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Abstract—This paper is about how groups solve global co-
ordination problems such as the distributed graph coloring
problem. We focused on scenarios in which agents are not
able to communicate explicitly, but can rely on observing the
momentary choices of their immediate neighbors in a social
network. It has been reported that humans use two cognitive
heuristics when solving such problems: (i) the frequency-based
heuristic, where people make choices that minimize conflicts
with neighbors; and (ii) the degree-based heuristic, where people
avoid conflict with well-connected neighbors. In this paper, we
present a model capable of capturing these cognitive heuristics
to varying intensities. Then, through simulation, we shed light
on the behavior of these heuristics under different classes of
social networks. Our analysis generally speaks in favor of both
heuristics, provided they are used in moderation, and illustrates
the utility of taking social status (connectivity) into account.

I. INTRODUCTION

Networks capture fundamental relationships and interactions
in biological, economic, social and artificial systems [1], [2],
[3]. It is widely recognized that the structural properties of
networks can significantly influence individual and collective
behavior, such as consensus finding [4], short path identifica-
tion [5], the evolution of cooperation [6], and the efficiency
of market trading [7], [8], [9].

In a recent seminal paper in Science, Kearns et al conducted
a laboratory study of the effect of network structure on the
ability of humans to achieve global coordination through local
coordination [10]. They used the distributed graph coloring
(DGC) problem, which abstracts a wide range of collective
coordination problems, ranging from scheduling classrooms,
to social differentiation among peers. Each individual controls
the color of a vertex in a network, and can only see its
immediate neighbors. The collective goal is to color the entire
network, using a minimum number of colors, such that no two
neighbors have identical color.

Kearns et al studied the DGC problem under different
network topologies (Figure 1), and captured the group’s
performance (measured in total number of color changes)
in successfully coloring different kinds of networks. They
reported that people often employ a frequency-based heuristic,
“choosing colors that will result in the fewest local conflicts.”
When people were given additional information about the con-
nectivity of their neighbors (i.e. their degree), many reported
using a degree-based heuristic, “attempting to avoid conflicts
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with neighbors with high connectivity” [10]. The frequency-
based heuristic reflects bias towards avoiding popular choices,
while the degree-based heuristic reflects bias towards avoiding
popular individuals.

Our aim in this paper is to shed more light on the frequency-
based and degree-based heuristics in DGC problems. These
heuristics are particularly relevant when agents do not have
the ability to communicate explicitly (e.g. exchanging ‘no
good’ messages to propagate their constraints [11] or relying
on mediators [12]). The inability to exchange messages may
be due to time constraints. For example, in a time-critical
scenario, people may not have the time to communicate
explicitly to decide how to coordinate, and may have to rely on
observing and reacting to each other’s actions instantaneously.
People may also be unable to exchange messages due to the
nature of the problem. For example, when one develops an
expertise to differentiate oneself from peers in an organization,
this person has no authority to ask others to avoid certain
choices of training, but can only signal his/her own choice.

Our first contribution is a model that captures both the
frequency-based and the degree-based heuristics, together with
parameters that control their intensity.

The second contribution of this paper is shedding light
(through extensive simulations) on the effectiveness of these
naturally occurring heuristics on coordination in different
classes of networks. We find that increasing the intensity of
the above heuristics can often be useful. However, there are
network structures in which this may be severely counter-
productive. We identify a ‘safe’ range of intensities which
seem to work well in a variety of networks. Furthermore, our
model provides a possible explanation of the observation, by
Kearns et al, that people’s coordination can sometimes worsen
when more information is provided to them.

Our results have implications on both artificial and natural
coordination. By shedding light on the interplay between
network structure and the effectiveness of naturally occurring
heuristics, we provide means for identifying possible causes of
mis-coordination in natural systems. On one hand, our results
inform the design of automated local coordination heuristics
(e.g. used by agents when coordinating with people). On the
other hand, our work informs the design of organizational
structures in a way that ensures successful coordination, given
that people use particular local heuristics.
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II. BACKGROUND

In this section, we formally define the Constraint Satis-
faction Problem (CSP) and its distributed version. We then
summarize the recent behavioral experiments, conducted by
Kearns et al [10], to observe how people solve these kinds of
problems.

Formally, a CSP is defined as follows [11], [12].

Definition 1 (CSP): A Constraint Satisfaction Problem
consists of:

o A set of variables X = {X1,...,X,};
e A domain Dom; for each variable X;;

e« A set of constraint predicates of the form
Py(Xg1,...,Xk;) defined on the Cartesian product
Domy;; X ... x Domy;, and returning true exactly for

variable assignments that satisfy the constraint.

