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Abstract—This study investigates the data preparation process
for predictive modelling of the evolution of complex networked
systems, using an e-mail based social network as an example. In
particular, we focus on the selection of optimal time window
size for building a time series of network snapshots, which
forms the input of chosen predictive models. We formulate this
issue as a constrained multi-objective optimization problem,
where the constraints are specific to a particular application and
predictive algorithm used. The optimization process is guided
by the proposed Windows Incoherence Measures, defined as
averaged Jensen-Shannon divergences between distributions of a
range of network characteristics for the individual time windows
and the network covering the whole considered period of time.
The experiments demonstrate that the informed choice of window
size according to the proposed approach allows to boost the
prediction accuracy of all examined prediction algorithms, and
can also be used for optimally defining the prediction problems
if some flexibility in their definition is allowed.

I. INTRODUCTION

In this paper we investigate the process of data prepara-
tion for subsequent modelling of the dynamics of complex
networked systems. In our view this fundamental issue did
not receive due attention in the complex networks literature
and hence lacks wider recognition in the complex systems
community. On the contrary though, various studies in the
area of applied data mining [25], suggest that data preparation
can take up to 80% of the modeling efforts and is absolutely
crucial for development of top-performing and, even more
importantly, meaningful models. Since in our recent research
[16]-[18], [26] we have been focusing on the analysis of the
dynamics of complex networks in the context of predictive
tasks (e.g. which links are likely to appear or disappear in
the future), we are effectively balancing at the boundary of
the two disciplines. For the fusion of these sciences to be
most beneficial, we find it necessary to transfer good practices
between the two, with careful and concise data preparation
being one of the key data mining practices that should be
applied in other disciplines.

In particular, in this study we focus on the process of
slicing the available data describing the evolution of an e-

mail network over time, into a number of time windows,
effectively forming a time series of network snapshots that can
subsequently be used for training a predictive model. We pro-
pose and investigate a principled way of selecting an optimal
time window size, which allows to achieve good prediction
performance, at the same time respecting the application and
predictive method specific constraints, like minimal length of
the time series or required prediction horizon.

One of the main motivations of the presented approach is the
intuition that some key characteristics, of an evolved network
are not likely to change over time. As a result, for example
a random network is not likely to evolve into a scale-free
network. In most cases, the characteristics like degree and
motif distributions, network diameter etc. remain relatively
stable, despite the fact that the node activity fluctuates and
networks undergo rewiring on the local topology level. Hence
we postulate that it is crucial for the networks represented
in the time windows to have similar properties to the global,
evolved network for the prediction problem to be meaningful.
If this condition is not met, due to the distorted and noisy
nature of the input time series, it can be hardly possible to
achieve prediction accuracy better than chance.

In this study we also argue that analysis of dynamics of a
complex networked system should always be performed in a
context of what the network actually represents. Given a graph
which describes some unknown network, assuming that every
edge corresponds to a relation might be an overstatement. In
email network for example, the mere fact that a message has
been sent from email account A to email account B does
not necessarily imply a relation between account owners. If
the message was sent by a computer virus or the network
represents exchange of messages on a dating site and user B
has never responded, we can hardly call this a relation.

This paper is structured as follows. In Section II we describe
the classical network growth models, focusing on their applica-
bility to prediction of network evolution in a given time frame
on a local scale. Section III has been devoted to the definition
of relation in a network, various time window types and units.



In Section IV we sketch a new approach to the problem of
optimal choice of time window size by using the proposed
Window Incoherence Measures in a course of constrained
optimization. Section V presents the experimental results for
an e-mail communication network, while the conclusions and
future research directions can be found in Section VI.

II. NETWORK TYPES AND GROWTH MODELS

There are many types of complex networked systems. One
of the classifications distinguishes infrastructural (Internet,
WWW, energy and transportation networks) and natural com-
plex systems (biological networks, social systems and ecosys-
tems) [6]. Although all of them consist of nodes and interac-
tions between them, their structures and dynamics differ. Most
of the existing network models were developed to some extent
based on the observation of the real-world networks. Usage
of these models results in creation of networks that follow
specific node degree distributions. Additionally some of them
feature communities and short paths between nodes. Most
often used networks architectures are (1) regular networks,
(2) random graphs (with short paths), (3) small-world networks
(with short paths and high clustering), and (4) scale-free
networks (with hubs — highly connected nodes) [5], [31].
The overview of the main characteristics of these models is
presented in Table 1.

