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Abstract—Partially-observed data collected by sampling meth-
ods is often being studied to obtain the characteristics of
information diffusion networks. However, these methods usually
do not consider the behavior of diffusion process. In this paper,
we propose a novel two-step (sampling/estimation) measurement
framework by utilizing the diffusion process characteristics.
To this end, we propose a link-tracing based sampling design
which uses the infection times as local information withoutany
knowledge about the latent structure of diffusion network. To
correct the bias of sampled data, we introduce three estimators
for different categories; link-based, node-based, and cascade-
based. To the best of our knowledge, this is the first attempt
to introduce a complete measurement framework for diffusion
networks. We also show that the estimator plays an important
role in correcting the bias of sampling from diffusion networks.
Our comprehensive empirical analysis over large syntheticand
real datasets demonstrates that in average, the proposed frame-
work outperforms the common BFS and RW sampling methods
in terms of link-based characteristics by about37% and 35%,
respectively.

I. I NTRODUCTION

Information diffusion is one of the important topics that
has been considered in large On-line Social Networks (OSN)
such as Facebook, Twitter, and YouTube. These networks
that provide information in different formats such as posts,
tweets, and videos are called “information diffusion networks”.
In recent years, the tremendous growth of these networks,
have resulted in creation of large information networks. For
example, in March 2011, Twitter users were sending 50 million
tweets per day [2]. Moreover, the latent structure of diffusion
networks makes their analysis considerably difficult. Although
we usually discover the time of obtaining some information
by people, we can not find the source of information easily.
Furthermore, in epidemic diseases, the infection shows itself
when somebody becomes infected without determining who
infected whom [1]. Therefore, it may be impossible or costly
to obtain the complete structure of a large and latent diffusion
network.

Partially-observed network data is often being studied to
obtain the characteristics of these networks. The network
resulting from such measurements may be thought of as a
sample from a larger underlying network. As a result, the
accuracy of the studies on diffusion network analysis depends
on the estimation of the characteristics based on the sampled
network data.

The measurement of the network characteristics can be

achieved in two steps: 1) Sampling, and 2) Estimation. In
the first step, data is collected from the network by using a
sampling method. The essential property of a sampling method
that makes it appropriate for network inference is that its
visiting probabilities should be known for all the network
elements. This allows sampled data to be weighted so that
they accurately represent the network data. In the estimation
step, an estimator is used to obtain the network characteristics.
An estimator is a function that uses a summary of sampled
data as input, and estimates the unknown parameters of the
population which has generated the input. However, sampling
and estimation in the context of networks may introduce some
potential complications.

In recent years, a considerable amount of research have
been done on analyzing the topological characteristics of large
OSNs based on the sampled data from different networks such
as Facebook [4], [5], Twitter [6], YouTube [7], and other
large networks [8], [9]. However, considering the sampling
approaches to study diffusion behaviors of social networks,
apart from their topologies, is a remarkable issue that should
be addressed. The previous work on diffusion data collection
[12], [3], [13], [20] have used some well-known sampling
methods such as Breadth-First Search (BFS) and Random
Walk (RW), without considering the behavior of the diffusion
process. This leads to gathering redundant data and losing parts
of diffusion data, that consequently decrease the performance
of these sampling methods (refer to Figure 1). On the other
hand, often it is not feasible to directly work with the diffusion
networks, because the structure of many large real systems can
not be discovered. Moreover, the previous studies assert that
the characteristics of a sampled diffusion network is indicative
of the same characteristics for the whole network. However,it
should be noted that the obtained characteristics represent the
sampled graph, instead of the original graph. Such problems
can be compensated for in many cases by using the appropriate
estimator.

In this paper, we propose a novel two-step (sam-
pling/estimation) framework, called “DNS”, to measure the
characteristics of diffusion networks. To this end, we propose
a link-tracing based sampling method that utilizes diffusion
process properties to traverse the network more accurately.
Specifically, this method samples the underlying network by
moving from a node to one of its neighbors through an
outgoing link based on the probability of spreading infection.
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(a) Common Network Sampling Design (b) Diffusion-Aware Network Sampling Design

Fig. 1. Illustration of different sampling designs in diffusion networks. The regions specified by dotted lines show thediffusion networks. The red and green
areas demonstrate the sampled networks obtained by common and diffusion-aware network sampling methods, respectively. As it is shown, diffusion-aware
network sampling design can cover the diffusion network more accurately.