Solving a CSP amounts to finding an assignment of values to
variables that satisfies all constraints. The CSP is NP-complete
in general, making the use of heuristics inevitable.

In a distributed CSP (or DisCSP), each variable is controlled
by a single agent. By making a local assignment to its
variable, an agent hopes to contribute to a global solution.
Most algorithms for solving DisCSPs rely on some form of
explicit communication among agents. For example, agents
may communicate their current legal values to other agents,
facilitating the so-called arc consistency. Alternatively, they
may communicate suggested values and “no good” messages
to implement asynchronous backtracking [11]. In this paper,
we are interested in situations in which agents cannot com-
municate such messages, but instead, can only observe each
others’ momentary variable assignments, which may change
as they search for a solution.

The inability to exchange messages may be due to time
constraints. For example, in a time-critical scenario, people
may not have the time to communicate explicitly to decide
how to coordinate, and may have to rely on observing and
reacting to each other’s actions instantaneously. People may
also be unable to exchange messages due to the nature of
the problem. For example, when one develops an expertise to
differentiate oneself from peers in an organization, this person
has no authority to ask others to avoid certain choices of
training, but can only signal his/her own choice [10].

In this paper, we focus on a specific DisCSP, namely
the distributed graph coloring (DGC) problem, where each
individual controls the color of a vertex in a network. The
collective goal is to color the entire network, using a given
minimum number of colors, such that no two neighbors have
identical color. The DGC is an example of a binary DisCSPs,
in which each constraint involves exactly two variables.

Kearns et al [10] studied the DGC problem, with human
participants, under different network topologies (Figure 1).
They begin with a simple cycle of 38 nodes. Then, they add
5 or 20 randomly chosen arcs, while preserving a chromatic
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Fig. 1. Network classes we study (adopted from [10]), from top-left to
bottom-right: simple cycle, 5-chord cycle, 20-chord cycle, 2 leader cycle,
preferential attachment with v = 2 and v = 3 links initially added to each
new node.

number of 2, resulting in small-world networks.! Finally,
they investigate behavior on scale-free networks generated
via preferential attachment [14], in which highly-connected
individuals are more likely to receive further connections,
leading to so-called hubs.

In their study, Kearns et al ran experiments with three
informational conditions.

1) In the low-information condition, each participant could
see (through a computer interface) his/her own color as
well as that of each of its immediate neighbor.

In the medium-information condition, each participant
could also see the degree of each of its neighbors (i.e.
their connectivity).

In the high-information condition, participants could see
the entire network.

2)

3)

Our focus in this paper is with modeling behavior in the first
two conditions.

Kearns et al reported that participants self-reportedly em-
ployed two behavioral heuristics:

1) Frequency-based Heuristic: Many people reported
“choosing colors that will result in the fewest local
conflicts.”

2) Degree-based Heuristic: When given additional infor-
mation about the connectivity of their neighbors (i.e.
their degree), many reported “attempting to avoid con-
flicts with neighbors with high connectivity.”

The frequency-based heuristic reflects bias against popular
choices, while the degree-based heuristic reflects bias against
popular individuals.

Our aim is to understand the interplay between these
behavioral biases and the group’s ability to achieve global
coordination.

'A small-world network has low average shortest-path between its nodes,
while having a high clustering coefficient [13]. Most real world networks,
including social friendship networks, are reported to have this property.



III. MODEL OF HEURISTIC BEHAVIOR

We model node behavior as follows. A node retains its color
if it is locally consistent. Otherwise, if there are one or more
unused color, one such color is selected randomly. In the case
of irreconcilable conflict, the node chooses a new color ¢, from
the set C, with probability p(c) inversely proportional to each
color’s importance 1(c).

-1
)
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o= (103
c,eC I(CZ
To capture the frequency-based and degree-based heuristic, let
N be the set of neighbors, and N (c) be the set of neighbors
with color c. Let d(i) be the degree (i.e. number of neighbors)
of node ¢. The importance of color c is:

(D

Q

> (dna)*
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I(c) 2

Parameter K captures the intensity of the degree-based heuris-
tic, while @ captures the intensity of the frequency-based
heuristic. Note that if K = 0, then I(c) = |N(c)|9; that
is, the node ignores degree information when deciding on
the importance of the colors in its neighborhood. That is, the
importance of a color depends solely on the frequency of that
color among neighbors, ignoring information about the degree
of neighbors. This can be used to capture behavior under the
low-information view.

