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Abstract—Vehicles will exchange much information in the
future in order to efficiently maintain their inner model of the
environment. Before they can belief received pieces of informa-
tion, they must evaluate their reliability. Trust is a mechanism to
estimate this reliability based on the sender. As cars often drive
the same route, they meet each other again and again. They can
establish friendship-like relations and thus are embedded in a
social structure. A trust model depends on this social structure.
For this reason, we simulate the driving pattern of a small town.
Within this simulation, all cars are equipped with a trust model
that continuously monitors the experiences made with others. The
developed model focuses on direct experiences of the individual
and not on a system-wide reputation which would depend on
a central unit. It continuously evaluates the performance and
reputation of other cars and includes a feedback loop to faster
adapt to changes in the other’s behaviour. To make a decision
out of the collected data, the model uses the capacity of the
binary error and erasure channel from information theory. This
capacity provides a better decision criterion than the traditional
expectation value. The proposed trust model is an individual-
level model; nonetheless it can be connected to a system-wide
reputation mechanism.

Index Terms—Belief theory, information theory, probabilistic
logic, reputation, social structure, traffic, trust, uncertainty,
vehicular ad hoc network

I. INTRODUCTION

Consider a scenario in which cars continuously communi-
cate with each other while driving around. These future cars
can perceive, reason, learn, plan, and act in a way that they
understand the surrounding traffic scene while still controlled
by a driver (as in the CoTeSys satellite project MuCAR-3
in Munich). In the literature, these cars are sometimes called
Cooperative Cognitive Automobiles [1]. They are expected to
improve the traffic efficiency and safety. These cars need a
vehicular network to efficiently maintain the inner model of
their environment. With this network, they exchange all kinds
of model information about structural alterations of the road
network, traffic signs, points of interest (like petrol stations
or hotels), hazardous locations (e.g. oil on the road), free
parking space, traffic congestions, green light timing, collision
warning, and so on [2–4].

A. The Problem Statement

Despite the cryptographic measures already proposed for
the information security in vehicular networks, the received
data may still be wrong [5, especially p. 65]. Reasons for this
might be bad recognition capabilities or defect sensors at the

sender, but also computer virus infections or manipulations of
the sending car. So, a car must try to handle the uncertainty
associated with received data. It does so in two steps: It
evaluates the sender over several interactions and it evaluates
the received data with regard to the current situation. This is
where the trust model proposed in this paper comes in. It is
a mechanism to evaluate the sender over several interactions.
Models for the second step (that is, evaluate the data with
regard to the current situation) are, for example, introduced in
[6] and [7].

Thus, this paper addresses the following problem: How can
a car estimate a belief, whether another car will send correct
information? The authors of this paper call a mechanism that
can do this inter-agent trust. So, the proposed model is a trust
model. More specifically, it focuses only on the processing
within the car; it is only the individual-level side of a trust-
enabled network according to Ramchurn et al. [8].

With the help of this belief, the car should be able to
distinguish good from bad information sources. In the end, it
should have a more accurate inner model of the environment
and should better decide what information should when be ex-
changed with whom (i.e. what information is really necessary
and who would give it). The following scenarios make clearer
in what situations trust is necessary and how a trust model
must be designed.

B. Trust Scenarios

Cars have differently restricted sensory capabilities. There-
fore, they sometimes miss to report an event (like a new sign)
or spread out wrong information (e.g. a wrong degree of free
parking space). The error rate depends on the car and on the
involved sensors.

The trusting car must know how correct the values of
the other car usually are. The authors call this property the
competence of the other car (see Sect. IV-A). Received values
must be processed with an uncertainty that is related to the
sender’s competence.

A car randomly generates fake messages about nonexistent
events. This may be, because it has been infected by a software
virus or because the manipulator does this just for fun.

In this scenario, the trusting car must estimate how good
it can predict the other’s behaviour. If this is not possible
(because the other’s behaviour is sometimes very good and
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sometimes very bad), it should increase the disbelief in the
other’s trustworthiness as shown in Sect. IV-B.