Regular simple architectures such as chains, grids, lattices
and fully-connected graphs do not model any specific char-
acteristics of real-world networks but in turn they allow us
to focus on the complexity caused by the nonlinear dynam-
ics of the nodes, without being burdened by any additional
complexity in the network structure itself [31].

Random graphs are characterized by node degree distribu-
tion P(k), giving the probability that a node in the network is
connected to k other nodes, that peaks at an average < k >
and decays exponentially for large k. The emerging structure
features small-world effect, i.e. the degree of separation be-
tween two randomly picked nodes is small. At the same time
random networks are not clustered, hence the communities
are not present. Erdos and Renyi in [29] presented the formal
theory of random networks. The detailed description of models
and features of random graphs is presented in [9].

Small-world model is another approach to describe social
networks [33]. In opposite to random graphs, small-world
network is a structure with high clustering coefficient. The
friend of a friend phenomenon where people tend to create
dense groups is one of the main characteristics of these
networks. At the same time short paths between nodes are also
present. Both random and small-world models lead to a fairly
homogeneous networks, in which each node has approximately
the same number of links, k ~< k > [3].

Another network model, which is widely used, is the scale-
free model that is a useful approximation of large networks
for which P(k) follows a power-law, that is P(k) ~ k=7, free
of a characteristic scale. This type of node degree distribution
can be observed in the World-Wide Web [2], [14], the Internet

[13] and other large networks [30]. Hubs — highly connected
nodes are statistically significant in scale-free networks [3].

There has been extensive research devoted to analyzing the
proposed models [1], [8]. Characteristics and processes such
as weak links, synchronisation, spread of information/diseases,
stability, robustness and resilience are well defined for existing
models. The dependance on a small number of network
properties (primarily the node degree distribution) is their main
limitation. Even if a network can be described by a given node
degree distribution, it was shown that the underlying local
structure can change dramatically.

TABLE I
NETWORK MODELS CHARACTERISTICS; N-NUMBER OF NODES;

Feature Random Small-world Scale-free
Networks Networks Networks
Degree Poisson Poisson Power—law
Distribution dist. dist. dist.
Clustering Low High Higher than in
Coefficient = ULN = 23((2’1:11)) -(1 —p)® | random network
p — rewiring probability ~ N—0.75
Average Small Small Small
Path s = ~ b
Length

As more and more data becomes available for network
analysis, the need for more detailed modelling techniques is
clearly visible. In addition, the dynamics of the systems is a
very important element to model and as one can see the models
themselves do not support such task. Thus, there were several
methods proposed to describe the growth and dynamics of
networked systems, such as preferential attachment or vertex
coping models [28]. There are also some approaches that aim
at developing specific models for online social networks and
take into consideration some information characteristic to such
networks [10], [21], [22].

One of the main drawbacks of all these growth models is
that they are only able to account for global properties of
the network. This can mean that for example in preferential
attachment, although the number and degree of hubs might
be predicted relatively well, this may not be true for the
identity of the nodes which became hubs. Hence predicting the
exact location of a new node/edge in the network is beyond
the ability of this class of models. Also, all the network
models discussed above are time independent, i.e. they assume
that new node/edge will come to the network at some point
that is not defined in the context of time. In the real-world
networks time is the inseparable element of their evolution
and it cannot be neglected during the analysis. Thus, it is
crucial to investigate the system dynamics at the right level of
granularity as depending on the size of time window one can
obtain different results of the analysis. As it has been shown
in [32] too small time window can result in a very noisy data
to be analysed whereas too big can hide interesting patterns
as the network may seem to be stable structure. Although the
concept presented in [32] is worth mentioning, the authors did



not perform extensive studies to investigate it further.