With @ = 1, the relative frequency of colors is mirrored in
their importance, but with @@ > 1, the relative importance of a
color increases exponentially as relative frequency increases.
With K > 1, the relative importance of a color increases
exponentially as the total degree of neighbors with that color
increases (e.g. for K = 2 and Q = 1, red appearing in a
single neighbor with degree 4 is eight times as important as
blue appearing in two neighbors of degree 1 each).

The node’s behavior is summarized in Algorithm 1, where:

e conflict is true if the node’s current current color is

common with at least one of its neighbors.

o previousColor refers to the current color of the node.

o unUsedColors refers to the set of colors which are not

used with any of the nodes’ neighbors.

IV. BEHAVIOR IN LOW INFORMATION VIEW

We begin by studying what Kearns et al refer to as the
low information view, in which agents do not have access to
information about their neighbor’s degree, but only its current
color [10]. In this setting, agents can only apply the frequency-
based heuristic. In our model, this corresponds to assigning
K = 0 in Equation 2, and varying the value of () to capture
the intensity of the frequency-based heuristic.

We simulated the heuristic on six different classes of
networks, of 38 nodes each following Kearns er al (see
Figure 1), with K 0 and varying values of () over
0,0.125,0.25,0.5,1,2...10. In each graph, we ran 100 ran-
dom initial colorings. In the case of scale-free and chord
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Algorithm 1 Node Behavior
Output: new action «

1: if —conflict then

2 a < previousColor

3: else if conflict A (unUsedColors # () then

4 a <+ some color ¢ € unUsedColors selected uni-
formly at random

5: else if conflict A (unUsedColors = () then

6 for each c € C' do Q

T IO = (hento [@0)X)

-1
s 2= (10 0ee )

end for

a <— some color ¢ € C selected randomly according
to p(.)
: end if

networks, the graph structure was also generated randomly.
Figure 2 summarizes our results, with the number of color
changes under each value of () averaged over 100 runs.

As expected, in the case of simple cycles, frequency bias
has no effect (Figure 2(a)). In the leader cycle network, higher
values of () perform consistently better (Figure 2(d)). This may
be due to the fact that as soon as one of the two hubs causes
a significant portion (> 50%) of its neighbors to fixate on one
color, the hub itself is likely to fixate on the opposite color
thanks to the frequency heuristic, which in turn forces all its
remaining neighbors to coordinate correctly.

In all other networks, we observe that performance initially
increases (i.e. average number of color changes decreases)
as the value of () increases. However, there appears to be
a critical point (i.e. value of @), after which performance
worsens. The exact value of the critical point changes from
one network structure to another. Indeed, in the case of 20-
chord cycles, this worsening is not significant (Figure 2(c)).
In PA and 5-chord cycles, however, performance worsens
significantly as () goes above 3. Indeed, in 5-chord cycles,
performance can be even worse than dropping the frequency
heuristic altogether (Figure 2(b)). Overall, the value Q = 3
appears to capture a consistently successful intensity of the
frequency heuristic across all networks.

Network Class Correlation p-value N
coefficient
All -.350%* .000 3600
Cycle Family =341 .000 2400
PA Family -.396%* .000 1200
Simple Cycle 0.006 0.875 600
5 Chord Cycle -.330%* .000 600
20 Chord - 480%* .000 600
2 Leader Cycle -486%* .000 600
PA (V=2) - A15%* .000 600
PA (V=3) -.376%* .000 600
TABLE I

CORRELATION COEFFICIENTS BETWEEN FREQUENCY BIAS (@) AND
AVERAGED SOLUTION TIME FOR @ < 3, K = 0. SIGNIFICANT
CORRELATIONS ARE MARKED BY **
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Fig. 2. Average number of color changes with K = 0 and varying value of @

To confirm our observation of this special value of ), we
performed Pearson correlation tests between the intensity of
frequency bias (i.e. varying values of ) with fixed K = 0) and
the solution time. Results of the correlation tests for () < 3 and
@ > 3 are shown in Tables I and II, respectively. Significant
correlations are marked with x*, and N denotes the number
of cases with non-missing values.

