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The focused organization theory of social ties proposes that the structure of human social networks
can be arranged around extra-network foci, which can include shared physical spaces such as homes,
workplaces, restaurants, and so on. Until now, this has been difficult to investigate on a large scale,
but the huge volume of data available from online location-based social services now makes it
possible to examine the friendships and mobility of many thousands of people, and to investigate
the relationship between meetings at places and the structure of the social network.
In this paper, we analyze a large dataset from Foursquare, the most popular online location-based
social network. We examine the properties of city-based social networks, finding that they have
common structural properties, and that the category of place where two people meet has very strong
influence on the likelihood of their being friends. Inspired by these observations in combination with
the focused organization theory, we then present a model to generate city-level social networks, and
show that it produces networks with the structural properties seen in empirical data.

I. INTRODUCTION

It is an intuitive idea that social relationships between
people arise out of, and are reflected by, meetings and
shared activities in common spaces. Scott Feld’s the-
ory of the focused organization of social ties posits that
friendships form between individuals whose interactions
are organized around extra-network foci, which can in-
clude physical places. In his 1981 paper [1], Feld presents
this theory and discusses how commonly observed struc-
tural properties of social networks could result.

Empirical investigation of such theories has tradition-
ally been difficult and time-consuming, requiring inter-
views with, and observation of, necessarily small groups
of people. Large-scale analysis has therefore been im-
possible. However, the recent widespread adoption of
location-based online social services has provided us with
a huge volume of data both about the structure of peo-
ple’s social networks, as described by social ties explic-
itly declared by users of these services, and about their
activities and meetings at places in their local environ-
ment, thanks to the location-sharing dimension. We now
therefore have an unprecedented opportunity to investi-
gate the role that places may play in the structure of
social networks, on a scale not previously feasible. In
addition, the semantic information about places avail-
able in location-based online social services allows us to
investigate the relationship between the types of places
where people meet and the likelihood that those people
are friends.

In this work, we study a large dataset from Foursquare,
which is the most popular location-based online social
network, used by over 35 million people worldwide [2].
We analyze the social and spatial properties of social
networks in cities, and present a model for a place-based
social network based on our observations from the em-
pirical data, in combination with Feld’s focused organi-
zation theory. We then show that the model produces
networks with the structural properties expected of so-

cial networks, as well as preserving the popularity distri-
bution of places in the city and the spans of the sets of
places that people visit.

In more detail, our work makes the following contribu-
tions:

• We first define and analyze place-based social net-
works at the city scale, to answer the question:
what do intra-city social networks look like, and
do they have common structural characteristics?
We show that the city-based social networks in
the Foursquare dataset have the structural prop-
erties observed by computational social scientists
studying real-world social networks, namely: a
power-law degree distribution, small-world prop-
erties (high clustering and small diameter), and
strong community structure. While the global
properties of online and offline social networks have
been analyzed previously, our work is the first to
examine and compare the structures of place-based
social networks within different cities and to show
these common structural properties.

• We then address the question: is this large location-
based social dataset consistent with the theory of fo-
cused tie organization? Exploiting the combination
of social information and specific semantic informa-
tion available in the Foursquare dataset, we are able
to examine the relationship between the category of
a place where people meet and the probability of
friendship. The type of a place where people meet
has a strong influence on the likelihood that they
are friends, and that there is evidence for the ex-
istence of intra-place triads, resulting in clustering
of social ties around places in the city.

• Inspired by these observations in combination with
the focused organization theory, we present a model
for a city-level social network, based around meet-
ings at places, and show that when simulated
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this model is able to produce networks with the
structural properties observed in real social net-
works, while preserving the popularity distribution
of places in the city and the span distribution of
sets of places visited by individuals. The fact that
this model is able to reproduce empirically observed
social network features is consistent with the idea
that places can act as foci for friendships.

Our work has intrinsic interest, as we investigate an
area largely unexplored, namely, that of the structural
similarities between social networks at the city scale
within different cities, and demonstrate that the networks
in different cities show striking similarities. Furthermore,
our model demonstrates that the focused organization of
social ties, with places as foci, results in networks with
the structural features commonly observed in social net-
works.

From a practical perspective, the observation that that
the type of a place where people meet strongly affects
the probability of friendship could be useful to online
location-based social services such as Foursquare. For ex-
ample, one important application in location-based social
networks is the recommendation to users of venues they
might want to visit [3–5]. The fact that that the type of
place where people meet has a strong influence on friend-
ship suggests that different recommendations would be
appropriate depending on the other users present.