We calculate this infection probability by considering the
cascades behavior in the diffusion networks. It is noteworthy
that the algorithm only uses the infection times as local
information without any knowledge about the latent structure
of the diffusion network. Moreover, we extend the well-known
Hansen-Hurwitz estimator [38] to correct the bias of sampled
data. We propose three efficient estimators related to different
categories of network characteristics; link-based, node-based,
and cascade-based. To the best of our knowledge, this is the
first attempt to introduce a complete measurement framework
for the diffusion networks.

We evaluated the proposed framework over large synthetic
and real datasets by comparing it with BFS and RW sampling
methods. The experimental results demonstrated that DNS

outperforms the aforementioned common sampling methods in
terms of link-based characteristics by about36%, in average.
Moreover, DNS decreased the bias of the sampled data by
30% compared to the sampling design without estimation. The
results confirm that finding an appropriate estimator has an
important role in correcting the bias of sampling methods.
Furthermore, the results show that the proposed framework
performs well even in low sampling rates. we also analyzed
the effect of diffusion rate on the performance of DNS. The
analysis showed the independence of the proposed framework
to the diffusion process behavior. Hence, we can use DNS

in various diffusion networks with different diffusion patterns
without any performance loss.

In summary, our main contributions can be summarized as
follows:

• Proposing a novel sampling design for gathering data
from a diffusion network by utilizing the properties of
diffusion process.

• Proposing three estimators for correcting the bias of
sampled data by computing the visiting probabilities of
different types of diffusion characteristics (link-based,
node-based, and cascade-based).

• Decreasing the bias of measuring link-based characteris-
tics compared to the other common sampling methods

The rest of the paper is organized as follows. Section II
presents a classification of data collection approaches in the

field of information diffusion networks. The problem formu-
lation is proposed in Section III. The proposed measurement
framework is presented in Section IV. Section V elaborates
the experimental evaluation, and the concluding remarks are
provided in Section VI.

II. RELATED WORK

Diffusion process as a fundamental phenomenon over OSNs
has attracted great attention in recent years [1], [32], [14], [15],
[11], [16], [36], [13], [18]. Here, we provide a comprehensive
survey over the approaches used for collecting the diffusion
process data.

Complete Data: The most fundamental approach is to
collect the complete diffusion data. Many diffusion processes
try to generate some diffusion paths and use them for analysis.
Following the Iraq war petitions in the format of e-mail [11],
[19], studying communication events between faculty and staff
of a university by e-mails [15], and tracking the flow of
information by extracting short textual phrases [16] are some
examples of this approach. However, gathering diffusion data
in many areas create problems such as missing data, privacy
policies, and impossibility of tracing all paths of diffusion.
Moreover, large scale of diffusion networks is one of the
most important obstacles of gathering the complete diffusion
data. These problems have led the researchers to use sampling
methods to obtain partial diffusion data.

Partial Data: Sampling methods can be considered as an
efficient way to tackle the problem of large-scale diffusion
data. Using these methods to collect diffusion data have been
studied in some recent work [12], [3], [13], [20]. The majority
of these works have utilized one of the most common sampling
methods; Breadth-First Search (BFS). BFS is a basic graph-
based sampling method that has been used extensively for
sampling networks in various domains [7], [4], [21], [6]. At
each iteration of BFS, the earliest explored node is selected
next. This method discovers all nodes within some distance
from the starting node. Inferring diffusion topics from the
DBLP database [20] and sampling the Twitter network to study
on the resulting diffusion network [12], [13] are some exam-
ples which use BFS to collect the diffusion data. However,



BFS leads to a bias towards high degree nodes [35], and this
bias has not been analyzed for arbitrary graphs [22]. Despite
the popularity of BFS, the problem of computing the visiting
probabilities of network elements (such as nodes and links)
in BFS sampling design is still unsolved. Because, sampling
without replacement in BFS introduces complex dependencies
between the sampled elements. To the best of our knowledge,
no estimator has been introduced to correct the sampling bias
of BFS in an arbitrary network.

Despite the considerable amount of research on analyzing
the topological characteristics of the networks in variousareas
[4], [5], [6], [7], [8], [9], little attention have been made
on gathering partial data based on the diffusion behavior.
Random Walk (RW) [23] is also one of the most important and
widely used link-tracing sampling methods in different kind
of network contexts such as uniformly sampling Web pages
from the Internet [24], content density in peer-to-peer networks
[33], [34], degree distributions of the Facebook social graph
[4], [5] and in general large graphs [8]. A classic RW samples
a graph by moving from a nodeu, to a neighboring nodev,
through an outgoing link(u, v), chosen uniformly at random
from the neighbors of nodeu. The probability of selecting
the next node determines the probability that nodes are being
sampled. In any given connected and non-bipartite graphG,
the probability of being at a nodeu converges at equilibrium to
the stationary distributionπ(u) = deg(u)/2|E|, wheredeg(u)
andE are the degree of nodeu and are the set of links of the
network graph. Moreover, the probability that a link is visited
is 1/|E| (i.e., links are visited uniformly at random) [23].