III. RELATIONS AND TIME WINDOWS

An important issue in social network analysis is the defi-
nition of a relation. As mentioned before, this is even more
crucial in the case of an e-mail network, where assuming that
the mere fact of sending a message forms a relation can be
misleading [12]. The relation should be defined in the context
of a particular application, taking into account application-
specific phenomena like the bursty nature of communication
[4] etc. In a company e—mail network it may for example make
sense to define a relation as an exchange of e-mail messages,
which takes place within a number of business days. The actual
number of days can be determined from the data (e.g. how fast
and how many messages must be exchanged in order for the
communication to occur again in the future).

The data coming from the e-mail server log are sequential,
i.e. every e-mail message has a timestamp, which imposes a
natural ordering of the messages. This ordering paired with
an appropriate definition of a relation allows us to reconstruct
the history of the social network evolution. In order to use
this data for predicting what the network will look like in
the future, it first needs to be divided into sequential chunks
(time windows) effectively forming a multivariate time series
consisting of a number of network snapshots. As demonstrated
in Section V the way in which this time series is constructed
is critical for the usability of the resultant predictive model.

Before discussing the types of the time windows we first
define what a fixed-size and variable-size window is, in
the context of different units that can be used to measure
window size. Intuitively, the general rule is that a fixed—size
window covers a fixed number of window size units, while
a variable-size window does not. This property however does
not necessarily translate across the units — a fixed—size window
in terms of unit Y can at the same time be a variable—size
window in terms of unit Z. The window size measures we
propose to use have been summarized in Table II.

TABLE II
WINDOW SIZE MEASURES
measure symbol 7 dep e;dcency NG
time T FIX | VAR | VAR
edge count Ec VAR | FIX | VAR
node count N¢ VAR | VAR | FIX

As it can be seen, in our case fixing the window size S
in terms of any of the measures, makes the remaining two
variable across multiple windows (the ‘dependency’ column).
For example, if we decide to keep the window fixed in terms
of time and set its size to one week, the number of edges and
nodes from one window to another will most likely vary.

One argument for using the edge count rather than time to
measure window size is the need for thresholding of the scores,
which are the outputs of many predictive algorithms, including
the Triad Transition Matrix (TTM) predictor [16] used in our

experiments. If we don’t know how many new edges to expect
in the next time window, determining the correct value of the
cut—off threshold might be difficult. If however we use the
edge count as a measure of window size and increase it by
a fixed number every time, then this fixed step automatically
becomes the number of new edges. In this case however we
are not able to give a precise time horizon for their appearance,
similarly to the classical network growth models discussed in
Section II, although it can be estimated from past observations.

Depending on the longevity of the relation the following
types of time windows can be distinguished:

o Growing time window, which accommodates new incom-
ing data without discarding old data and thus reflecting
the assumption that once formed, a relation never disap-
pears. This kind of window is variable—size in terms of all
three measures given in Table II and can be used to model
some types of networks like for example a network of
acquaintances, in which the state of knowing somebody
lasts indefinitely.

o Sliding time window, which has a fixed size in terms
of the selected measure from Table II and hence in
order to accommodate new data, old data must be
dropped/forgotten.

An important parameter of the time window approach is the
step at which the window grows or slides. This parameter is
crucial as it determines the prediction horizon. For example, if
one is interested in predicting what new links will appear in the
network during the next week, i.e. the prediction horizon H is
set to 7 days, the historical data needs to be divided into time
windows by growing or sliding the initial window by exactly
7 days before being used for predictive model training.

IV. OUR APPROACH

For the predictive problem to be meaningful, time windows
should be constructed in such a way, that the properties of
the networks contained within each window are as close as
possible to the characteristic of the global network (i.e. the
network within the whole period covered by the input data).
In other words, while the definition of the relation should be
application—driven, the parameterization of the time windows
should be data—driven, whenever possible.

A list of network properties/characteristics we have used
in this study is given in Table IIl. The list is by no means
exhaustive but we have chosen a blend of both local and global
properties, each having different computational complexity.
All of these properties have also been thoroughly investigated
in the literature, have well established interpretation in the con-
text of network analysis and some of them have proven their
usefulness in link prediction (e.g. local clustering coefficient
in the Common Neighbours predictor).