There are also potential applications in the develop-
ment of smarter privacy controls in location-based online
social networks: Page et al. found that people’s concerns
about privacy in location-sharing services center around
the desire to preserve one’s existing offline relationship
boundaries [6], and our observations suggest that these
boundaries might be reflected in the types of places where
friends meet (for example, closer friends at homes and
nightlife spots, less close acquaintances only at profes-
sional venues or transport spots). Use of this informa-
tion could enable services such as Foursquare to adjust
the default audience of a check-in, for example, based on
relationship semantics inferred using meeting places.

II. RELATED WORK

The structure of social networks has been well-studied
by sociologists and by computational social scientists,
and such networks are known commonly to exhibit some
particular structural properties. For example, social net-
works usually have small-world properties, that is, small
diameter and high clustering [7, 8], and show a power-
law degree distribution [9]. Stanley Milgram showed, in
his famous study, that social networks tend to have short
average path lengths between individuals, finding an av-
erage distance of about six hops in the network he stud-
ied [10]. Social networks also tend to show strong com-
munity structure: the nodes of the network are arranged
into tightly-knit groups with their members densely con-

nected, and fewer or looser connections between these
groups of friends [11].

In the past decade, the growth in popularity of online
social networks has enabled the examination of social net-
work structure at a previously impossible scale, and these
networks have been shown generally to have the same
structural properties as their offline counterparts [12–14].
Location-based social networks in particular have been
the subject of much recent research, and many studies
have shown that being close geographically and visiting
the same places is a strong indicator for being friends in
the online location-based social network [15–18].

The significance of different kinds of places and their
associated probability that two people meeting there are
friends was discussed by Cranshaw et al. [19], who de-
veloped a metric based on entropy to characterize places
according to the diversity of the population of visitors.
However, they had a much smaller sample of 489 users
than we use here, and they identified locations as cells in
a grid, rather than by using specific venues with their as-
sociated information available in Foursquare. Other work
that has discussed similar concepts includes the studies
of urban Bluetooth encounters by Kostakos et al. [20, 21],
which observed the differences between people’s mobility
in different places around the city, for example, in pubs
and in the street. However, this work only examined the
city of Bath, UK, while we have shown similarities across
different cities.

Modeling network structure has also long been a highly
active research topic, with a huge variety of models be-
ing presented over the years to reproduce various em-
pirically observed properties through mechanisms such
as preferential attachment, triadic closure, and commu-
nity association [9, 22, 23]. The work closest to that we
present here is the body of research concerning affilia-
tion networks, that is, social networks where agents are
associated with societies. In this case, the type of place-
based city network that we examine can be seen as one
where users are associated with places. Many models
have been presented that aim to achieve explicit group
formation alongside the social network structure [24–26].
Our work differs in that we are not here trying to model
well-defined groups in parallel with the social network,
but rather we simply use the association of users with
places in network generation, in a way inspired by the
focused organization theory of social ties.

Most recently, Allamanis et al. [27] presented a model
for the evolution of specifically location-based social net-
works. While this model is similar to that we present
here in that it takes into account place information in
the placement of social ties, they seek to model some-
thing fundamentally different. Our work is concerned
with creating a place-based network where social ties are
reflected in actual meetings between people, not the on-
line social network that commonly contains some ties be-
tween people who have never met.
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III. EMPIRICAL ANALYSIS

In this section, we will describe the Foursquare dataset
and explain how we define the city-level social networks.
We will then address the question: what do intra-city so-
cial networks look like, and do they have common struc-
tural characteristics? We show that the city-level social
networks for different cities not only have similar struc-
ture, but also that they have the known properties of gen-
eral social networks, namely: a power-law degree distri-
bution, small-world properties (high clustering and short
paths), and strong community structure.

Furthermore, since the city-level networks have the
structure expected of social networks in the real world,
we can use the place information from the Foursquare
dataset to address the question: is this large location-
based social dataset consistent with the theory of focused
tie organization? The idea is that we can investigate on
a large scale whether the idea of focused tie organiza-
tion, with places acting as the foci, could play a part in
the structure of these networks. To this end, we analyze
the spatial properties of the social networks, in order to
inform our definition of a model for place-focused social
networks.

A. Dataset description

The dataset was collected from Foursquare, which is an
online location-based social service where users check in
to their current location using a mobile application, and
share these check-ins with their friends. We collected all
of the check-ins from Foursquare posted on Twitter dur-
ing the 10 months between November 2010 and Septem-
ber 2011; it is estimated that this is 20-25% of Foursquare
check-ins made during this period.

