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Abstract—The recent development of smart meters has al-
lowed the analysis of household electricity consumption in real
time. Predicting electricity consumption at such very low scales
should help to increase the efficiency of distribution networks
and energy pricing. However, this is by no means a trivial task
since household-level consumption is much more irregular than
at the transmission or distribution levels. In this work, we address
the problem of improving consumption forecasting by using the
statistical relations between consumption series. This is done
both at the household and district scales (hundreds of houses),
using various machine learning techniques, such as support vector
machine for regression (SVR) and multilayer perceptron (MLP).
First, we determine which algorithm is best adapted to each scale,
then, we try to find leaders among the time series, to help short-
term forecasting. We also improve the forecasting for district
consumption by clustering houses according to their consumption
profiles.

I. INTRODUCTION

Energy management has become an important matter all
around the world Most of the electricity distribution networks
currently in place were not designed to handle today’s huge
demands, let alone tomorrow’s. Congestion and atypical power
flows threaten to overwhelm the system, while there is ever
more demand for greater reliability, and better security and pro-
tection [1]. Renewable energy sources add a further challenge
(as governments plan to reduce dependency on fossil fuels),
first because of the intermittent nature of their production,
and second because they are widely dispersed (e.g., rooftop
solar panels) compared to traditional, centralized electricity
production. This introduces a new paradigm to demand side
management, i.e., attempting to match the demand side with
the available supply [2], [3].

In this context, anticipation and load forecasting (or predic-
tion) become increasingly crucial. Long-term load forecasting
(1-10 years ahead) is important for planning both transmission
and distribution networks [4]. On the other hand, short-term
load forecasting (hours to weeks ahead) is important for
the online scheduling and security functions of an energy
management system [5]. This paper focuses on short-term
load forecasting, one hour and 24 hours ahead, which is
especially important for planning generation and demand side
management.

Furthermore, the necessary geographical scale of accurate
forecasting is becoming ever finer: from a country in the 1990s,
down to a district in recent years. Techniques for forecasting
have been inspired by research on machine learning, and
have passed from linear regression and autoregressive moving

average models [6], to neural networks [7] and boosting
approaches [8], and finally to the support vector machine for
regression (SVR) that is a state of the art forecasting method
[9], [10]. These techniques have been used successfully for
consumption forecasting at country scale.

The rest of the paper is organized as follows. After having
presented related work in Section II and our dataset in Section
III, we apply some of these techniques at the household level
in Section IV. More broadly, we look for the best method at
each scale. In Section V, we try to use relationships between
consumption time series to forecast one and 24 hours ahead. In
Section VI we group similar households into clusters in order
to improve the forecast for overall consumption. In Section VII
we present the optimization of our predictors. Finally, we
conclude in Section VIII.

II. RELATED WORK

The SVR for electricity load forecasting was introduced by
Chen et al., who used it to win the EUNITE competition in
2001 [9]. It has remained a popular tool for load or electricity
price forecasting; Oldewurtel et al. recently used it to regulate a
building’s consumption in a grid-friendly way [11]. Predicting
the consumption of residential houses and small companies
is not a recent idea. Standard consumer baselines have been
established for a long time and PJM has elaborated and
compared them [12].

Our work to find leaders in time series in order to improve
load forecasting was greatly inspired by the work of Wu et al.
who established a method to use these leaders for predicting
exchange rates [13]. A time series is considered to be a leader
if its rise or fall has an impact on the behavior of several
other time series. We have applied Wu et al.’s techniques to
consumption series to help short-term forecasting. In Section
VI, we split the set of households into several clusters in
order to adopt a bottom-up approach. This type of hierarchical
view is often used to predict consumption on a large scale.
For example, the goal of the 2012 Kaggle Global Energy
Forecasting Competition was to forecast the consumption over
20 small areas in order to obtain good overall accuracy [8].