A natural way of comparing the distributions P(®) of
the properties listed in Table III is by using a divergence
measure. Although the best known measure of this kind is
probably the Kullback-Leibler divergence [20], according to
the findings of our recent study [11] we have rather opted for



TABLE III
NETWORK PROPERTIES

id (P) name complexity?
ND Node degree distribution (in/out) oV?)
SP Shortest path length distribution” O(VElog(V))
TC Triad census distribution® O(E)
CC Clustering coefficient distribution O(Vd?)
KS Katz score? distribution o(V3)
BC Betweenness centrality® distribution O(VE)

4V — vertex count, E — edge count, d — maximum vertex degree

bUsing the Johnson’s algorithm for sparse graphs [15]

“Using the algorithm from [7]

4Using matrix inversion to calculate exact scores [19]; approximate algo-
rithm with complexity O(V'2) can also be used

¢For unweighted graphs; for weighted graphs the complexity is O(V E +
V(V + E)log(V))

the Jensen-Shannon divergence [24], which for two probability
distributions P(x) and Q(x) has been defined as:

1 1
Djs(P,Q) = §DKL(P, M)+ iDKL(QaM) (D

where M (x) = 3(P(x) + Q(x)) and D, is the Kullback-
Leibler divergence given by:

P(z)
Drcr(P,Q) ;p@) log &) 2)
The choice of Djg has been dictated by the fact that it is
symmetric and, unlike D, defined also for Q(x) = 0.

The issue of determining the optimal values of time window
size and prediction horizon can be seen as a constrained
optimization problem, where the objective function is the
divergence of the distributions of any network characteristic or
even multiple divergences of a number of network character-
istics (multi-objective optimization). There are two constraints
in this problem: (1) the prediction horizon, largely determined
by the particular application of the predictive model and (2) the
minimum size of the resultant time series, determined by the
predictive algorithm one wants to use and by the dynamics of
the time series itself.

The time series length issue stems from the fact that this
length depends on both time window size and prediction
horizon which are also coupled. This functional dependence
has been shown in Figure 1. As it can be seen, the time
series length only marginally depends on the time window
size (additive factor) but at the same time heavily depends on
the prediction horizon (multiplicative factor).

Formally, the constrained multi-objective optimization prob-
lem can be states as follows. Denoting by N the input data
size, by S the time window size, by H the prediction horizon,
by L, the minimal time series length, by L the actual time
series length and by 1;(S, H) the i'" objective function out
of M, the optimization problem becomes:

argrgin (11 (S, H), pa(S, H), ... puar (S, H)T

3)
N-8§ (
.t. = > i
s.t L { H +1J_Lmln

700

600

500

400

300

Time series length

80
200

40
100

14 Window size

Prediction horizon

Fig. 1. The amount of training data (time series length) as a function of
window size and prediction horizon (time step) for the input data of 730 days
(two years) and a sliding time window

where in a special case considered in this paper M = 1.

The objective function we use in this study has been termed
the Window Incoherence Measure (WIM) and for a network
property ® is defined as:

L
@) — %ZDJS (P(@(w:), P(@(W))) (@)
=1

where w; denotes the i*" time window in the time series and
W = 3", w;. Whenever we use a specific network property
from Table III, for simplicity of notation we denote the WIM
by the name of this property in italics, e.g. instead of writing
T we simply write TC.

V. EXPERIMENTS AND RESULTS
A. Experimental protocol

1) Data: Due to the exhaustive character of our experi-
ments we have used a dataset generated from the well-known
ENRON e-mail database!, where there are only 151 nodes
in the social network. The database covers a period of over
3 years (1138 days). We have divided it into 1-day time
windows forming an input dataset with N = 1138 instances
(hence using time as a measure of window size). At this stage
we have assumed that a relation between node A and B in a
given time window exists, if A has sent B an e-mail within
this time window. This choice has been driven by the fact, that
if we defined the relation by a message—response pair over e.g.
a 5 working days, the network would become very sparse and
would not reflect the ongoing communication activity recorded
in the mail server logs. This can be seen in Figure 2, which
depicts the cumulative probability of receiving a response after
a given number of working days. Therefore, in the network
under consideration, we found the above approach justified.