Network Class Correlation p-value N
coefficient
All BETES .000 4800
Cycle Family 129%%* .000 3200
PA Family 215%* .000 1600
Simple Cycle -0.04 0.262 800
5 Chord Cycle 259%% .000 800
20 Chord 147 .000 800
2 Leader Cycle -410%* .000 800
PA (V=2) 212%* .000 800
PA (V=3) 218%* .000 800
TABLE II

CORRELATION COEFFICIENTS BETWEEN FREQUENCY BIAS (Q)) AND
AVERAGED SOLUTION TIME FOR @ > 3, K = 0. SIGNIFICANT
CORRELATIONS ARE MARKED BY **

For Q < 3, Table I shows significant moderate negative
correlation between frequency bias and average solution time
in all networks except simple cycle. On the other hand, for
@ > 3, Table II shows significant weak positive correlation
between frequency bias and average solution time in PA
networks, 5-chord cycles, and 20-chord cycles. Again, as
expected, there is no significant correlation within simple cycle
networks. Interestingly, leader cycles continue with negative
correlation, but as Figure 2(d) shows, this is not a large
improvement to what has already been achieved with () = 3.
Indeed, if we group cycle-based and PA network groups
together, correlation is positive, meaning that intensities of
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the frequency heuristic above () = 3 are generally counter-
productive.

Note that while our analysis above suggests that a value
of approximately ) = 3 is a good choice in general, finding
the precise optimal value of () can be done using standard
optimization techniques (e.g. using gradient ascent on ()
to find the value that maximizes correlation in a particular
network class or across all classes). We leave this to future
work.

V. BEHAVIOR IN MEDIUM INFORMATION VIEW

In the previous section, we investigated the frequency-based
heuristic in the low information view, in which agents only saw
the current color of their immediate neighbors. In a different
condition, Kearns er al allowed people to see the degree of
each neighbor (i.e., the number of peers that neighbor had).
This medium information view allows people to differentiate
between their neighbors based on their connectivity, which can
be seen as a measure of the neighbor’s importance. In this
condition, participants in Kearns et al’s behavioral experiment
reported using a degree-based heuristic, in which they tend
to avoid conflict with highly-connected neighbors. Note that
this heuristic is used in conjunction with the frequency-based
heuristic we studied earlier.

A. Varying Degree Bias with Moderate Fixed Frequency Bias

Our first aim is to understand if degree bias is an ef-
fective coordination heuristic, given a fixed (and moderate)
frequency bias. To investigate this, we simulated the degree-
based heuristic on six different graph classes of 38 nodes each
following Kearns et al (see Figure 1), varying the value of
K over 0,0.125,0.25,0.5,1,2...10, and fixing the frequency
bias parameter to ) = 1. In each graph, we ran 100 random
initial colorings —in the case of scale-free and chord networks,
the graph structure was also generated randomly.



Our results speak in favor of the degree-based heuristic. As
shown in Table III, with the exception of the simple and 5-
chord cycle families, there is significant negative correlation
between K and the average number of color changes. This
means that taking into account the social importance of one’s
neighbors is generally a useful strategy towards achieving
global coordination.

Network Class Correlation p-value N
coefficient
All -.002 .853 8400
Cycle Families .100%* .000 5600
PA Families -.344%% .000 2800
Simple Cycle .004 .884 1400
5 Chord Cycle 2927 .000 1400
20 chord -267%* .000 1400
2 Leader cycle -.499%* .000 1400
PA (V=2) -.338%* .000 1400
PA (V=3) -.350%* .000 1400
TABLE III

CORRELATION COEFFICIENTS BETWEEN DEGREE BIAS (K) AND
AVERAGED SOLUTION TIME (WITH Q = 1). SIGNIFICANT CORRELATIONS
ARE MARKED BY **

Figure 3 provides more detail, showing effect of varying K
with fixed @ = 1. It is interesting to note that, as was the
case with parameter (Q, the value K = 3 also appears to be a
reasonable choice across all networks. It is also interesting to
observe that, unlike the case with (), higher values of K are
not counter-productive in PA networks. This may be due to
the fact that the degree-based heuristic naturally exploits the
highly-connected hubs found in PA networks, something the
frequency-based heuristic misses completely.

B. Varying Both Heuristics Simultaneously

To shed more light on our model, it is important to
understand the interplay between the frequency-based and
degree-based heuristics more thoroughly. In particular, it is
important to vary both their parameters simultaneously. Thus,
we simulated the heuristics on the six different graph classes
of 38 nodes, varying the values of both parameters K and
Q as follows: 0,0.125,0.25,0.5,1,2...10. In each graph, we
ran 100 random initial colorings —in the case of scale-free
and chord networks, the graph structure was also generated
randomly. All figures are plotted as heat maps with the two
axes denoting K and (). Figures are shown in gray-scale, with
lighter colors denoting a higher number of color changes in
solving the CSP, averaged over 100 runs.>

Variations in K and @ have no significant effect on perfor-
mance in the simple cycle (Figure 4), which is expected since
the symmetry of neighbors renders the heuristic useless.