Every Wednesday, a car reports wrong parking space values
to ensure it can park on the desired car park. While it
drives to the car park, it claims it has been there 30 minutes
ago and there was no free parking space. It reports bad
recommendations about other cars of the opposite direction
that have reported free parking space. Besides that Wednesday,
the car always acts trustworthy.

As in the previous scenario, a quasi-random misbehaviour
should be considered as untrustworthy. In addition, this sce-
nario shows that reputation can be manipulated (to increase
and to decrease it). Because of this, the proposed trust model
takes recommendations with care as explained in Sect. IV-C.

C. Overview and Terms

So far, we clarified the problem this paper tackles and its
surrounding scenarios. Next, we give an overview of the paper
and the specifics of the proposed trust model.

First, we relate our model to selected other trust models
from different fields. Then, we briefly introduce subjective
logic, the framework we use for artificial reasoning.

In the subsequent Sect. IV, the model itself is presented in
detail. In contrast to reputation systems, which are already in
discussion for intervehicular communication [e.g. 5], the pro-
posed model focuses on the individual car and its experiences.
The opinion of others – that is, reputation – is still considered,
with lower priority though. This paper further features the
capacity of the binary error and erasure channel as a better
indicator for trust when uncertainty is there (see Sect. IV-E).
While trust is often related to something like a mean error in
the performance of the other agent, the model proposed here
additionally incorporates how good the car can decide based
on the information received from the other car. The authors call
this property the other’s predictability (detailed in Sect. IV-B).
It helps to faster adapt to changes in the other’s behaviour.

As pointed out so far, the authors understand trust as a
mechanism that relies on a social structure. The “social struc-
ture” of cars comes from their periodical trips. So, these trips
must be part of an evaluation environment for trust. Sect. V
introduces such an environment and proposes it as the right
environment to investigate a trust model for intervehicular
communication. The results section then shows that a car
indeed meets some other cars regularly. So, a car can create an
image of other cars on its own – during “social interaction”.

The following terminology is used throughout this paper:
Reputation is considered as the opinion about someone by
people in general – it represents the common opinion. It can be
used as an indication when judging about the trustworthiness
of another party, but it is different from trust. The proposed
trust model tries to build up a local view on the reputation by
combining several received recommendations of others about
a third car.

When a car drives around, it observes properties of its en-
vironment (observation). It may pass these properties to other
cars. This received information is called a report. Information

that helps to judge about the trustworthiness of another car is
evidence. So, a report that has been verified by the car becomes
evidence.

II. RELATED WORK

When people from vehicular network security talk about
trust, they usually refer to trust relations in a public key in-
frastructure. This mechanism from information security mainly
provides identification of entities but not trust in the sense of
this paper. Raya and Hubaux [5] give a good overview about
security aspects and mechanisms in vehicular networks. For
data verification, they first considered reputation [5, p. 65],
but then developed their own data-centric trust model [7].
While their model focuses only on the data (disregarding the
sender), the proposed model focuses only on the sender. So,
both models complete each other. Reference [6] also verifies
the data, this time based on a model of the network.

Vehicular ad hoc networks are similar to wireless sensor
networks. In both networks mainly sensory data is exchanged.
The framework of Zhang et al. [9] served as a starting point
for our work. In contrast to their scenarios, a car receives less
reports about the same subject, but it can get to specific places
(if the driver does so) to verify the received information itself.

In the area of electronic marketplaces, reputation systems
are well known (e.g. eBay’s feedback system [10], the beta
reputation system [11], or even Google’s PageRank [12]).
Here, the trust comes from human beings. The reputation
system then combines these statements to build a global
view on an entity – the reputation. To get this global view,
reputation systems work on the network level. In contrast, the
trust directly comes from artificial agents in purely electronic
market places of multi-agent systems. Ramchurn et al. [8] and
Sabater and Sierra [13] give a good overview of the trust and
reputation models in this area.

III. SUBJECTIVE LOGIC

Subjective Logic [14, 15] is a framework for artificial
reasoning under uncertainty. It has a foundation in Bayesian
statistics and set theory. This chapter shortly introduces the
main concepts used in this paper. The reader finds more details
in the referenced papers.