III. PRELIMINARIES

A. Dataset

The CER Irish Smart Metering Trial took place during
2009 and 2010, with over 5,000 Irish homes and businesses
participating [14]. The data set consists of a measure of each
house’s consumption (in kWh) every half an hour. This study
only considered 782 residential houses whose owners were



not aware of the applied pricing policy and kept consuming as
they usually had. We aggregated the measurements into hourly
timeslots. For all the results presented, we have considered the
first 12 months as the training set (8,460 hours), and the final
6 months as the test set (4,317 hours).

B. Evaluation

In the literature, the two well-known methods for evalu-
ating forecasted values are the mean of average percentage
error (MAPE) and the root mean square error (RMSE). In this
paper, we sometimes make forecasting at the household level.
For many households, there are periods when the consumption
is 0, or extremely low. In these cases, the MAPE is infinite,
making its evaluation inconvenient. RMSE does not have this
problem. The RMSE for a time series S = (s1, ..., sN ) of its
estimation S̃ = (s̃1, ..., s̃N ) is defined by:
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We observe that the RMSE is strongly influenced by the
order of magnitude of the data. Our data set contains numerous
households whose hourly consumption ranges between 0.05
kWh and 3.83 kWh. In order to reduce their influence, we use
the following normalization for the RMSE:
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That is, we normalize RMSE by the L2 norm of the series.
NRMSE refers to the normalized RMSE.

C. Implementation details

All the programmes developed for this study were written
using JAVA and Matlab; the code is publicly available.1 We
also used the Weka framework developed by the University of
Waikato [15] to compute the predictions.

Our dataset offers measures for 782 households over a
time span of 18 months. Since MLP and SVR computations
are extremely time consuming, the evaluation of individual
household consumption forecasting was not carried out for
each house, but for each new experiment a panel of 25
households were selected randomly. Thus, we provide standard
deviation on the mean in our results. The correct term with
which to refer to an algorithm that makes predictions, would
be a predictor, however, since the techniques we use are
extensions of classification methods, the term classifier will
also be used.

IV. FORECASTING WITHOUT CORRELATING LOADS
BETWEEN HOUSEHOLDS

In this section, we define the features used to make predic-
tions. We compute predictions for a single household and for
the whole district, both one hour and 24 hours ahead. This is
all done without exploiting relationships between households.
Data at the level of a single household is not structured enough
to efficiently use algorithms such as SVR. We work towards
finding the appropriate scale at which SVR starts to bring
improvements.

Fig. 1. Average energy consumption (in kWh) over time and households by
the hour of the week; starts Monday 00:00. Note, we can clearly distinguish
each day, and patterns for the weekend differ significantly.

(a) (b)

Fig. 2. (a) Auto-correlation of aggregated consumption over 782 households.
(b) Auto-correlation of the consumption of individual households (id 1002).

A. Features

1) Calendar features and historical load: Figure 1 shows
the average consumption of one residential household over
one week (averaged over time and houses). We can clearly
distinguish each day (5 similar days, then Saturday and Sunday
that follow a different pattern). Moreover, each hour of the
day seems to follow a different pattern. This is very intuitive:
consumption is very low at night and reaches a maximum at
around 8 pm. This leads us to add the hour of the day and the
day of the week as nominal features.

It is also very intuitive that consumption is related to
historic loads, in particular with the consumption 24 hours
before. However, due to the high variability in the consumption
of any one household, the accuracy of this intuitive rule is
low at this scale. Figure 2 illustrates this fact, by showing
the auto-correlation of consumption aggregated over all the
houses. It clearly shows that the consumption at any one time
is highly related to consumption at the same hour both on the
day before and seven days before. It also shows that this auto-
correlation is lower for individual households. Consumption is
highly correlated to consumption up to three hours previously,
which means it is important to consider the last three hours in
the case of one hour ahead prediction.