The dataset therefore consists of check-ins having the
form (userID, placeID, timestamp). We also have the
Twitter friend lists of the users concerned, which we use
to define a social network, and venue information down-
loaded directly from Foursquare.

For every venue, we have the venue ID, venue name,
latitude, longitude, and a category giving some indica-
tion of the semantics of the place: this is one of the top-
level categories provided by Foursquare, namely: Arts
and Entertainment, College and University, Food and
Drink, Nightlife Spot, Outdoors and Recreation, Profes-
sional and Other Places, Residence, Shop and Service,
and Travel and Transport.

In the following, we present the data from five large
US cities for which we have a large number of users and
check-ins: Atlanta, Boston, Chicago, Minneapolis and
Seattle. The numbers of users, venues and check-ins in
the dataset for each city are shown in Table I.

B. City social networks

We define a place-based social network for each city,
using the Twitter friend lists of the users in the dataset.
Since we want to study specifically the social networks
within cities grounded in physical space, we constructed
a social network for each city by considering users to
be friends when each is in the friend list of the other,
and the connected users have checked in to at least one
of the same places on Foursquare. We require the tie
to be reciprocated in Twitter’s directed social graph to
remove ties where, for example, many users may fol-
low a celebrity without actually knowing them, but the
celebrity does not follow all of their followers in return.
A reciprocal tie must be approved by both users, and so
better represents some definition of friendship. The place
requirement is imposed in order to ground the network
in physical space.

Formally, for each city, given:

1. The set of n users: U = {u1, u2, u3, . . . , un}

2. The Twitter friend lists for each user ui ∈ U :

Fi = {uj | ui follows uj on Twitter}

3. The sets of venues for each user ui ∈ U :

Vi = {v | user i has checked in to venue v in the
city}

we construct the social graph G(U,E) where the n nodes
U of the graph represent the users and the graph G has
an undirected edge (ui, uj)in the set of edges E whenever:

1. ui ∈ Fj and uj ∈ Fi, i.e. the users both follow one
another on Twitter, and

2. |Vi ∩Vj | > 0, i.e. the users have both checked in to
at least one of the same places.

C. Structural properties

We first analyze the structures of the city-level social
networks and confirm that they exhibit well-known char-
acteristics of social networks: a power-law degree dis-
tribution, small-world properties (high clustering with
respect to a random network, and small shortest path
lengths) and strong community structure.

1. Degree distribution

Many networks, from those in biological systems such
as metabolic networks, to technological structures such
as the topology of the Internet and the page structure of
the World Wide Web, exhibit a power-law degree distri-
bution, and social networks are known also to have this
property [9, 11, 28, 29]. Essentially, this means that the
number of others to whom an individual in the network
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City Users Venues Check-ins

Atlanta 28,275 18,270 368,608
Boston 23,579 13,243 296,150
Chicago 42,791 33,261 715,652

Minneapolis 13,396 12,696 235,793
Seattle 16,205 15,051 260,023

TABLE I. Number of users, number of venues, and number of check-ins in the dataset, for each of the five cities.

City N K NGC C Cr d dr Q Qr

Atlanta 13,011 46,756 11,476 0.16 0.0006 4.6 4.6 0.53 0.17
Boston 10,478 41,505 8,816 0.17 0.0010 4.3 4.0 0.45 0.15
Chicago 19,931 84,778 17,287 0.16 0.0004 4.6 4.9 0.47 0.14

Minneapolis 6,499 30,640 5,914 0.18 0.0016 4.4 4.2 0.41 0.12
Seattle 7,445 28,466 6,392 0.18 0.0008 4.4 4.6 0.46 0.16

TABLE II. Numbers of nodes N and edges K, nodes NGC in the giant connected component, average clustering coefficient C,
average shortest path length d, and modularity Q, average clustering coefficient Cr, shortest path length dr, and modularity Qr

in a random network with the same number of nodes and edges, for each of the five cities. The high clustering coefficient and
similar shortest path length with respect to the random network shows that these social networks have small-world properties.

is connected is distributed as a power-law, so that while
most have a small number of ties, there are a few hub
nodes with a large number of connections.

