
Success of Open Source Projects:
Patterns of Downloads and Releases with Time

Ayelet Israeli and Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract

The success of software projects has many different
facets: meeting user requirements, being developed within
given budget and time constraints, and actually being used.
We focus on one of them: the pattern of adoption by users,
and its possible relationship with continued development.
This is done based on readily available data for open source
projects, namely their releases and downloads. Rather
than just classifying projects as “successful” or “failure”,
we identify six distinct patterns of how the download rate
changes with time that illuminate different aspects of suc-
cessful or failed projects.

”You’re not thinking fourth dimensionally!”

Dr. Emmett “Doc” Brown,
Back To The Future III, scene 8

1. Introduction

Software engineering deals with methodologies for
building successful software systems. Thus a very basic re-
quirement for software engineering research is to be able to
identify and define the degree to which different projects are
successful. For example, when one wants to argue for agile
methods, it is useful to be able to say that a certain fraction
of projects developed using such methods were successful,
and that this fraction is higher than for competing method-
ologies.

A relatively straightforward metric for success can be
adoption by potential users. In the case of commercial soft-
ware, this metric translates into market share. For open
source software it translates into downloads. However, the
total number of downloads by itself does not provide a full
picture. A better understanding of the success of an open
source software project is obtained by studying the pattern
of downloads over time.

By comparing the downloads of multiple projects on
SourceForge, we find several recurring patterns that char-
acterize projects that enjoy different levels of adoption by
users. For example, one of the patterns is that of projects
that enjoy transient success: they are very popular for a cer-
tain period of time, but then they are replaced by another
competing project.

In some cases the pattern of downloads is related to the
patterns of releases of new versions of the software, but in
others it is not. For example, two patterns we saw are recur-
ring peaks of intense downloads with each new release, and
conversely, continuous activity of downloads that is hardly
affected by new releases. We interpret the first as reflecting
a saturated user base that anticipate and require new fea-
tures, and the second as reflecting more sporadic use by ca-
sual users, which do not need to follow every new feature.

The next section reviews some previous work on char-
acterizing the success of software projects. Section 3 out-
lines some methodological aspects of our work, and Section
4 presents the main results: six patterns of downloads that
lead to different interpretations of success (or lack thereof).
Section 5 concludes the paper. In addition, an appendix pro-
vides details about extraction of the data from the Source-
Forge database.

2. Metrics for Success

Assessing the degree to which a software project is suc-
cessful is not always easy. Of course, there are those
projects that are an unquestionable success, dominating
their areas and used by millions, while at the opposite end
are those that are canceled after costing millions of dollars,
which can safely be classified as failures [6, 1]. But what
about projects that are late, over-budget, or simply not used?

In 1992 DeLone and McLean devised a model for In-
formation System success. This model contained six di-
mensions of success, ranging from system and information
quality, through usage and user satisfaction, to impact on

1

the individual and the organization [4]. Ten years later, they
revised the model based on how it was being used in prac-
tice [3]. Indeed, many others have used this model as a basis
for discussing success of Information Systems, and have at-
tempted to measure its various attributes.

While the model is in general applicable to Enterprise
Information Systems (albeit perhaps not all its components
are indeed easy to measure), this is not necessarily the case
for open source software. For example, most open source
projects are not developed within the context of an organiza-
tion that will use them, so the whole issue of impact (or ben-
efits) on the organization is mute. Therefore, metrics that
are based on the team of developers may be more appropri-
ate [8]. Based on such considerations, Crowston et al. have
listed multiple alternative metrics, based on the free/open-
source development process and on input from developers
as to what they consider to be a success [2]. These metrics
emphasize the process and artifacts produced, e.g. number
of developers, time to close bugs, and the interest expressed
by users (e.g. as measured by downloads and pageviews).
Importantly, Crowston et al. also point out the importance
of tracking metrics over time. However, their data only in-
cluded five observations with uneven spacing over a period
of about 5 years.

Perhaps the simplest metric for success of an open source
project is indeed the number of times it has been down-
loaded. This metric has its problems, of course, as down-
loads do not necessarily translate into actual use. However,
it is easy to measure, and is also used as a basic metric for
ranking projects on sites such as SourceForge. This has led
to research that attempts to find thresholds based on the dis-
tribution of downloads and thus classify projects into differ-
ent levels of success [7, 5].