Using these sampling methods without any attention to dif-
fusion paths will result in some redundant data which are not
related to the diffusion process. Removing these unnecessary
data decreases the efficiency of these sampling methods [3].
No work has previously been done that considers diffusion
process characteristics in the sampling strategy. In this pa-
per, we propose a diffusion-aware sampling and estimation
methods which uses only local information of the underlying
network. To the best of our knowledge, this is the first study to
introduce a complete measurement framework for the diffusion
networks. Moreover, we use BFS and RW as baseline methods
for comparison.

III. PROBLEM FORMULATION

A. Basic Notations and Definitions

Let networkG = (V,E) be the underlying network where
V is the set of nodes, andE is the set of links wheren = |V |
and m = |E|. In diffusion process, some diffusible chunks
such as information and epidemic diseases propagate overG.
These diffusible chunks are called “infection” where each path
of infection will build a “cascade” [1], [18]. When the cascades
spread over the underlying network, the diffusion networkG∗

will be formed.
We defineGs = (Vs, Es) as the induced sub-graph ofG by

sampling rate ofµ whereVs ⊂ V andEs ⊂ E. In order to
analyze the diffusion process, we should measure the diffusion
characterization metrics from the sampled diffusion data.Since

diffusion phenomenon covers many elements of the network
(such as nodes, links, and cascades), we determine an “element
set”, T , as a set of diffusion network elements [3]. LetL be
a finite set of element labels. A label can be, for instance,
the degree of a node, the weight of a link, or the length of a
cascade. A labelle is assigned to each elemente ∈ T by a
target functionf : T → L, i.e. f = {(e, le)|e ∈ T, le ∈ L}.
For example, infection is a label for each node that shows
whether this node is infected during the diffusion process or
not. The target functionf for this label will match nodesu ∈
V to the setL = {0, 1} (f(u) = 0, if nodeu is not infected
andf(u) = 1, otherwise).

Almost all network characterization metrics we are aware
of can be expressed as some aggregative function. In this
paper, we focus on the measurement of diffusion network
characteristics. To this end, we consider the average function
(η) over diffusion elements as:

η(f(G)) =

∑

e∈T f(e)

|T |
(1)

In the above infection example, this average shows the per-
centage of infected nodes by the diffusion process to all the
nodes of the underlying network.

B. Problem Definition

Our goal is to propose a diffusion-aware measurement
framework to collect diffusion data in an efficient way. The
diffusion process measurement procedure consists of two
steps: (1) samples from the underlying network and computes
the desired target functionf on the sampled elements , (2)
computes an estimate ofAvg(f) by finding an appropriate
estimatorM. To evaluate the measurement framework, we
define the bias metric as:

ρ =
|η(f(G∗))− η(f(M))|

η(f(G∗))
(2)

Now, our problem becomes equal to finding a measurement
framework which minimizes the bias, i.e.ρ.

IV. PROPOSEDFRAMEWORK

In this section, for the first time, we propose a diffusion-
aware probabilistic measurement framework, called “DNS”
(Diffusion Network Sampling).

A. Sampling Design

In the existing sampling methods such as BFS and RW,
we begin at a starting node, and recursively visit (one or
more) of its neighbors as next nodes, without considering the
diffusion paths. Here, we try to utilize the diffusion process
properties to find how to traverse the network more accurately.
By computing the probability of spreading infections over the
links of underlying network, we can direct the sampling design
toward diffusion paths without any prior knowledge about the
diffusion network structures. Therefore, we can cover a greater
part of unknown diffusion network and decrease the redundant
data such as nodes and links which do not attend the diffusion
process.



To calculate the probability of spreading infection over
a link, we focus on the cascades behavior in the diffusion
networks. Each cascadec can be assigned to a time vector
tc = {t1, t2, · · · , tn} which shows the infection times of
nodes byc. If cascadec does not infect a node, this node
infection time will be considered as∞ [18]. The cascades
with the same structure that propagate over the underlying
network is shown by setC with Nc members. We define
CT = {t1, t2, · · · , tNc

} as the set of cascades’ time vectors.
We assume the transmission model of cascades follows the
independent cascade model [37]. In this model, a node gets
the chance to transmit information to its neighbors at each
time episode, independently.