A. Opinions

An agent can have some evidences that support a statement
and some that oppose it. More generally, the agent could argue
about more than two possible situations (more than just pro
and contra). Let X = {x1, . . . , xN} be the set of considered
situations. In the evidence representation of an opinion, the
strength of evidences for each situation is expressed in the
variables ri ∈ [0;∞[. These variables are collected in the
evidence vector r = (r1, . . . , rN )T . In addition, an agent
may have a subjective opinion about the situations without
any direct evidence. The base rate vector a expresses this
opinion. Its influence decreases with an increasing strength of
evidences. The tuple ωM

X = (r, a) then describes the opinion of
the agent M about the set of situations X . The more evidences
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the agent has in total (
∑

i ri), the more certain it is about its
opinion.

The same opinion could also be expressed with probabilities
p = (p1, . . . , pN )T for every possible situation and a degree
of uncertainty u about these probabilities. The tuple ωM

X =
(p, u, a) is a probabilistic representation of the opinion.

Finally, the opinion could also be expressed with the beliefs
b = (b1, . . . , bn)T . Beliefs [16] are subjective ratings of the
situations with the constraint

∑
i bi+u = 1. So, the belief rep-

resentation of an opinion consists of the tuple ωM
X = (b, u, a).

There exist mappings between these three representations
of an opinion, based on the Dirichlet distribution. Only the
mapping from the evidence to the belief representation

bi =
ri

W +
∑N

i=1 ri

u =
W

W +
∑N

i=1 ri

(1)

is explicitly used in this paper. W denotes the weight of the
base rate vector a.

B. Operations on Opinions

When opinions from two or more different sources exist
about a set of possible situations X , they can be fused into
one [15]. If the evidences are independent (like two rolls
of the same dice), then the cumulative fusion ωA

X ⊕ ωB
X is

the right fusion. For example, this can be used to combine
the opinions about the outcomes of several interactions for
trust development. If the evidences are dependent (like two
concurrent, maybe conflicting observations of one dice roll),
then the average fusion ωA

X ⊕ ωB
X must be applied. This

operation is appropriate to combine the opinions about several
properties of the outcome of a single interaction.

When a car B has the opinion ωB
X about the proposition

that there is a new traffic sign at a certain location, then A
only beliefs this as far as it considers B as trustworthy in
providing such information. So, if A has the opinion ωA

B about
B’s trustworthiness, then both opinions can be combined with
the uncertainty favouring discounting [17] into the opinion
ωA:B
X = ωA

B ⊗ ωB
X . The discounted opinion states how much

A beliefs the proposition based on B’s opinion.
When an opinion should have a lower weight in the cumu-

lative fusion operation (i.e. is less important), the uncertainty
must be increased. For example, this could be necessary
because its evidence is older than that of the other opinions.
The certainty can simple be scaled with the factor w by scaling
the evidence vector r with this factor: wωM

X = (w r, u, a)T .
The authors call this operation the certainty scaling.

IV. THE TRUST MODEL

As described in the introduction, cars exchange their knowl-
edge about the environment in form of reports. Such a report
contains the opinion ωA

v of the sender A about the possible
values vi of a model attribute v. This is, for example, the
belief (v+ = yes) and disbelief (v− = no) whether there is
a new traffic sign at a certain location. The receiver M uses

vA

vM

e → ω ωM
C,AbM

vMd(.,.) wt

Fig. 1. Signal flow for the competence evaluation. The difference between
what the car M thinks is right and what the car A has sent to M determines
the competence of A from M’s point of view.

this opinion (and all the opinions received from other cars) to
build its own opinion ωM

v about v. But M takes A’s opinion
also to develop trust in A. For this, it must judge how good
the opinion is. However, M can do this only, if it knows the
correct value of v. So, it must wait until it is very certain about
this value. Then, it can evaluate all reports regarding v. The
reports then become evidences for the trust development. This
section describes how a car evaluates those reports to update
its opinion ωM

A about the trustworthiness of A. The figures 1
to 4 guide through this process.