2) Temperatures: Figure 3 shows that there is a relationship
between the temperature and consumption at 7 pm. The lower
the temperature, the higher consumption. This relationship is
mostly due to the fact that the country considered – Ireland
– is relatively cold. So the increase in consumption linked to
(low) temperature can be attributed to the use of heaters. We
used the Wunderground database to obtain the temperatures in
Dublin for the period of the of the data set. For simplicity,
real temperatures have been used, and not those that could

1https://github.com/samuelhumeau/residential_load_forecasting.git



Fig. 3. Relationship between the average consumption at 7pm, and the
temperature (averaged over all houses)

have been predicted.
3) Derivatives: The features above, added to our model, are

absolute: they do not indicate a variation. In order to give the
machine learning algorithm an indication of the evolution of
consumption, we add consumption’s first derivative (si−si−1),
and second derivatives (si − 2si−1 + si−2) as features.

B. Algorithms used

A lot of machine learning based algorithms have been used
in related work for load forecasting. Given that recent literature
has described SVR as one of the most effective at predicting
future consumption [9], [10], we have used it too. It uses
a radial basis function (RBF) kernel and its optimization is
described in Section VII. In order to compare our results, we
also consider 2 other predictors:

1) a simple linear regression on all the features considered,
and

2) an MLP, composed of one hidden layer with sigmoid
activation function and one output. The setting of this
classifier is also described in Section VII.

Moreover, in the case of the prediction for a single household,
we compared our results with two predictors that simply
calculate consumption one hour and 24 hours ago.

C. Forecasting for a district

TABLE I. FEATURES USED FOR FORECASTING IN SECTION IV-A

One hour ahead 24 hours ahead
cons.t − 1h cons.t − 1 × 24h
cons.t − 2h cons.t − 2 × 24h
cons.t − 3h cons.t − 3 × 24h

cons.t − 1 × 24h cons.t − 4 × 24h
cons.t − 2 × 24h cons.t − 5 × 24h
cons.t − 3 × 24h cons.t − 6 × 24h
cons.t − 7 × 24h cons.t − 7 × 24h

hour of the day hour of the day
day of the week day of the week

derivatives -

Once our features are defined (they are summarized in
Table I), we apply the 3 predictors to the aggregated consump-
tion of 782 residential households in our dataset. As for all
predictors in this paper, we use the first 12 months as a training
set and the last 6 months as a test set to evaluate solutions.
The results are given in Table II in terms of MAPE, RMSE,
and NRMSE. A few things are noticeable. First, given that the
district’s average consumption per hour is 782 kWh, the error
in the prediction for each method is quite low. As expected,
predictions one hour ahead are far more precise than those 24

(a)

(b)

Fig. 4. (a) Household consumption (house id 1002) for the week from 2009-
09-07 to 2009-09-13, (b) Aggregated consumption for the whole district during
the same period

hours ahead. Finally, at the district scale, SVR outperforms the
two other methods by far.

TABLE II. PERFORMANCE OF THREE PREDICTORS TRAINED ON
AGGREGATED DATA (ONE HOUR AND 24 HOURS AHEAD FORECASTING). .

One hour ahead 24 hours ahead
Lin. Reg. MLP SVR Lin. Reg. MLP SVR

MAPE 5.2% 6.0% 3.4% 6.1% 6.9% 4.3%
RMSE 58.3 51.1 37.4 77.0 68.5 54.4

NRMSE 0.069 0.061 0.045 0.092 0.081 0.064

D. Forecasting at the single household level

In this section, we study the possibility of predicting the
consumption of a single household. Data for such a case
is more chaotic. Figure 4 shows the difference between the
consumption of a single household over a week and the
district’s aggregate consumption over the same period. While
we can recognize patterns in the latter, it is hard to find them in
the former. The features and algorithms used for prediction are
the same as in Table I, and results are shown in Table III. One
noticeable result is the fact that linear regression outperforms
SVR at this scale, for predictions both one hour and 24 hours
ahead. This behavior is not really a surprise since SVR relies
on the idea that data possesses an internal structure, which is
not the case here.

TABLE III. NRMSE OF DIFFERENT PREDICTORS ON THE TEST SET
FOR (A) ONE HOUR, AND (B) 24 HOURS AHEAD FORECASTING USING

FEATURES IN TABLE I.