When a node decides to infect one of its neighbors, it will
do the transmission with a waiting time model that shows how
long it will take for a node to infect a chosen neighbor. In the
proposed sampling method, we use the exponential model [1]
as the waiting time model. By defining∆ = tv − tu, the
infection transmission probability over linke(u, v) at cascade
c can be computed as follows.

Pc(e) = e−
∆

α Exponential Model (3)

Whereα is an adjustment parameter which determines how
fast a cascade spreads. As it can be seen, the probability of
spreading an infection have an inverse relation with∆. It is
the symptom of a simple fact; when you receive an interesting
E-mail, the passing of time will decrease the probability of
forwarding it to your friends. Since diffusion network contains
many cascades, each linke(u, v) can attend more than one
cascade. Therefore,Ce is defined as the set of cascades which
pass over linke. Now, we define for each linke the infection
probabilityPe, by calculating its average probability over the
attended cascades as:

Pe =

∑

c∈C Pc(e)

|Ce|
(4)

The pseudo code of the proposed sampling design is shown
in Algorithm IV.1. This method samples the underlying net-
work by moving from a nodeu, to a neighboring node
v, through an outgoing link with the infection probability
Pe. It is noteworthy that the algorithm only uses the infec-
tion times (i.e.CT ) as local information without any prior
knowledge about the latent structure of the diffusion network.

Algorithm IV.1: THE SAMPLING DESIGN(Seed, CT , k, α)

v := Seed %v is the current node
while (|Es| < k) %k is the sampling size

do































































for each u ∈ Neighbors (v)

do























































e := (v, u)
Vs ← Vs ∪ u
Es ← Es ∪ e
for each c ∈ Ce

do







∆ = tu − tv
Pc(e) = e−

∆

α

Pe = Pe + Pc(e)

Pe =
Pe

|Ce|

v ← u with probability ofPe

Gs := (Vs, Es)
return (Gs)

B. Estimation Approach

The selection bias of a sampling method can be corrected
by re-weighting of the measured values. This can be done
using the Hansen-Hurwitz estimator [38], i.e. elements are
weighted inversely proportional to their visiting probability.
For any target functionf : T → L that defines a characteristic
(refer to Section III-A), the estimator of Equation 5 provides
an asymptotic estimate of the population meanµ of f [39]:

η̂ =

k−1
∑

i=0

f(Xi)
π(Xi)

k−1
∑

i=0

1
π(Xi)

(5)

WhereXi andπ(Xi) are the visited element (that could be
nodes, links or cascades), and its visiting probability on theith

draw of sampling method, respectively. Therefore, to use this
estimator, we should compute the probability of visiting each
element in the proposed sampling procedure. In the following,
we address this issue and extend the above estimator for three
different categories of elements; link-based, node-based, and
cascade-based.

1) Link-based Characteristics:The links have a great role
in spreading infection over the networks. Gaining some infor-
mation without having any connection to others for propaga-
tion, will be not valuable in a network. Therefore, link-based
characteristics are the most important ones in the diffusion
process. “Link Attendance”, as an example of link-based char-
acteristics, shows the amount of presence in diffusion process
for a link. The links with high attendance are significant in
some applications such as finding potential paths of infection
propagation in the epidemic spreading [3].

Since in the proposed sampling method we move over links
with the probabilityPe (Equation 4), the visiting probability of
link e will be equal to this probability; i.e.π(e) = Pe. We can
use these visiting probabilities in Equation 5 to estimate the
real value of link-based characteristics. As mentioned before,



we only use the local knowledge to compute the visiting
probabilities of the links.

2) Node-based Characteristics:The number of “Seeds”
(the beginners of an infection) [3] and “participation” (the
fraction of users involved in the information diffusion) [12]
are some examples of node-based characteristics. Diffusion
process can be modeled as a Markov random walk over the
underlying networkG (the details can be found in our previous
paper [18]). Therefore, the visiting probability of nodeu in
the proposed sampling method can be defined as:

π(u) =
∑

v∈N(u)

π(v)π(evu) (6)

WhereN(u) is the set of nodeu’ neighbors. The infec-
tion of nodeu at time tu depends on the infection of its
neighbors at thetv where tv < tu. If we define π =
{π(0), π(1), · · · , π(n − 1)}, calculatingπ needs the global
knowledge of a network as it is the stationary distribution of
the mentioned Markov chain. Since we do not have the global
view of the network in sampling procedure, finding the exact
value ofπ is not possible in real systems. Therefore, finding an
approximation ofπ can be considered as a research direction
in the future.