The proposed trust model incorporates three components:
M’s opinion ωM

C,A about A’s competence reflects the mean
error of all available evidences. This is the main criteria
whether reports of A are good. The opinion ωM

P,A about A’s
predictability indicates, whether M is able to make a right
decision based on A’s opinion and its trust in A. It is sensitive
to outliers. As its name indicates, its computation includes
a predictor. Based on the predicted value, feedback control
adjusts the predictability opinion. Finally, the cars exchange
their opinions about other cars in addition to the reports about
their environment. These opinions are called recommendations
and build up M’s opinion ωM

R,A about A’s reputation. In fact,
this is not the opinion of all cars that know A but only M’s
view on the reputation of A. So we call it a local reputation
of A.

A. Evaluation of the Competence

Trust and reputation are often derived from the number of
good and bad experiences in the past or from the degree how
good or bad these experiences were [e.g. 9–11]. The authors
of this paper call this notion of trust the competence of the
other car.

A car is more competent, if the information it provides is
more precise. Thus, competence is inverse to the mean error
of all evidences. Fig. 1 shows the steps, how a car M can
obtain an opinion about the competence of another car A.

For each evidence i, it first computes a distance between the
value vAi proposed by A and the value vMi which M thinks is
right. This operation can use any metric that maps to the closed
range [0; 1]. In many cases, the relative error erel,i = ei

emax,i

might be appropriate.
This relative error supports the opinion about A’s incompe-

tence. With it, the opinion about A’s competence in a single
situation i can be calculated in the evidence space as

r− = erel,i

r+ = 1− erel,i .

r− reflects A’s incompetence and r+ A’s competence.
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PredictorωA
V ωM

P,A

Error
computation Controller → ω

ωM
A

ωM
V

Fig. 2. Signal flow for the predictability evaluation. First, only based on
the opinion of A, a decision is made as described in section V-C. Then, this
decision is compared with the car’s own opinion about v. If both are different,
an error measure is passed to the controller, which, in turn, adjusts ωM

P,A.

M cannot be completely sure, whether its reference value
vMi is correct. So, it can also not be sure about the relative
error. The belief bM

vM
i

in its assumed correct value vMi reflects
the belief in the correctness of the relative error. As a conse-
quence, M must scale the above computed opinion with bM

vM
i

.
Finally, the opinions about A’s competence in all situations

are combined to an overall opinion about A’s competence. For
this operation, the cumulative fusion operation of subjective
logic is appropriate. To have an opinion about A’s present
competence, old evidences must be weighted lower in this
operation. Therefore, all opinions are scaled with a time-
dependent factor wt,i. (It is further discussed in Sect. IV-F.)
So, in the end, the opinion about A’s competence is

r+ =
N∑
i=1

wt,i b
M
vM
i

(1− erel,i)

r− =
N∑
i=1

wt,i b
M
vM
i
erel,i .

(2)

So far, we have shown how several evidences with the
car A are transformed in one opinion about A’s competence.
The remaining paragraph shows that this transformation has
a reasonable interpretation even in belief representation: The
disbelief in A’s competence results from (1) and (2) as

b− =

∑N
i=1 wt,i b

M
vM
i

erel,i∑N
i=1 wt,i bMvM

i

+ W
.

W is the weighting factor for the base rate vector (the a priori
probability) in subjective logic. When only the observed evi-
dences are taken into account without a priori considerations
(W = 0), then b− is a weighted mean of the relative error.
So, ωC,A = (b, u) reflects the competence as proposed in the
beginning of this section: competence is inverse proportional
to the mean error. The weighting factors are due to the age
of the evidence and M’s own certainty about each computed
error. Both are reasonable.

B. Evaluation of the Predictability

The competence measure given above describes the mean
behaviour of the other car. It does not account for outliers or
quick changes in the other’s behaviour. As a consequence, this
paper proposes to include a feedback control that is sensitive
to outliers. The idea is, that the car M behaves as if it received
three times the same message from three other cars that have
about the same trust value. Would it decide right, then? So, it

predicts its decision based on the message of the other car A
and finally verifies whether the predicted decision was right.

Fig. 2 shows the computation schema with the predictor and
the controller. There, ωM

A is the total trust opinion about A. It
is taken from the output of the trust system and fed back here
to control the prediction. So, the predictability component of
the trust model implements a feedback loop together with a
controller to benefit from the methods of control theory.