A.
h-24 h-1 Lin. Reg. SVR MLP

Average NRMSE 0.80 0.71 0.56 0.57 0.59
σ on the average 0.030 0.038 0.023 0.025 0.027

B.
h-24 Lin.Reg SVR MLP

Average NRMSE 0.80 0.61 0.64 0.70
σ on the average 0.030 0.019 0.023 0.038

We also perform forecasting using temperature as an addi-
tional feature. However, this does not improve the result shown
in Table III, i.e., temperature does not add any predictive power
to the features in Table I.



Fig. 5. Performance of linear regression and SVR for one hour ahead
forecasting expressed using NRMSE (described in Section III-B) and its
standard deviation. We run the prediction 36 times. SVR outperforms linear
regression if we consider more than 16 residential houses.

E. Influence of scale

Both the previous section and Section IV-C highlighted
two paradoxical results. To predict the consumption of a large
number of houses, SVR is better, but for the prediction for
a single household, linear regression is the preferred method.
The next significant question is up to what scales should we use
the different models? To determine this, we consider groups
of 1, 2, 22, ..., 29 and 782 houses (the whole set). Let K be
the number of houses considered. We randomly take K houses
from the dataset, and aggregate their consumption. Then, using
the features in Section IV-C, we train a linear regression and
a SVR regression (using parameters described in Section VII).
We repeated this it 36 times, in order to obtain a representative
average. The result is shown Figure 5, in terms of NRMSE.
This leads us to conclude that the transition happens when
K ∈ [8,32] for the CER Irish dataset. This means that for
a group of more than 32 households, using SVR rather than
linear regression increases the quality of predictions.

V. FORECASTING BY CORRELATING LOADS BETWEEN
HOUSEHOLDS

The CER Irish dataset gives us the possibility of es-
tablishing relationships between households, and exploiting
them. In this section, we aim to find the households that
lead others’ consumption, in order to improve one hour ahead
prediction. Thus, we focus on the improvement of one hour
ahead forecasting for a single household.

A. Finding leaders in time series

The starting point for this section is the hypothesis that
some households play the role of leaders in terms of consump-
tion. This approach was exploited by Wu et al. [13] to forecast
financial trends. If we are able to find some households that
seem to lead consumption, then we could exploit them for the
predictions.

1) Finding leaders using cross correlation: The task is to
determine which households lead other household’s consump-
tion. We use the cross correlation by interpreting households’
consumptions as signals. The cross-correlation between two
signals S(1) = (s

(1)
1 , ..., s

(1)
N ) and S(2) = (s

(2)
1 , ..., s

(2)
N ) for a

certain lag τ is given by:

CC(S(1), S(2), τ) =
E((s

(1)
i −E(s(1)))× (s

(2)
i−τ −E(s(2))))

σ(s(1))σ(s(2))

Where E is the average and σ is the standard deviation.
Since the goal is a short-term prediction, we can keep the

delayτ small, but not 0. In our case, for each pair of house-
holds (h1,h2), we compute the cross correlation between their
consumptions for τ comprised between -4 and 4, and different
from 0. We then determine the lag τh1h2

with the highest
correlation between the two signals. A positive τh1h2

means
that household h2 leads the consumption of household h1. We
store the result obtained in two symmetric matrices, namely
the maximum cross correlation (MCC) matrix and the leader
of cross correlation (LCC) matrix.

MCC(h1,h2) shows the maximum cross correlation be-
tween household h1and h2 while LCC(h1,h2) shows τh1h2

.
On the diagonal, we observe each household’s correlation with
itself (lagged). In most cases, a household’s consumption is
more closely correlated with its own past consumption than
with that of any other household. We can now extract the top-
k leaders for each household.

MCC

LCC

Fig. 6. Illustration of the MCC and LCC matrices. House id 1027 seems
to “lead” the house id 6817. This because the correlation between the
consumption of the house id 1027 at time t − 1 and the consumption of
house id 6817 is 0.36, i.e., close to its self correlation with lag 1 (0.45).