Figure 1 shows the degree distributions of the social
networks for the cities we observe in our dataset. We can
see that indeed, the degree distributions of the city-level
networks in our dataset resemble power-laws. While the
exact numbers of people having each degree differ accord-
ing to the number of people in the dataset for each city,
the exponents of the distributions, reflected in the slopes
of the graphs, are remarkably similar across the cities.
Using the methodology presented in [30], we have con-
firmed the power-law distribution and measured an aver-
age exponent of 2.76 across the 50 cities in the Foursquare
dataset with the most check-ins.

2. Clustering

Another commonly observed property of social net-
works is a relatively high level of clustering, compared
to the level seen in a random graph [8]. In terms of so-
cial relationships, this corresponds to the fact that many
of an individual’s friends are likely to be friends with
one another. The level of clustering in a graph can be
measured by the clustering coefficient. The clustering co-
efficient C of a node with N neighbors is defined as the
number of links between these N neighbors, divided by
the number of possible links that could exist between the
neighbors, i.e.

2N

N(N − 1)
(1)

The clustering coefficient C of a graph is then defined to
be the mean clustering coefficient of all its nodes. Table II
shows the clustering coefficients observed in the networks
for our five cities under analysis. We can see that the

values are consistent across all the five networks, being
between 0.1 and 0.2. This is much higher, on the order
of thousands of times, than the level observed in random
graphs with the same numbers of nodes and edges, as
shown in the table.

3. Average shortest path length

Social networks are known commonly to have a low
average shortest path length. A shortest path from one
node m to another n is defined to be the smallest number
of steps that are needed to reach n, starting at m and
travelling along edges in the graph. The average shortest
path length is then defined to be the mean value over
all pairs in the graph. This quantity is defined only for
connected graphs, and so for our networks we consider
only the giant component that always contains at least
80% of the nodes in the graph, the presence of which
is indeed another characteristic commonly seen in social
networks [12]. The average shortest path lengths d in the
giant components of the social networks in the dataset
can be seen in Table II, and can be seen to be comparable
to those in random graphs, which together with the high
clustering denotes so-called small-world networks [8].

4. Community structure

The final prominent structural feature of social net-
works we consider here is community structure. So-
cial networks tend to exhibit strong community struc-
ture, that is, the nodes are arranged into groups tightly
connected by many social ties between members of the
group, and these groups are more loosely interconnected
to make up the entire network [11, 31, 32]. One measure
of the strength of community structure in a network is
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FIG. 1. Degree distributions in the city-level social graphs; each distribution plotted on a log-log scale presents a linear
functional form similar to a power-law, with many people having few friends and a few people having very many friends.
While the exact numbers of people having each degree differ according to the number of people in the dataset for each city,
the exponents of the distributions, reflected in the slopes of the graphs, are remarkably similar across the cities. The average
exponent across the 50 cities in the Foursquare dataset with the most check-ins is 2.76.

the modularity Q of a partition of a network into its com-
munities. Values of 0.3 or above are generally considered
high, and indicative of the kind of community structure
commonly seen in various biological, technological and
social networks [33].

We partition our social networks into communities us-
ing the Louvain algorithm [34], a popular community de-
tection method that scales well for large networks, and
measure the modularity of the partition in each case. The
values of Q shown in Table II show that the place-based
social networks in the five cities do indeed have strong
community structure.

D. Spatial properties

We now investigate in more detail the spatial proper-
ties of the social networks in the dataset, to try to gain in-
sight into the nature of place-based friendships. We study
the popularity distribution of places in the dataset and
find that it resembles a power-law, similarly to the degree
distribution of the social network. We further analyze tri-
angles in the network and find that most triads have at
least one common place, suggesting that some intra-place
triadic closure mechanism could be at work. Finally we
study the likelihood of friendship between colocated peo-
ple given the category of that place, and show that the
type of place where people meet has a strong influence

on the probability that they are friends.

1. Place popularity

Figure 2 shows the popularity of places in each city, de-
fined to be the number of unique people who have checked
in at that place in the dataset. The place popularity dis-
tribution on a log-log scale presents a linear functional
form similar to a power-law, with many places having
few visitors and yet a few places being extremely popu-
lar. The mean exponent for the power-law distributions
we measured across the 50 cities with the most check-ins
was 1.87.