The prediction goes in the same way as the decision making
(for example, as described in Sect. V-C. In general, a decision
making is represented by an operator D from a set of opinions
{ω1

x, . . . , ω
N
x } about a certain statement x to a tuple d, which

contains the decision whether to belief xi and the associated
opinion ωM

x of the car M. More specifically, if the car M
applies the operator D on three times the opinion of A (ωA

v ),
the result can be to accept A’s opinion or note. This can then
be compared with M’s real opinion about v.

If the decision to accept or not accept the value proposed by
A was right, then A was predictable. So, ωM

P,A is right; there
was no prediction error (e = 0). Otherwise, if the decision to
accept or not accept was wrong, M must compute a prediction
error e and readjust the relation c = b+

b−
between the belief and

disbelief in ωM
P,A to obtain a new ωM

P,A (see Fig. 2).
The prediction error is not simply 0 or 1 if the decision was

right or wrong. Instead the degree of the error depends on the
predicted opinion and M’s own opinion about v:

e = b̂Mv − bMv .

For the readjustment, this paper proposes a PI controller
(proportional and integral controller) with the output

yk = KP ek + KI

k∑
i=1

ei ,

where k is the step counter. It is increased with every piece of
evidence. (So, it represents the number of evaluated reports.)
With the controller output, a new c for the next evidence can
be computed by

ck+1 =

{
(1 + yk) ck for yk ≥ 0

1
1−yk

ck for yk < 0 .

To compute bMP,A from c, the uncertainty uM
P,A is necessary. It

reflects the number of evidences; so it is known and always
equal to uM

C,A. With both together, the new predictability
opinion can be obtained with

ωM
P,A =

((
c (1− uM

P,A)

1 + c
,

1− uM
P,A

1 + c

)
, uM

P,A

)
.

In the proposed trust model, the predictability opinion
should make the model more sensitive to outliers in the other
car’s behaviour. So, the control must be more sensitive to
wrongly accepted reports than to wrongly rejected reports.
Therefore, the simulation for this paper has been performed
with KP = 0.6 and KI = 0.2 if the report has been wrongly
accepted. In the other case, KP = 0.2 and KI = 0.2.
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ωMB

ωMR,AωBA wt

Fig. 3. Signal flow for the reputation computation. To aggregate the
reputation of A, M discounts all reputations and accumulates them then
(weighted by their age).

C. Evaluation of the Local Reputation

Reputation reflects what people say about another person
or object. It condenses the general opinion of a group or
society – not only of one or two individuals. So in technical
systems, it is mostly realised as a feature of the network,
which collects all recommendations to compute a reputation
from them. For example, eBay [10] and the beta reputation
system [11] do so. This paper focuses on individual-level trust,
though. Here, the individual collects recommendations from
others to build an opinion about another cars reputation. This
individual reputation opinion may be different from the “real”
global reputation. So, the authors call it local reputation, when
it is helpful to distinguish both.

Reputation systems have to face the problem of statisti-
cally dependent recommendations [8, 17]. This is especially
necessary in decentralised systems. The proposed reputation
mechanism takes three measures to handle this: Firstly, only
the most recent recommendation of one source about a third
car is saved. Secondly, a car should only spread a recom-
mendation about cars, with which it had at least one direct
interaction. And thirdly – which is the most important measure
–, reputation plays only a subordinate role in the opinion
formation as detailed in the next section.

With these measures, the reputation can be computed as in
other reputation systems (see Fig. 3): Every recommendation is
discounted with the opinion about the source of the recommen-
dation. So, the more the car M trusts the car B, the more weight
B’s opinion gains in the fusion process. This is done by the
uncertainty favouring discounting as discussed in Jøsang et al.
[17]. This operation weights the opinion of trustworthy cars
higher in the subsequent opinion fusion. Further, the reputation
opinions are weighted according to their age as described in
Sect. IV-F. This whole process finally ends in a single estimate
ωR,A about A’s reputation.