2) Leaders determined using mutual information: Deter-
mining leaders using cross correlations means that we are
looking for households that have very similar consumption, but
with a delay. However, with the objective of making predic-
tions using sophisticated machine learning techniques, we are
interested in any type of relationship between two households’
consumption series. In this case, mutual information is more
appropriate. This concept comes from Information Theory and
expresses the quantity of information that links two random
variables. Let X and Y be two discrete random variables. The
mutual information between X and Y is expressed as:

I(X,Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y )

Where H(X) is the entropy of variable X , and H(X,Y )
the joint entropy between X and Y . We then discretize each
consumption series (using 8 bits uniform discretization) and
consider them as random variables evaluated each hour. For
other alternatives for discretizing smart meter data, we refer
the interested reader to the work by Wijaya et al [16]. Thus,
in the same way as with cross correlation, by looking for the



largest amount of mutual information in the consumption series
we can extract the top-k leaders for each household.

B. Taking advantage of leaders for one hour ahead forecasting

In order to evaluate whether the introduction of leaders
can really improve the very short term forecasting (one hour
ahead); we applied our predictors on two different sets of
features:

• The first set of features, Setwithout is the same as that
used in Section IV-D.

• The second, Setwith = Setwithout + Set leaders where
Set leaders is composed of the consumption of the 5
best leaders with the corresponding lag.

The experiment is repeated for both kinds of leaders and
the results are shown in Table IV. They are directly comparable
with the results from Section IV-D. Unfortunately, the informa-
tion added by the leaders’ consumption does not bring more
accuracy to the forecast.2 This result is true for both types
of leaders, i.e., using cross-correlation and mutual entropy.
This leads us to conclude that, providing the historic loads
and calendar features as in Section IV-D, leaders’ information
does not offer any additional predictive power.

TABLE IV. NRMSE OF 4 CLASSIFIERS, ON THE SET OF FEATURES,
INCLUDING THE LEADERS DETERMINED USING A.CROSS CORRELATION,

B. MUTUAL INFORMATION.

A.
Cross Correlation Linear Regression SVR MLP
Average NRMSE 0.55 0.57 0.58
σ on the average 0.023 0.024 0.024

B.
Mutual Information Linear Regression SVR MLP
Average NRMSE 0.55 0.57 0.58
σ on the average 0.023 0.024 0.027

VI. SUBSCALES

Since we have access to the consumption of every residen-
tial household in our dataset, there are two ways of forecasting
a whole district’s consumption. The first is described in Sec-
tion IV-C and consists of using the aggregated consumption
as features (large-scale prediction). Another method would
be to calculate a prediction for each household separately
and aggregate those predictions (small-scale prediction). Our
experiments shows that the former method provides better
results, with an RMSE of 37.4 kWh for the district (one
hour forward prediction) against 60.1 kWh for the latter
method. This section studies the possibility of a medium scale
prediction that could outperform both. In other terms, can we
group households into clusters, predict the consumption for
each cluster, aggregate these predictions, and obtain a better
load forecast for the district.

A. Clustering

The consequent idea is to regroup houses that have similar
consumption into clusters. To carry out the clustering, we
consider the average consumption of each household in each
hour. Each household is thus defined by a 24-dimensional
vector, which is used as an interpretation of that household’s
consumption profile. In order to find clusters among our 782-
household dataset, we apply a k-means algorithm. We repeat
the operations for 1, 2, 4, 8, 16, 32, 48 and 64 clusters. We run
k-means 1,000 times using different random seeds and choose

2There are small improvements, however they are not statistically signifi-
cant.

Fig. 7. Number of households in each cluster when splitting the houses into
32 clusters using k-means.

Fig. 8. Evolution of RMSE on aggregated consumption, for different numbers
of clusters, with different classifiers

the configuration with the lowest sum of squared errors within
clusters. Figure 7 illustrates the distribution of households
among (32) clusters.

B. Results

We forecast one hour and 24 hours ahead for each cluster,
and aggregate the consumption. Figure 8 shows the evolution
of the error on the overall consumption for different numbers
of clusters, and different classifiers. Notice that results for MLP
are the average over 25 iterations. Since linear regression and
SVR both give a global minimum of error, there was no need
to use redundancies for those algorithms.