2. Proportions of triads having one common place

We consider the groups of three friends u1, u2 and
u3 where the ties (u1, u2), (u2, u3) and (u3, u1) all exist
in the social graph, and examine the proportion of such
triangles where at least one place has been visited by all
three people. Table III shows the proportions for each
of the five cities. The vast majority (at least 70%) of
triangles are such that each pair of friends making up a
triad shares at least one place, indicating the presence
of clustering around common places. It would therefore
seem promising to consider including triangles made up
of people visiting the same places in our model.
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FIG. 2. Numbers of people checking in at a place in the dataset. The place popularity distribution on a log-log scale presents
a linear functional form similar to a power-law, with many places having few visitors and yet a few places being extremely
popular. The mean exponent for the power-law distributions we measured across the 50 cities with the most check-ins was
1.87.

City Proportion of triangles

Atlanta 0.90
Boston 0.81
Chicago 0.80

Minneapolis 0.71
Seattle 0.84

TABLE III. Proportions of social triangles where all three friends have at least one common place. In each city, more than
70% of triangles in the place-based social network are such that the same place is shared between each pair of friends in the
triangle.

3. Types of places and likelihood of friendship

We now investigate the potential for meetings at vari-
ous places around the city to foster or to reinforce friend-
ships. To this end, we make use of the categories pro-
vided by Foursquare for each venue in their database.
Each place has one category assigned by Foursquare, and
the possible categories for a places are: Arts and Enter-
tainment, College and University, Food, Nightlife Spot,
Outdoors and Recreation, Professional and Other Places,
Residence, Shop and Service, and Travel and Transport.

We consider pairs of users who have been colocated
at venues, that is, they have not only visited the same
place but they have also had the chance to meet there
through being there at the same time. Since check-ins
are identified by a single timestamp, we consider users to
have been colocated at a venue if they both checked in
there within a 1 hour time window. We then compute the
probability that a pair have a tie in the social network

for a city, given that they have been colocated at a place.

Figure 3 shows these probabilities for each city. We
can see that some categories (Food, Nightlife and Resi-
dence) have a far greater likelihood that colocated pairs
are friends than the others do, which suggests that some
places have a greater potential for fostering and for re-
inforcing social ties, or acting as a focus for friendships,
than others. Specifically, across the cities, the probability
that a pair colocated at a Food, Nightlife Spot, or Resi-
dence venue are friends is between 0.1 and 0.2. The prob-
ability for the categories Professional and Other Places,
and Shop and Service, is lower, being between 0.05 and
0.1, and the other categories generally have a very low
probability.

This divides places into three categories: ‘social’
places, where people tend to meet with their friends,
‘semi-social’ categories, where some meetings between
friends take place but where there are also com-



7

Arts College Food Nightlife Outdoors Professional Residence Shop Transport
Category

0

0.05

0.1

0.15

0.2

Pr
ob

ab
ili

ty
 o

f f
rie

nd
sh

ip

Atlanta
Boston
Chicago
Minneapolis
Seattle

FIG. 3. Probability of friendship between pairs colocated at a place, by Foursquare category. Categories of places have one of
three types: ‘social’ places, where people tend to meet with their friends, ‘semi-social’ categories, where some meetings between
friends take place but where there are also commonly meetings with strangers, and generally ‘non-social’ places, where people
tend to meet with strangers over friends to a greater degree than in other kinds of places.

monly meetings with strangers, and generally ‘non-social’
places, where people tend to meet with strangers over
friends to a greater degree than in other kinds of places.

Again, this is consistent with the focused tie organi-
zation theory as it suggests that some places have high
potential for fostering or for reinforcing friendship, acting
as the foci described by the theory. In the next section,
we use our observations from the Foursquare dataset to
define a model for this type of place-focused network, in
order to test computationally whether it results in net-
works with the known structural characteristics of social
networks.

IV. A MODEL FOR PLACE-FOCUSED SOCIAL
NETWORKS

Having analyzed the Foursquare dataset, we now use
our observations to define a model for place-focused net-
works, based around people meeting at places in the city.
This represents a large-scale investigation of how the fo-
cused organization theory fits with empirical data. More-
over, it provides an opportunity to investigate how the
way in which people meet one another at places around
the city could affect the structure of the resulting so-
cial network, by running the same model without various
components, which we will show later.

A. Model description

Our model uses three main kinds of information about
the places in the city:

1. The popularity of a place, i.e. the number of users
who have checked in there.

2. The geographic (latitude and longitude) coordi-
nates of a place.

3. The semantics of a place and the activities that
take place there, as indicated by the Foursquare
categories described in the previous section.