3) Cascade-based Characteristics:The cascades as the
building blocks of a diffusion networks can determine many
characteristics of a diffusion process. For instance, the depth
of a spreading phenomenon can be determined by the length
of its cascades [3], [12]. Owing to the fact that each cascade
c has a series of links which it spreads over them, its visiting
probability depends on visiting all of its links [1]. Therefore,
we can defineπ(c) as:

π(c) =
∏

e∈c

Pc(e) (7)

This formula can be calculated by having all the links of a
cascade. Since the probability of visiting a cascade needs the
global knowledge of a network, it should be approximated by
using local information.

V. EXPERIMENTAL EVALUATION

A. Setup

As discussed in Section IV-B, computing the visiting prob-
ability of network elements should be done by using the
local information. Since calculating nodes and cascades vis-
iting probability need global knowledge about the underlying
network structure, we evaluate the Link-Attendance as a link-
based characteristic. We use BFS and RW as baseline methods
for comparison with DNS.

To build the diffusion network, many homogeneous cas-
cades are generated with the same structure over the un-
derlying network. The speed of cascades’ transmission is
determined byα. To control the distance through which a
cascade can propagates, we use the parameterβ [1]. The
fraction of the underlying networkG which is covered by
the diffusion networkG∗ is defined as the diffusion rateδ.

B. Dataset

We utilize seven synthetic and real networks with different
structures. The properties and cascade generation settings of
the datasets are provided in Table I.

1) Synthetic Dataset:We use the following models to
generate synthetic data:

• Forest Fire model [26] is generated by the parameter ma-
trix [5; 0.12; 0.1; 1; 0] where entries illustrate the number
of starting nodes, forward burning probability, backward
burning probability, decay probability and probability of
orphan nodes, respectively.

• The Kronecker graph[25] with three different Kro-
necker parameter matrices are generated as: the Ran-
dom graph [27] (by Kronecker parameter matrix
of [0.9, 0.1; 0.1, 0.9]), the hierarchical network [28]
([0.5, 0.5; 0.5, 0.5]), and the Core-Periphery network [29]
by ([0.9, 0.5; 0.5, 0.3]).

TABLE I
THE NETWORK AND CASCADE GENERATION PARAMETERS.

Network n m α β δ

Forest Fire 10000 14305 0.7 0.5 0.5

Core-Periphery 8192 15000 0.7 0.1 0.5

Hierarchical 8192 11707 0.4 0.5 0.5

Random(ER) 8192 15000 0.4 0.4 0.5

PolBlog 1490 19090 1.3 0.5 0.5

Football 115 615 0.6 0.5 0.5

NetScience 1589 2742 0.6 0.5 0.5

2) Real Dataset:We used three real-world networks for
evaluation purposes. The first network is based on links and
posts of blogs in the political blogosphere around the time of
the 2004 presidential election in US [30]. The other network
is a network of American football games between Division IA
colleges during regular season of Fall 2000 [40]. The last is
co-authorship network of network theory scientists [31] which
we is referred to as NetScience.

C. Speed of Cascade

As mentioned before, the speed of cascade propagation
over the underlying network is controlled byα. In the DNS

framework, we use this parameter in calculatingPe to deter-
mine the direction of sampling and correct the bias. As the
diffusion network structure is unknown in the most large real
systems, the speed of cascades is not available to be used in
the sampling and estimation approach. Therefore, we evalu-
ate the DNS performance by measuring the link-attendance
characteristic based on different values ofα (0.1 < α < 3)
over the synthetic and real networks in a fixed sampling rate
(µ = 0.5). As Figure 2 illustrates, all the networks have
similar behavior with respect toα. Moreover, most networks
achieve the minimum bias (below10%) in measuring the link-
attendance characteristics when0.4 ≤ α ≤ 0.7.

The behavior of the political blog network is different in
comparison with other networks to some extent. Analyzing
this network structure reveals that this different behavior is



Fig. 2. Speed of Cascade

the result of the network density [26] difference. Comparing
the density of political blog network with the other networks
shows that larger density needs largerα in the sampling and
estimation procedure. In fact, the higher density necessitates
more speed in cascade transmission to visit the elements of the
network in a time episode. Therefore, political blog network
achieves the least bias whenα = 1.3. The best value ofα for
each network is provided in Table I. We use these values as
the input parameters for DNS in our experimental evaluations.