The weight W,4_, 5 of a relation between node A and node
B has been calculated using the following formula:

Na_, —
Z’L:A] ? Rl !
ZXGV\{A} Na-x

®)

Wap =

Uhttp://www.cs.cmu.edu/"enron/
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Fig. 2. Cumulative probability of receiving a response after a given number
of working days

where N4, p denotes the number of messages sent from A
to B in a given time window, R; is the number of recipients
of the i*" message in this time window and V is the set of all
nodes in the network.

Following a generally accepted approach for validation of
models built on sequential data, the input dataset has been then
divided into two parts:

« Training dataset, covering the period of the first 2 years
(Nrr = 730 days) and used for all the operations
required to build a predictive model like tuning various
parameters (e.g. selecting the optimal time window size)
and training the predictive model.

o Test dataset, covering the remaining period of over 1
year (Npr = 408) and used exclusively for assessing
the performance of the obtained predictive models.

In all the experiments we vary the prediction horizon between
1 day and 56 weeks, in order to cover a wide range of
application scenarios.

2) Predictive models: In our experiments we have used
the Triad Transition Matrix predictor (TTM) as a main
method, which is based on a 1-st order probabilistic model
of transitions between various triad types, resulting from an
observation that there exist distinctive patterns which drive the
evolution of connections between nodes. TTM has been first
proposed in [16] and further evaluated in [17], demonstrating
good performance and robustness, especially for sparse net-
works emerging in short time windows.

As mentioned before, the reported prediction performance
has been obtained on the independent test set, which was used
to train the predictors. In this study we did not follow the
test-then-train protocol, which involves updating the predictive
model after casting a prediction for a given time window, thus
accommodating the latest available information. Although this
would most likely further increase the accuracy of predictions,
the test data size (and hence the number of updates) varies
with the size of the prediction horizon, which could make the
results incomparable across different horizons.

Two additional standard methods have also been used in
order to illustrate the applicability of the proposed approach:
(1) Preferential Attachment (PA), where the basic premise is
that the probability that a new edge has node A as an endpoint
is proportional to, the current number of neighbours of A,
and (2) Common Neighbours (CN), which is based on the
correlation between the number of common neighbors of A
and B at any time instant and the probability that they will
collaborate in the future. Both methods have been verified and
discussed in [27].

3) Accuracy of predictions: We have followed the ver-
ification scheme proposed in [23], where it was assumed,
that all the predictors assign a predicted connection weight
score(A, B) to unlinked pairs of nodes (A, B), based on
the input graph, and then produce a ranked node pair list in
decreasing order of score(A, B). The scores are interpreted
as the estimated probability of forming a new link between
A and B. In this way each link predictor outputs a ranked
list of node pairs which would eventually form predicted new
links. The list is being sorted in decreasing values of scores
and the set of first n entries is taken, then the size of its
intersection with the set of new links (of the same size n)
is computed. The percentage of links from the predicted set,
which are also present in the set of new links, is the prediction
accuracy. However, in [24] it was also postulated that it is
reasonable to seek new links only between the nodes already
connected, therefore only the links joining nodes adjacent
to at least 3 other existing links are predicted. In our view,
when one is dealing with sparse and dynamic networks (in
addition to variable time windows) this assumption restricts
link prediction only to the densely connected parts of the
network and hence we did not impose this restriction in our
experiments.

B. Minimization of the divergence

Figures 3 and 4° depict the values of the Window Inco-
herence Measure for all the network properties from Table
IIT? for the training data and networks built using time win-
dows/prediction horizons of varying size, for the unweighed
and weighted cases respectively. The minimal window size has
been limited to the size of the prediction horizon to ensure
that no training data is skipped during the procedure (this
results in half of each plot being empty). The black crosses
denote minimal values for each column, marking optimal
(with respect to the WIM used) time window sizes for each
prediction horizon. Intuitively, one might be tempted to use as
big time window as possible to cover as much data as possible.
Our results however show, that this is not always the optimal
choice. For example, in the case of NDu if we choose the
prediction horizon to be 26 days long, the optimal window
size is 32 days rather than the maximal possible 56 days (red

2The actual ‘min” and ‘max’ values in these figures are different for every
subplot, hence they are not reported in order to keep a single color scale.