These first two pieces of information are relevant to
ensure that the mobility of people described by our model
is consistent with the mobility patterns that we see in the
real world. The information about place categories, on
the other hand, is used to define the potential for a place
to act as a focus for friendship, given our observations in
the previous section. The procedure to generate a social
network in the city is defined as follows:

1. Begin with the set of N people and V venues in the
dataset for the city.

2. For each person u, consider them to have visited m
places, where m is sampled from the distribution of
places per user in the dataset for the city. Assign
to u an initial place from the set V , chosen with
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probability proportional to the popularity of that
place.

3. For each of the m− 1 additional places that u has
visited in the dataset, assign to u another place v
from V , with probability qrα, where q is propor-
tional to the popularity of v in the dataset, and
r is inversely proportional to the rank distance of
the place from the first place of u. Given a set of
places V in a city, the probability of a person visit-
ing place v1 ∈ V given that they have visited place
v2 ∈ V is defined to be:

r ∝ 1

rankv1(v2)
(2)

where

rankv1(v2) = n+ 1 (3)

when n is the number of places in the city closer to
v1 than v2. This method of place assignment is de-
signed to reproduce observed patterns of intra-city
human mobility. We choose the exponent α = 0.84
in accordance with the study of human mobility in
cities [35], in which the authors found that people’s
movements within a wide range of cities of varying
sizes and densities tend to follow this distribution.

4. For each place v in V , for each pair of people
(u1, u2) who have been assigned place v:

(a) Place a social tie between u1 and u2 with prob-
ability

p =

{
pcat(v) if pop(v) ≤ 30
0.001 otherwise

(4)

according to the category of v: pcat(v) = 0.15
for ‘social’ places (Food, Nightlife Spot, and
Residence), pcat(v) = 0.08 for ‘semi-social’
places (Professional and Other Places, and
Shop and Service), and pcat(v) = 0.01 for all
other places, in the light of the analysis in the
previous section. pop(v) is the popularity of
v; we discuss the choice of the threshold 30 in
the following section.

(b) For each of u1’s existing friends f in the social
network who have visited v, place a link be-
tween f and u2 with probability 0.15, in line
with the ‘social’ probability. This implements
an intra-place triangle closing mechanism as
suggested by the observation in the previous
section that most triangles in the networks
have one common place shared by all three
members.

V. PROPERTIES OF SYNTHETIC NETWORKS

We now present the properties of the synthetic net-
works generated using the procedure described above.

We show that the model produces networks with the
structural properties observed in the real data, and
demonstrate how the model is also able to preserve im-
portant spatial properties such as the popularity of places
and the dispersion of places visited by mobile users in
real traces. The results given for each city are the aver-
age of 10 runs of the model, apart from degree distribu-
tion, place popularity, and geographic span, for which we
choose one distribution randomly from those generated
by the 10 runs. The distributions across all of the 10 runs
were similar.

We then study the effect of each piece of information
by removing each one in turn, running the model, and
examining the properties of the resulting networks: first,
we analyze the effect of intra-place triadic closure, and
then examine the effect of the place information. This in-
formation includes distance (place location), place cate-
gory, and place popularity. Our analysis shows that these
place-based features of our model are important for the
generated networks to show the properties observed in
real social networks.

A. Full model

The results of running the full model, incorporating in-
formation about distance, place semantics, and including
the triangles between people meeting friends of friends,
are shown in Figure 4 and Table IV.

1. Structural properties

Figure 4 shows that the full model produces networks
with a power-law degree distribution, as seen in the ac-
tual social networks. As seen in Table IV, the synthetic
graphs also display the structural properties of the em-
pirically observed networks: high clustering (between 0.1
and 0.2), short path lengths (around 4 hops), and strong
community structure (as indicated by a modularity value
Q higher than 0.3).

B. Spatial properties

Besides the known structural properties of social net-
works that are present in the generated networks, the im-
portant spatial properties of user visits to places within
the system are also preserved: the popularity of places,
and the distribution of geographic distances between
places visited by a user.

1. Place popularity

We consider two measurements of venue popularity in
cities. First, in Figure 5 we present the CCDF of place
popularity distribution as seen in the real data and the
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FIG. 4. Degree distributions of synthetic graphs. The full model produces networks with a power-law degree distribution, as
seen in the empirical data for each of the five cities.