It appears that for MLP and linear regression, error in-
creases with the number of clusters. However, for SVR, we
found a better result for 4 clusters, i.e., the global error
decreases from 37.4 kWh to 36.8 kWh. A similar result
is obtained for the 24 hours ahead prediction, whose error
decreases from 54.4 kWh to 53.2 kWh. Results are shown in
Figure 8 (for one hour hour ahead prediction). This is only a
slight improvement of course, but it shows that in some cases,
the use of a subscale can lead to better results. It is a start, and
future work could consider the best classifier for each cluster,
or use different criteria or features to create clusters.

VII. CLASSIFIER OPTIMIZATION

Apart from linear regression, this work mainly used two
classifiers: MLP and SVR.

A. Configuration of the MLP

The implemented MLP features only one sigmoidal hidden
layer. Therefore, the output is Y = W2 × σ(W1 · X + B)



where X is the input, Y is the output, W1, W2, and B
are matrices optimized by the MLP and σ is the sigmoid
operator. The input is also normalized (removing the mean
and dividing by the standard deviation). To avoid overfitting, a
validation set is considered; its size is 30% (chosen randomly)
of the training set. The gradient descent (learning rate=0.3) is
stopped whenever the error on the validation set (calculated
each epochs) has increased 10 times in a row.

B. Configuration of the SVR

SVR is a regression method based on support vector
machine (SVM) that developed in 1996 by Vapnik. It is fully
described in Smola and Schlkopf’s tutorial [17]. During this
work, we used the implementation of SVR by the LIBSVM
library developed by Chang and Lin [18].

In SVR, there are parameters to decide. These include the
type of kernel, and the cost of the SVM error, usually noted
as C. Like Chen et al. [9], our experiments used an RBF
kernel: k(x, y) = e−γ‖x−y‖2

, which introduces a parameter
γ. The following section deals with the optimization of the
SVR classifier used in terms of C and γ.

1) The aggregated consumption case: In order to find the
suitable C and γ, we apply the following methodology. We
split the training set into two parts: a sub-training set and a val-
idation set. We use the features described in Section IV-C. We
tested C = 1, 10, 102, 103, 104, 105, and γ = 0, 0.01, 0.1, 1. In
this case, changing the settings of C and γ gives significant
differences in NRMSE. We found that the settings C = 1000
and γ = 1 outperformed the others, and those values are used
in Section IV-C.

2) The individual household prediction case: We also used
the training and validation sets in this case. We use the 25
households mentioned in Section III-C. The performance is
measured in terms of average NRMSE over the households.
We found that, changing the settings of C and γ does not give
significant NRMSE differences. However, they strongly affect
the computation time, which explodes when C > 1000 and
γ > 0.1. Thus, for individual household prediction, we use
C = 100 and γ = 0.01.

VIII. CONCLUSION

In the literature, impressive results for electricity load
forecasting are obtained using SVR. We verified that when
applied to a small district (782 houses), SVR does indeed seem
to be the best method (of those tested) for load forecasting.
However, with regards to making forecasting at the level
of individual households, we showed that the method that
produces the lowest error is the simple linear regression; it
outperforms both MLP and SVR. We also established that
there is an aggregation size (in our case, an aggregation of
32 households) at which SVR starts to outperform linear
regression.

We also studied the idea of taking into account leadership
relationships between households in order to improve short-
term load forecasting. However, our experiments could not
provide any relevant results. The accuracy of the forecasts,
both with and without leadership information, was the same.

With regard to the problem of predicting the district’s
overall consumption, deriving the aggregate prediction from
each individual household independently led to a poor forecast
of overall consumption. However, SVR predictions could be
improved by grouping houses with similar consumption into
clusters.

Further work could consist in selecting the best classifier
for each cluster, in order to improve the overall quality of the
prediction. We are also working on using this method with
measurements from sources other than residential households
alone. An interesting line of research would be to investigate
whether clustering can improve prediction in cases involving
very different consumption profiles. Finally, when (big) data
size, privacy risks, and execution times are all considered to be
important constraints, using symbolic representation of smart
meter data could be a valuable alternative solution [16].
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