3Please note that we have appended an ‘u’ or ‘w’ to the abbreviation of the
property name to denote respectively ‘unweighted’ (binary) and ‘weighted’
network used as an input for the calculation of the property value.



circle in top-left Figure 3). This is even more visible in the
case of other measures (SPu, CCu and BCu), while KS behaves
in a way more consistent with the initial intuition.

The situation for the weighted network (Figure 4) confirms
the above, with SPw consistently preferring small windows,
which is also emphasized in the case of BCw (note that TC
and KS are the same for both networks as the weights are
ignored during calculation of these two).

The results presented in Figures 3 and 4 can also be used in
another way. If the prediction horizon is flexible (e.g. we want
it to be around 7 days) it may turn out that setting the horizon
to 6 or 9 days instead might make the divergence below the
levels possible to obtain with H = 7. Table IV contains the
WIM values for a number of prediction horizons, minimized
with respect to the window size. As it can be seen, according
to different measures, rather than using a 7-, 14- or 21-day
prediction horizon, a slight increase or decrease in horizon size
can allow to reduce the WIM and potentially result in more
accurate predictions, as will be discussed in Section V-C.

As has been shown, the proposed approach can be helpful
in at least two situations: (1) when the problem is completely
defined, i.e. a fixed H is given, an optimal time window size
S for the given value H will be recommended; (2) when the
problem is not completely defined, i.e. H is given as a range
or set of possible values, optimal values for both H and S will
be recommended, helping to completely define the problem at
the same time.

C. Correlation with prediction accuracy and optimal window
size

In Figure 5 we present the absolute values of the Spearman’s
rank correlation coefficient between WIM and prediction ac-
curacy of the three predictive models that have been used in
the experiments. As it can be seen, NDu, TC, KS, NDw and
CCw are moderately (> 0.4) correlated with the performance
of TTM, two of which (TC and CCw) feature a relatively low
computational complexity (see Table III), which additionally
increases their attractiveness. The correlation with the accuracy
of PA and CN is weak to none.

The left parts of Figures 7, 8 and 9 depict the true optimal
window size for each prediction horizon as determined by
maximum accuracy of the respective predictive methods on
the independent test set together with recommended window
size on the basis of the proposed measures. Since according
to the presented results none of the measures from Table III is
individually highly correlated with the prediction accuracy, we
have devised the following two approaches allowing to take
advantage of the most appropriate subset of WIMs:

o Globally-weighted combination (GWC), where the rec-
ommendation is a weighted combination of the recom-
mendations of all incoherence measures, with the weights
determined from the training dataset, irrespectively of the
prediction horizon. The weights have been calculated as
a fraction of the times each WIM’s recommendation S,Efc)
is closest to the optimal window size Sop¢.

0.6
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3

°
~
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=] =]
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R 3 5
@ 2
[ TV I PA [ ICN]

Fig. 5. Correlation between WIM and prediction accuracy

o Locally-weighted combination (LWC), where the rec-
ommendation is a weighted combination as above but
there is a separate set of weights for each prediction
horizon. The weights decay exponentially with decreasing
quality of the recommendation on the training set and
have been calculated as: exp(—|Sopt — 542 |). Example
weights of a local combination have been depicted in
Figure 6. As it can be seen, in this case many weights
are driven towards very low values, with 1-2 WIMs
dominating for each prediction horizon.

Fig. 6.