Model C d Q
Full 0.14 4.0 0.40

No distance 0.13 3.8 0.33
No categories 0.01 3.8 0.29

No triadic closure 0.05 4.0 0.38

TABLE IV. Properties of the synthetic place-based social networks. The figures shown are averages over the cities. The
individual values differ between cities but are close to the average in each case. The full model produces networks with the
correct properties, namely high clustering coefficient C, low average shortest path length d comparable with that seen in random
graphs, and strong community structure as indicated by high modularity Q > 0.3. Removing individual components from the
model affects these properties of the generated networks.

assignment of places to users performed by the model,
using rank distance and popularity as described in the
previous section. For all cities the model approximates
the empirical distribution well. The skewed distribution
on a log-log scale implies that the original hierarchy of
places, where a few places are very popular and many are
visited by only a few people, is preserved.

From a social network modeling perspective, we desire
this property because the category of a place, used to
determine the probability of an intra-place tie, can be re-
lated to its popularity (e.g. an airport or railway station,
both in the Transport category, may be very popular but
also unlikely to be a focus for friendships). Therefore, we
do not wish places that are not very popular in the real
data to be extremely popular in the model’s assignment
of people to places.

Figure 6 shows a different perspective of place popular-
ity: for every place in the city visited by a given number
of users, we plot the corresponding number of users as-
signed to that place by the model. The red line shows

the average modeled popularity of a place with a given
empirical popularity; the value for the model assignment
closely matches that in the empirical data.

2. Geographic span of individual users

The model also preserves the distribution of geographic
span of places visited by individual users. This is a mea-
sure of the spread over space of the set of places P , with
each p ∈ P having coordinates (px, py), that a user visits,
and is computed as:

span(P ) =

∑
p∈P dist(p, c)

|P |

where c is defined to have coordinates (cx, cy) where

cx =

∑
p∈P px

|P |
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FIG. 5. Complementary Cumulative Distribution Function (CCDF) of place popularity, in the model (red squares), and in the
real data (black circles), for each of the five cities. The method of assigning places to users according to a combination of place
popularity and rank distance is effective to preserve the distribution of popularity of places.
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FIG. 6. Popularity of individual places in the model and in the real data, for each of the five cities. The popularity of a
place is preserved by the model, so places that are unpopular in the empirical data are not disproportionately popular in the
assignment of places to users generated by the model.

and

cy =

∑
p∈P py

|P |

and the function dist(p1, p2) returns the great-circle dis-
tance between places p1 and p2.

The distributions of users’ geographic span in each of
the five cities are shown in Figure 7. The model gives
the same distribution of spans as in the empirical data,
with users being more likely to visit other venues nearby
than places further away. This is in accordance with
empirical observations made in studies of human mobility
in cities [35], confirming that the mechanism we have
used for assigning places to users does not produce an
unrealistic pattern of user visits to places.

C. Effect of individual components of the model

We now investigate the effect of each kind of informa-
tion used by our model on the structure of the generated
social networks, by running the model using all of the
information except that in question, and examining the
properties of the networks that result.

1. Model without triadic closure

We first examine the effect of the triadic closure mech-
anism on the networks, where when a person has a social
tie to another at a common place, they also have a so-
cial tie to that other person’s friends within that place.
Table IV shows that in the absence of the triadic closure
mechanism, when social ties are placed only according to
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FIG. 7. Probability Density Function of the geographic span of the places visited by individual users in the model and in the
real data, for each of the five cities. The span distribution is generally preserved by the model, meaning that there is the same
chance that a user will visit places spread over a certain distance in the city. People are generally more likely to visit places
within a small geographic range, with occasional longer trips.

the probabilities of connection at given places according
to their category, clustering in the graph is unsurpris-
ingly much lower than in the actual networks. Triadic
closure is an idea often explained in terms of social bal-
ance theory [36], in that if an individual has two friends
who themselves are not friends, more psychological stress
will result than if those two friends are also friends and
the relevant triangle exists in the social graph. One can
imagine that this effect would be particularly strong if
the individuals concerned were actually meeting face to
face, such as would be likely when those three individuals
are connected by the sharing of a common place.

2. Model without distance

To study the effect of the distance between places, and
people’s tendency to visit places closer to others that
they visit, on the networks, we run the model assign-
ing places to users using only the popularity of the place
(instead of using the popularity combined with the rank
distance as outlined in the previous section). The ta-
ble shows that this reduces the modularity value Q of
the resulting networks, which implies weaker community
structure. This can be understood in terms of people be-
ing more likely to visit, and therefore to meet with friends
at, places nearby to locations they already visit. When
distance is not taken into account in the model, this ad-
ditional clustering effect based on geography disappears
and leaves only clustering at single places produced by
triadic closure, which weakens the community structure
of the network.