D. Combining Everything Together in a Trust Value

With the previous three sections, the car M has opinions
about three properties of A: its competence, its predictability
and its reputation. This section describes how these opinions
are transformed into a trust value which quantifies the sender-
related uncertainty of values received from A.

When looking at the three properties of the previous sec-
tions, competence and predictability are obtained by the car
itself from direct interactions. As both are based on the same
evidences, they must be combined with the averaging fusion.
This is shown in the upper branch of Fig. 4.

However, only few evidences exist to evaluate competence
and predictability. In contrast, recommendations of many cars

ωM
AωM

R,A

ωM
C,A

ωM
P,A ω → t tMA

Fig. 4. The three components competence, predictability, and reputation are
combined in an overall opinion. This opinion represents the trust in the car
A. For deciding, it is transformed in the one-dimensional trust value tMA .

are usually available resulting in an opinion about another
car’s reputation with small uncertainty. But reputation has the
disadvantage that it is prone to attacks of others (see the
requirements in Sect. I-B). That is why a fusion method is
needed that takes advantage of the dense network offered by
the reputation mechanism and of the reliability that comes
along with the competence and predictability opinions.

The authors propose a new operator for subjective logic, the
priority fusion. It is defined as

u =
uP · uD

uP + uD − uP · uD

bxi
= bP,xi

+ (uP − u)
bD,xi

bD,xi
+ dD,xi

,

where the subscript P denotes the prioritised opinion and D the
discriminated one. This way the prioritised opinion – gained by
the car itself as a combination of competence and predictability
– is not influenced by the recommendation of other cars. Even
though, the consideration of reputation as the discriminated
opinion ensures that all available information is still used.
Furthermore, it allows an opinion about another car if no or
only few own evidences exist.

At this point, the car M has computed its opinion about
the trustworthiness of the other car A. An opinion is a two-
dimensional magnitude, though. Sometimes – for example, to
make a decision – a one-dimensional trust value is preferable.
So, the final computation step in Fig. 4 transforms the trust
opinion ωM

A in a trust value tMA . Such a transformation already
exists: for example, the expectation value of subjective logic.
Another one with roots in information theory is proposed in
the following section.

E. Opinions and the Binary Error and Erasure Channel

The opinion of the car M about the trustworthiness of
another car A means whether M expects that A sends reli-
able information or not. The belief b+ expresses the degree
whether M expects to receive correct information, the disbelief
b− whether M expects to receive wrong information. The
uncertainty u comes from a lack of knowledge; so, it is no
expectation at all. This setting is similar to the model of
the binary error and erasure channel shown in Fig. 5 on the
following page [18]. Its channel capacity

C = (1− u)

(
1−Hb

(
b+

1− u

))
with Hb(x) = −x log2(x)− (1− x) log2(1− x)
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0 0

?

1 1

d
u
b

Fig. 5. The binary error and erasure channel. The disbelief d in the
trustworthiness of another car A can be interpreted as an error rate of a
transmission channel, the uncertainty u as an erasure rate.

expresses how much information can be correctly transmitted.
It can be considered as a trust value tMA derived from the
opinion ωM

A = ((b+, b−), u). If the disbelief is higher than
the belief, a negative sign is placed in front. Then, the trust
value has a range from -1 to 1.

What is the advantage of using the channel capacity over
the (commonly used) expectation value of opinions? The ratio
between both (R is the trust value based on the expectation
value as given in [11])

C

R
=

b+ + b−
b+ − b−

(
1−Hb

(
b+

1− u

))
has the following properties: It remains constant if the ration
b+
b−

remains constant, that is, if only the uncertainty is varied.
Otherwise the channel capacity is more sensitive to higher
disbelief values; it punishes high disbelieves and rewards low
disbelieves stronger than the expectation value. As Sect. VI
shows this property makes it easier to separate agents with
different error rates. So, it helps in the decision process.

F. Temporal Weighting of Opinions

Recent evidences should influence a present decision more
than old evidences. This lets a system better adapt to changes
in the environment: Trustworthy cars can become untrustwor-
thy, and untrustworthy cars must have a chance to become
trustworthy. So, a car must weight new opinions higher than
older ones, when it fuses them in an overall opinion. This
weight must depend on the age of the opinion. For the
weighting operation, the certainty scaling fits well when the
opinions are fused with the cumulative fusion.