Locally-weighted combination weights for TTM and H € (1, 14)

From Figures 7, 8 and 9 (left) it is easy to notice that the
window size recommendations obtained with LWC are much
more accurate than the ones produced by GWC. This is most
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TABLE IV
OPTIMAL WINDOW SIZES FOR GIVEN PREDICTION HORIZONS +/- TOLERANCE

prediction horizon +/- tolerance

id 7 | ) T 7 1 | + | +2 3 ) T 7 21 [ 1 [ 2 | 3
NDu | .6708 | .6712 | .6710 6707 | .6708 | .6705 | .6708 | .6711 6708 | .6724 | .6709 | .6722 | .6708 | .6700 | .6711
SPu 1627 | .1630 | .1618 1633 | 1515 | .1627 | .1653 | .1369 1496 | .1637 | .1528 | .1512 | .1307 | .1699 | .1649
TC 4220 4270 4240 4180 4210 4240 4180 4170 4210 4140 4210 4240 4150 4130 4270
CCu | .6002 | .6025 | .6021 .6028 | .6011 | .6019 | .5992 | .6021 .6035 | .6031 | .5997 | .5997 | .6019 | .6011 .6077
KS 4264 | 4262 | 4262 4262 | 4266 | 4262 | 4266 | .4260 4270 | 4279 | 4271 | 4270 | 4265 | .4258 | .4257
BCu 5899 | .5885 | .5892 5886 | .5928 | .5898 | .5878 | .5898 5880 | .5897 | .5862 | .5895 | .5882 | .5892 | .5884
NDw | .6131 | .6105 | .6131 .6134 | 6131 | .6131 | .6106 | .6131 6094 | 6119 | .6103 | .6097 | .6133 | .6106 | .6142
SPw | .1990 | .2750 | .2870 2870 | 2870 | .2870 | .2870 | .2870 2870 | 2870 | .3040 | .3110 | .2870 | .2870 | .4820
CCw | .5648 | .5598 | .5658 5695 | .5666 | .5700 | .5655 | .5658 5621 | 5595 | 5665 | 5652 | 5745 | .5655 | .5621
BCw | .3246 | .3256 | .3247 3247 | 3245 | 3253 | 3250 | .3247 3222 | 3252 | 3226 | .3238 | .3286 | .3262 | .3250
|
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apparent in the case of the TTM predictor. As it can be seen,
GWC tends to recommend windows which are bigger than
optimal, especially for small horizons (between 1 and 10 days).
This is a result of the averaging effect — the WIMs which are
most suitable in this range of horizon sizes (i.e. BCw and SPw
— see Figure 6) have relatively low global weights due to their
underperformance for bigger values of H.

The effect of the recommendations on the prediction ac-
curacy has been depicted in the right parts of Figures 7, 8
and 9, where the shaded area represents the boundaries of
the accuracy obtained by taking best and worst predictions
for each prediction horizon. In the case of TTM (Figure 7)
LWC in general also outperforms GWC except for a small
number of horizon sizes. The same trend can be observed in
the case of PA and CN, where it is also visible that better
recommendations correspond with better prediction accuracy.
It is also worth noticing that in all the cases the prediction
accuracy achieved due to using the recommended window size
is not only considerably above the lower accuracy limit but is
usually also above the average accuracy (‘accuracy mid-point’
— the center of the shaded region), often approaching the best
achievable performance.

VI. CONCLUSIONS AND FUTURE WORK

The presented study is the first step towards a systematic
approach to the problem of meaningful, data-driven, window
size selection for prediction of network evolution. The study
showed that by minimizing the proposed Window Incoherence
Measures, and hence effectively choosing window size in a
way that the properties of a network within each window are
as close as possible to the characteristics of the global network,
the link prediction accuracy can be increased. This has been
achieved irrespective of the actual predictive method used. The
proposed approach can also be used for recommendation of the
optimal size of the prediction horizon, if the actual predictive
applications allows for such flexibility.

The encouraging results of this work have allowed us to
identify many interesting and challenging open issues, which

0 L 1 1
10 20 30

Prediction horizon

40 50

CN: optimal and WIM-recommended window sizes (left) and predictions (right)

will be the subject of our future research. We intend to further
validate the proposed method on other, larger datasets, where
alternative definitions and types of relation could be employed
(e.g. relations based on the contents of communication using a
text-mining approach). We also aim at extending this research
by investigating additional Window Incoherence Measures,
based on other properties of the networks, as well as by
employing multi-objective optimization techniques, where a
carefully chosen subset of the proposed measures would be
optimized concurrently. As mentioned before, we are also
going to explore the usability of variable—sized windows for
better prediction accuracy, which to the best of our knowledge,
will be a highly innovative approach to this problem.
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