternative simpler and faster methods, such as heurf8fics the algorithm with 1 thread evolves for less generationa tha

with more threads, in the allocated time. Also, 1 thread finds [8] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman,

worse average makespan, at any generation. It is impodant t

note that our algorithm configured for 1 thread represemts th

canonical asynchronous CGA of Section 3.1. With 4 threads,

we observe that the algorithm converges faster initially, b
fails to reach the best solutions. Running the algorithniwit
3 threads finds the best solutions.

5. Conclusion and Future Work

We presented in this paper a new parallel asynchronougoj

CGA algorithm for multi-core processors. This algorithm

was applied to the problem of independent task scheduling

on a grid. We evaluated the performance of this algorith

on benchmark instances, and improved previous results.

Future work will focus on increasing the parallelism of the
algorithm. This means both providing greater parallelism

and improving its ability to find good solutions. Since the (1

evaluation will require machines with many cores, we will
target GPU processors. Also, we will apply future parallel

models on bigger benchmark instances of the independefft3]

task scheduling on grids problem.

References [14]

[1] E. Alba and B. DorronsoraCellular Genetic Algorithmsser.
Operations Research/Compuer Science Interfaces. Springer-
Verlag Heidelberg, 2008. [15]

(2]

(3]

(4]

G. Robertson, “Parallel implementation of genetic algorithms
in a classifier system,” ifProc. of the Second International
Conference on Genetic Algorithms (ICGA) J. Grefenstette,
Ed. L. Erlbaum Associates Inc., 1987, pp. 140-147.

B. Manderick and P. Spiessens, “Fine-grained parallel geneti

algorithm,” in Third International Conference on Genetic TN]

Algorithms (ICGA) J. Schaffer, Ed.
1989, pp. 428-433.

Morgan Kaufmann,

G. Luque, E. Alba, and B. Dorronsor@ptimization Tech-
niques for Solving Complex Problems Wiley, 2009, ch.
Analyzing Parallel Cellular Genetic Algorithms, pp. 49-62.

[5] ——, “An asynchronous parallel implementation of a cel-

(6]

(7]

lular genetic algorithm for combinatorial optimization,” in [19]

Proceedings of the International Genetic and Evolutionary
Computation Conference (GECCO)ACM, 2009, pp. 1395—
1402.

I. Foster and C. Kesselmaiihe GRID: Blueprint for a New
Computing Infrastructure Morgan Kaufmann, 1998.

F. Pinel, B. Dorronsoro, and P. Bouvry, “A new parallel
asynchronous cellular genetic algorithm for de novo genomic
sequencing,” inProceedings of the IEEE International Con-
ference on Soft Computing and Pattern Recognition (SOC
PAR09) 2009, pp. 178-183.

(16]

(18]

(20]

[21]

“Heuristics for scheduling parameter sweep applications in
grid environments,” inrHeterogeneous Computing Workshop
2000, pp. 349-363.

T. D. Braun, H. J. Siegel, N. Beck, L. L. @dni, M. Mah-
eswaran, A. |. Reuther, J. P. Robertson, M. D. Theys, B. Yao,
D. Hengsen, and R. F. Freund, “A comparison of eleven
static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systedwmjrnal

of Parallel and Distributed Computingvol. 61, no. 6, pp.
810-837, 2001.

A. Ghafoor and J. Yang, “Distributed heterogeneous super-
computing management systemlEEE Comput. vol. 26,
no. 6, pp. 78-86, 1993.

M. Kafil and I. Ahmad, “Optimal task assignment in hetero-
geneous distributed computing system&EE Concurrency
vol. 6, no. 3, pp. 42-51, 1998.

2] D. Whitley, “Cellular genetic algorithms,” irFifth Interna-

tional Conference on Genetic Algorithms (ICGA&) Forrest,
Ed. California, CA, USA: Morgan Kaufmann, 1993, p. 658.

E. Alba and M. Tomassini, “Parallelism and evolutionary al-
gorithms,” IEEE Transactions on Evolutionary Computatjon
vol. 6, no. 5, pp. 443-462, October 2002.

E. Alba, B. Dorronsoro, M. Giacobini, and M. Tomassini,
Handbook of Bioinspired Algorithms and Application€RC
Press, 2006, ch. Decentralized Cellular Evolutionary Algo-
rithms, pp. 103-120.

IEEE and The Open Group, “Posix (ieee std 1003.1-2008,
open group base specifications issue 7),” http://www.unix.org,
2008.

O. H. Ibarra and C. E. Kim, “Heuristic algorithms for schedul-
ing independent tasks on nonidentical processdmsjtnal of
the ACM vol. 24, no. 2, pp. 280-289, 1977.

S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and
S. Ali, “Representing task and machine heterogeneities for
heterogeneous,Journal of Science and Engineering, Special

50 th Anniversary Issyevol. 3, pp. 195-207, 2000.

J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan,
“Scheduling subject to resource constraints: classification and
complexity,” Discrete Applied Mathematicsol. 5, pp. 11-24,
1983.

F. Xhafa, “An experimental study on GA replacement op-
erators for scheduling on grids,” ithe 2nd International
Conference on Bioinspired Optimization Methods and their
Applications (BIOMA) Ljubljana, Slovenia, October 2006,
pp. 212-130.

F. Xhafa, E. Alba, B. Dorronsoro, and B. Duran, “Efficient
batch job scheduling in grids using cellular memetic algo-
rithms,” Journal of Mathematical Modelling and Algorithms
vol. 7, pp. 217-236, 2008.

T. Kerrigan, “Tom kerrigan’s simple chess program,”
http://www.tckerrigan.com/Chess/TSCP/.