The mapping from the age of an opinion to its weight should
have the following properties:

1) At age t = 0, the mapping should be 1.
2) For t→∞, it should tend to zero.
3) In between, it should be monotonic.
Three mappings with the proposed properties are common:

From the set of exponential functions, only wt = b
t

1 year (and
its equivalent formulations) have the required properties. The
rational polynomials wt = a

t+a and the piecewise functions

wt =

{
mt + 1 for t < − 1

m

0 else

with m < 0 fit here well, too.
Figure 6 compares these weighting functions. It shows that

the rational polynomial decreases faster than the exponential
functions in the beginning, but becomes flatter, then, and
tends more slowly to zero in the end. The linear function

 0
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Fig. 6. Examples of temporal weighting functions. The exponential functions
(dashed lines) decreases slower in the beginning, but show lower weighting
values in the end compared to the rational polynomial (solid line). The linear
functions approximate the exponential functions from a global view.

with m = −1/3 is a good approximation for the exponential
functions. The described properties are already significant
within the lifetime of a car.

All in all, the rational polynomial does not suppress old
evidences sufficiently. The exponential functions show a suit-
able form. In addition, they can be used in a recursively
updating algorithm, because w(t) = w(∆t1) · w(∆t2) for
t = ∆t1 + ∆t2. (A recursive update algorithm can help to
save memory.) On the downside, they are computationally
expensive. In contrast, the linear functions can be computed
quickly and can be adjusted to have a sufficiently good form.
They cannot be updated recursively, though.

V. METHOD OF THE MODEL EVALUATION

In order to test the performance of the trust model the
authors have created a simulation environment with respect
to the characteristics of the cars’ driving and communica-
tion behaviour. The simulation code is publicly available
at www.ldv.ei.tum.de/Members/wbam/fidens for extension or
verification by the research community.

A. The Social Structure in the Simulation

As pointed out in the introduction, a simulation environment
for trust models must reflect the underlying social structure.
Here, this structure is constituted by the movements of the
cars and their communication. Because these movements are
not random, they lead to regular meetings of cars. For example,
some cars could use the same parking site and have similar
trip times. The regular meetings are important so that trust can
develop.

We developed a suitable traffic scenario, which simulates
an urban population of a small town with about 15 000
inhabitants. It only contains trips to work and back home;
however, these incorporate the majority of the regular ones
and also allow random meetings. The duration of 23 weeks is
pretty long compared to other simulations but it is necessary
because developing trust takes some time. The simulation is
performed with the microscopic traffic simulator SUMO [19].

The cars’ communication is then simulated with the net-
work simulator Shawn [20]. It is very efficient and suitable
for our case, because it simulates the effects caused by a
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Fig. 7. Signal flow of the decision process. First, only the most trustworthy
cars are extracted. Then, their opinions are discounted and combined. This
also includes M’s own observation. The result is M’s opinion about v. It can
be transformed in the trust value tMv for decision making.

phenomenon, not the phenomenon itself. When cars meet, they
only exchange own observations about the environment or rec-
ommendations that origin from own experiences. Information
of a third party is not yet relayed.

Both together, the cars’ movements and their communica-
tion, represent the social structure.

B. The Information Model in the Simulation

As described in Sect. I, there is much information vehicles
can exchange. Changes in the environment are modelled as
events at randomly chosen locations in the simulation. These
events are implemented as special network nodes. They send
out binary values, which represent for example that there is a
sign or not, there is free parking space or not, there is a point
of interest or not, etc. Ten such events occur per day and each
exists for one day. This frequency corresponds approximately
to that of fuel prices or free parking lots. In reality, more events
can be expected; this would then increase the trust model’s
performance.