D. Performance Evaluation

In this section, we evaluate the performance of DNS frame-
work in three aspects. First, we compare the bias of DNS

with the baseline methods (BFS and RW) in measuring the
link-based characteristics. Second, we study the importance of
estimation approach in the proposed framework. Finally, we
analyze the behavior of these methods in different sampling
rates.

Figure 3 shows the results of measuring the link-attendance
bias against different sampling rates. As it is observed, the
proposed framework can measure this characteristic with very
low bias (9%, in average). We summarize the average perfor-
mance difference of DNS with BFS and RW in all networks
in Table II. It can be seen that DNS in average outperforms
BFS and RW in terms of link-attendance by about37% and
35%, respectively.

Interestingly, we can see that the proposed framework has
decreased the bias by30% compared to the sampling design
of DNS without applying the proposed estimation approach.
These results confirm that the obtained characteristics from a
sampled data represent the sampled graph properties, but not
the original graph. Therefore, an estimator plays an important
role in correcting the bias of the sampling frameworks. How-
ever, this issue has not been considered in the previous work

on gathering the diffusion data. We also measured the node-
based (Seed), and cascade-based (Depth) characteristics by the
sampling design of DNS without estimation. The results show
that the proposed sampling design alone, can not perform as
good as DNS with estimation. Specifically, in average it can
only improve the bias by about12%, and 9% compared to
BFS and RW, respectively.

TABLE II
THE AVERAGE PERFORMANCE DIFFERENCE OFDNS WITH BFS,

RW AND DNS WITHOUT ESTIMATION (DNS-WOE).

Network BFS RW DNS-WoE
Forest Fire 49% 21% 14%

Core-Periphery 22% 24% 20%

Hierarchical 43% 45% 37%

Random(ER) 44% 45% 39%

PolBlog 34% 31% 31%

Football 35% 46% 37%

NetScience 30% 31% 22%

Average 37% 35% 30%

Moreover, Figure 3 demonstrates that the proposed method
can act very well even in low sampling rates. DNS decreases
the bias of measuring diffusion characteristics to3% whenµ <
0.3. This promising result provides an appropriate sampling
and estimation framework for the large real networks where
only low sampling rates are available.

E. Diffusion Behaviour Analysis

The diffusion rate (δ) of infection over the underlying
network has a significant role in gathering diffusion data. As
this rate decreases, the smaller parts of the underlying network
will be covered by the infection. Therefore, collecting the
diffusion data becomes more difficult. Here, we analyze the
effect of diffusion rate against performance of the proposed
method. Figure 4 illustrates that DNS leads to low bias even
in low diffusion rates. Additionally, these results demonstrates
the independence of the proposed framework to the diffusion
process behavior. Hence, we can use DNS in various diffusion
networks with different diffusion patterns without any loss in
performance.

VI. CONCLUSIONS

In this paper, we introduced a novel two-step framework,
DNS, to measure the characteristics of large scale and latent
diffusion networks. We proposed a sampling algorithm that
samples the underlying network by moving from a node to
one of its neighboring nodes through an outgoing link by
considering the infection probability. Moreover, we proposed
three estimators for correcting the bias of sampled data by
extending the well-known Hansen-Hurwitz estimator. To this
end, we computed the visiting probabilities of three types of
diffusion characteristics; link-based, node-based, and cascade-
based.

Our experiments showed that in average, the proposed
method outperforms BFS and RW in terms of link-attendance
by about37% and 35%, respectively. Moreover, we showed



(a) Core Periphery Network (b) Hierarchical Network (c) Random Network (d) Forest Fire Network

(e) Political Blogsphere Network (f) Football Network (g) Co-authorship Network

Fig. 3. Link Attendance characteristic evaluation in different sampling rates

that the proposed estimator can improve the performance of
the sampling design by about30%. Therefore, an appropriate
estimator plays an important role in correcting the bias. Fur-
thermore, the results demonstrated that the proposed method
can act very well even in low sampling rates. Additionally,
our studies on the diffusion process behavior showed that DNS

leads to low bias even in low diffusion rates.
we believe that our results provide a promising step to-

wards understanding the sampling approaches in analysis and
evaluation of diffusion processes. There are several interesting
directions for future work. Approximating the visiting proba-
bilities of node-based and cascade-based characteristicsis one
of our main future goals.
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