3. Model without categories

We study the effect of the different probabilities of ties
between pairs at places of different categories by running
the model without the category-based probabilities and
instead using in each case a uniform probability that will
produce the same number of ties in the resulting network.
The table shows that this dramatically reduces the clus-
tering coefficient C of the resulting network, even when
the triadic closure mechanism is present. This is because
the clusters of social ties tend to be around the more so-
ciable places where friends tend to meet, that have higher
probabilities for intra-place ties in the full model. Even
when the same number of ties are placed, if these are
not focused around ‘social’ places but spread over all the
venues with equal probability, the network does not dis-
play the high clustering characteristic of a social network.
We see also that the community structure of the network
is weaker than when the full model is used.

VI. DISCUSSION

The mechanism of assigning people to places based on
popularity and forming intra-place ties has much in com-
mon with the preferential attachment model [9], which
was proposed to produce scale-free networks by means of
having new nodes connect to existing nodes with prob-
ability proportional to their degree. That is, the graphs
grow in a ‘rich-get-richer’ fashion; the more neighbors
a node already has, the more likely it is that it acquires
more neighbors, which produces graphs with a power-law
degree distribution. Our model can be seen as employing
a version of preferential attachment to places: more pop-
ular places are more likely to attract more people, and
therefore more potential pairs of friends.
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However, we have not used only place popularity, but
have taken into account the categories of places to deter-
mine the likelihood of intra-place ties. We have specified
that the probabilities of social tie formation based on the
categories of places are used when the places in question
have 30 or fewer visitors, and a lower probability for all
more popular places. In our experiments, we found that
this was necessary in order to be able to obtain networks
with the correct community structure, resembling what
we see in the real network, where most members of a
community share one common place, due to the prop-
erty that most triangles have one place shared between
all three friends. This might intuitively be considered to
be a manifestation of the idea of the constraint of a place
outlined in the 1981 paper proposing the focused orga-
nization theory for social tie formation [1]. A place with
high constraint forces individuals there to interact much
and often (for example, a family home) resulting in more
or stronger social ties than a place with low constraint
where many individuals may go, but will probably not
encounter one another, or where visitors to the place do
not typically interact with many others (for example, a
park). Highly-constraining foci that, as Feld writes, “cre-
ate close-knit clusters of various sizes”, correspond to the
places with a fairly small number of visitors in the city.

Interestingly, this threshold is the same as that found
in a study of the geographic span of communities in a mo-
bile phone communication network [37]. The authors ob-
served that communities of 30 or fewer members tended
to be geographically tight, with a 100% increase in the
geographic spread of communities occurring as the num-
ber of members increased from 30 to 40. This might
suggest that communities at the intra-city level, such as
those we observe in the place-based social networks un-
der study, are intrinsically constrained in size in order
to be sustainable within the city. This idea is related to
previous studies that have found an apparent upper limit
of around 30 on the maximum number of more intense
relationships that a person may be able to maintain, with
contacts who are not part of this ‘inner circle’ being com-
municated with less frequently [38, 39]. In the city-level
social networks, one way in which this threshold could
manifest is as a limit on the maximum number of peo-
ple with whom one is able to maintain regular face-to-
face contact at a place, reflected in the size of close-knit
groups based around places. As we see here, this affects

the community structure of the resulting social network.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we performed a large-scale investigation
into whether places could act as foci for friendships in a
social network, in a way consistent with the focused orga-
nization theory of social ties. We used a dataset from the
online location-based social network Foursquare to ana-
lyze intra-city social networks, and we confirmed that
they have the structural properties observed by sociol-
ogists and computational social scientists studying real-
world social networks. Looking deeper into the spatial
characteristics of the networks, we showed that triangles
in the social network often have a single common place
shared between all three members, and that certain types
of places seem more likely to indicate friendship between
individuals who meet at those places than others, which
fits with the focused organization theory.

We then used our observations to propose a model for
social networks in cities based on focused tie organization
with places as foci, and showed that the model generates
networks with the well-known structural properties of so-
cial networks. We demonstrated the importance of the
places as foci in our model by analyzing the effect of each
individual piece of information on the resulting networks,
as well as showing that the model preserves characteristic
spatial properties of empirical data.

We intend as future work to investigate how this model
of the formation of friendships around certain kinds of
places could be exploited in these ways by online location-
based social services, for example, in smarter privacy con-
trols based on the semantics of a relationship inferred
from types of meeting places, and providing better rec-
ommendations for places to visit for groups of friends
going out together.
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