C. The Cars’ Behaviour in the Simulation

A trust model should help to maintain a more correct
knowledge base. The process to determine knowledge from
received information must therefore incorporate the trustwor-
thiness of the senders. A car does this in a way that illustrated
in Fig. 7. It is similar to the method in [9]. First, the car
takes all messages regarding a specific event and discards the
third of them that comes from the senders with the lowest
trust values. Afterwards the remaining opinions are discounted
with the opinion about its sender’s trustworthiness. This has
the effect that good known and well behaving vehicles get a
higher weight. The discounting must be uncertainty favouring
discounting as given in Sect. III-B. Finally the opinions about
the event are combined into one using cumulative fusion.

A car must also decide, when to process a received report
in the way described in trust model. In general, it can do this
as soon as its own opinion about the included information is
certain enough to reliably judge about the report. In the simu-
lation, the car does this every time it observes the related event
on its own. Whether this observed value is right depends on the
error rate of the involved sensors, though. (Artificial reasoning
has the property to be non-monotonic [21]. This means that
new evidences can come in and lead to a completely different
judgement of the situation. So, it is mostly a good idea to
collect as much evidences as possible before judging about
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Fig. 8. This graph shows how often a prototypical car meets other cars. For
example, on average a car meets about two cars at least once a week.

the trustworthiness of another car. But certainly, a trust model
is only useful when it is used. So, a car must judge some
when.)

VI. EVALUATION RESULTS AND DISCUSSION

The simulation gives insights of the social structure and the
trust model. Fig. 8 illustrates how often cars meet each other.
The values are mean values over all cars; they represent a
prototypical car. For example, after 23 weeks this prototypical
car has met about five other cars at least 20 times. These are
something like “good friends” that it meets once a week. The
figure also visualises how the system settles down over time.

Fig. 9 on the following page visualises the competence
property of the trust model. In the simulation, cars have
different error rates between 0.0 and 0.2. The figure shows
that a car assigns different trust values to other cars depending
on this error rate. So, the competence indeed reflects the
mean error of the other car and it is a good indicator for
the reliability of the information source, when the car fuses
information from several sources and decides about them. The
figure also shows that a car with a higher error rate cannot
estimate the competence of other cars as good as cars with
a lower error rate. This is, because their reference values are
more often defective.

The trust value in the upper diagram has been computed
with the formula of the channel capacity. The solid line spans
a value range of about 0.45. In contrast, in lower diagram the
trust value is calculated with the formula of the expectation
value. Here, the value range is only 0.3. This is the reason,
why the channel capacity is a better transformation for the
trust value computation than the expectation value. It makes
it possible to better separate cars with different error rates.

The predictability is hard to visualise, because it cannot be
presented by averages of the trust value. The feedback control
has an effect only if the competence does not reflect the other’s
behaviour anymore. Then, it helps to more quickly adapt to the
new situation than the competence alone. Exemplary numbers
from the simulation show this: If a car with a good competence
opinion ωA

C = (0.84, 0.08, 0.08) and a predictability opinion
ωA
P = (0.32, 0.60, 0.08) (c = bP /dP = 0, 53) sends a report

with a high belief error of 1, the predictability opinion may
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Fig. 9. The trust value of the competence depending on the error rate of
the car. Cars of all types (different lines) can clearly distinguish the error rate
of other cars (x-axis) based on the competence opinion. In the top diagram,
the trust value is based on the formula of channel capacity. In the bottom
diagram, the trust value is based on the formula of the expectation value. In
this graphic, the value range is smaller than in the graphic above.

immediately fall to (0.23, 0.69, 0.08) (c = 0.33). In contrast,
the competence changes only slightly to (0.80, 0.12, 0.08).

VII. CONCLUSION AND FUTURE WORK

In this paper, we systematically modelled trust as a social
mechanism to handle the uncertainty in the information ex-
change. It integrates different components to make it suitable
for different situations. It also features the capacity formula
of the binary error and erasure channel as an appropriate
transformation of a two-dimensional trust opinion in a one-
dimensional trust value. We also proposed a traffic simulation
that partly represents the “social structure” between the cars.
Thus, it is suited to investigate a social phenomenon like trust.

In the future, we plan to apply learning algorithms to the
trust development to make the model even better adapt to
different situations. We also intend to extend the simulation
environment by more types of car behaviours. There should
be car types that really try to exploit the weaknesses of trust
models like human beings do.
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