In preferential attachment (PA) networks, the average num-
ber of color changes needed to find a solution decreases
sharply as either K or () increase. Figure 5 shows the case of
PA networks (with v = 3). PA networks with (v = 2) and 2-
leader cycles follows a similar pattern. This shows that either

2We note that all patterns observed were similar when using the median
instead of average.
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Fig. 4. Heat map of the average number of color changes required for solving
simple cycles under varying values of parameters K and Q.
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Fig. 5. Heat map of the average number of color changes required for solving
PA networks (with v = 3), under varying values of parameters K and Q.
PA networks with v = 2, leader cycles and 20-chord cycles

follow a similar pattern.

heuristic (or combination thereof) would be effective in these
types of networks.
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Fig. 6. Heat map of the average number of color changes required for solving
5-chord cycles.

Surprisingly, in 5-chord cycles (simple cycle with 5 ran-
domly added connections), the pattern is completely reversed
—bias towards degree or frequency leads to good average
performance up to a point, after which it becomes severely
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counter-productive (Figure 6).

However, as more random links are added in the case of
20-chord cycles, the pattern reverts back, with the problem
becoming consistently easier with higher K and ). One
possible explanation is that as more hubs emerge, successful
local coordination becomes more indicative of good global
coordination.

VI. EXPLAINING PA NETWORK DIFFICULTY

As a side exercise, we were interested in explaining a pecu-
liar observation by Kearns et al [10]. Kearns et al observed that
people find it more difficult to solve PA networks, when they
are shown degree information. This observation is counter-
intuitive, as one would expect the additional information
available to individuals to be useful or, if not useful, easily
ignored.

It is clear that our model does not generate this pattern on
average (Figure 5). However, we offer one plausible expla-
nation of this phenomenon. When we plotted the worst-case
performance (i.e. highest number of color changes for any of
the 100 network in the class) for PA networks under each
combination of K and () values (see Figure 7), we observe
that with sufficiently high @), increasing K increases difficulty.
This suggests that the difficulty observed by Kearns et al
may be due to a particularly unfortunate choice of networks
they studied.> Upon closer inspection, we observed that the
difficulty distribution of PA networks is heavy-tailed (Figure
8), which supports our explanation.

The lesson learned: the degree-based and frequency-based
heuristics are effective, up to a point, after which they may be
counter-productive in some networks.

31t is not clear how many of the 6-7 trials per-network class involved
a medium-information view [10], hence it is not immediately clear if their
observation was statistically significant across the entire PA network class.

(e) PA (V=2)
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VII. DI1ScuUsSION & CONCLUSION

This paper was concerned with how groups solve co-
ordination problems such as the distributed graph coloring
problem. We focused on scenarios in which agents are not
able to communicate explicitly, e.g. by exchanging ‘no good’
messages to propagate their constraints among each other [11],
or by relying on mediators [12]. In such situations, agents must
simply rely on observing the momentary variable assignment
behavior of its immediate neighbors, which may change as
they collectively search for a solution.

We investigated two human-inspired heuristics for making
use of such social information, as observed in recent behav-
ioral studies of humans solving the DGC problem [10]. We
presented a model capable of generating these heuristics to
varying intensities. We then used the model to understand the
behavior of the heuristics under different network structures.

Our work on coordination is in the spirit of recent work
on the cognitive modeling of other human collective behav-
iors, such as contagion and imitation [15]. Our results have
implications on both artificial and natural coordination. By
shedding light on the interplay between network structure and
the effectiveness of naturally occurring heuristics, we provide
means for identifying possible causes of mis-coordination in
natural systems. On one hand, our results inform the design
of automated local coordination heuristics (e.g. used by agents
when coordinating with people). On the other hand, our
work informs the design of organizational structures in a way
that ensures successful coordination, given that people use
particular local heuristics.

There are many directions of future work. We focused
on the average time needed to find a solution, i.e. on the
final outcome. To complement this, we are interested in
investigating the dynamics of different heuristics during their
search for a solution.

Another direction of future research is investigating human
behavior when they are allowed a more expressive communi-
cation language, such as those used in algorithmic approaches
to the DisCSP. For example, some approaches allow agents
to communicate suggested values and no-good messages [11].
There are no empirical results on the kinds of heuristics people
would use in such scenarios, so new behavioral experiments
are needed.
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