The main deficiency of previous approaches based on
downloads is that they only consider the total number of
downloads for each project. However, the pattern of down-
loads is also important. For example, a project with a huge
potential that garners 1000 downloads upon its first release
but quickly fizzles out is probably a failure, whereas a niche
project that consistently serves 20 downloads a month for
four years, for a total of 960, is probably a success. As we
show in Section 4, several such patterns may be identified,
and each leads to a different interpretation of the degree of
success. Thus our work serves to increase our understand-
ing of how downloads can be used to assess success, and
suggests an approach that may be applicable to other met-
rics as well.

3. Methodology

Our work is based on the database used in the Source-
Forge open source hosting site, which has been made avail-
able for research on open source software development [9].

The two types of data we use in this paper are project
releases and downloads. Download data is available at a
monthly resolution. This is much better than the developer
data from [2] which had 5 data points in 5 years. How-
ever, there are some problems with the data. For example,
many of the projects (although not all of them) recorded
zero or very few downloads in June 2003, and there were
also gaps in the data during 2005. Releases are indicated
with an exact date, but we just use a binary scale of having
one or more release in a given month. Information about the
schemas used and the different problems with the database
are detailed in the appendix.

At the time of writing, SourceForge hosts more than
145,000 projects. Nearly 67,000 of them have at least one
download, implying that more than half have never been
downloaded (possibly because they have never issued even
a single release). Another problem is that many projects are
relatively new, and have not had the chance to attract a fol-
lowing yet. To avoid these problems and the problems with
the data in 2005, we focus on projects that existed during
the five years from November 1999 to December 2004, and
have at least one download.

We avoid using any additional filtering in order to avoid
bias in our results. For example, Crowston et al. used only
projects with 7 developers and 100 bug reports, in order to
study the relationship between success and the dynamics of
the developer/contributor community [2]. Not surprisingly,
they found that the vast majority of their projects were suc-
cessful, but noted that this is most probably due to the fact
that less successful projects simply didn’t make their selec-
tion criteria.

Another possible problem with our data is that we may
not see all the downloads, if a project has other download
channels in addition to SourceForge. Indeed, we have iden-
tified at least one case where a project migrated to another
site, causing its SourceForge downloads to drop. However,
this is probably not very common, and in any case, is not ex-
pected to have a big influence on the patterns of downloads
discussed here.

4. Patterns of Downloads and Releases

By plotting the number of downloads in successive
months over several years, six basic patterns were identi-
fied. Note, however, that when looking at a certain project,
the graph may actually be a combination of two or three of
these patterns.

Growing Download Rate

This category consists of projects which have continuous
growth of monthly downloads over time. These projects

2

have a consistently growing user base, and are therefore
identified as successful.

The most obvious example is emule (Fig. 1), which is
by far the most downloaded project on SourceForge, with
over 300,000,000 downloads (second place is a bit less than
half, with 141,000,000 downloads). The vertical lines in the
graph indicate the release dates. We can see here that new
releases cause an increase of the downloads, which later de-
creases again, but the overall trend is a growing one.

emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000 emule

02 03 04 05 06 07

do
w

nl
oa

ds

 0

 3350000

 6700000

 10050000

 13400000

 16750000

Figure 1. emule: example of the “growing” cate-
gory.

gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000 gaim, total−16174078

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

145000

290000

435000

580000

Figure 2. gaim: growth followed by stability.

Many projects do not grow over the full multi-year time
span we are looking at, but only during part of it. An ex-
ample is gaim (Fig. 2), which exhibited growing monthly
downloads from 2001 through 2004, but seems to have sta-
bilized since then. This might indicate that its user base is
becoming saturated.

Downloads Related to Releases

“Release Early, Release Often” is a recurring practice
in open source software development [10]. Naturally, each
release engenders new interest by users.

As stated, we have added the time dimension to the
downloads rate. We have also integrated the version re-
leases into our data. By doing this, it is easy to observe

peaks in the download rate which are synchronized with a
release. If most of the downloads are in fact associated with
releases, we believe that this may reflect a saturated user
base, which follows updates and improvements. This in-
dicates that the users actually use the project, since upon
a new release, we see growth in the downloads, probably
because the users want to be kept updated. Another possi-
ble explanation is that with the new releases there is more
publicity, and the word-of-mouth of the new release of the
application enlarges the user base. For example, this seems
to be happening in emule (Fig. 1) for practically all releases
since 2004.

The example in Fig. 3 is of a graphical user interface
to gdb, the GNU debugger, running under KDE. Here we
also see that following every release there is a peak in the
downloads rate. The peak might be at the same month of
the release, or on the following month, due to the fact the
releases are daily and the download data is monthly.

kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800 kdbg, total−53385

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

600

1200

1800

Figure 3. KDbg: continuous downloads with peaks
at release dates.

halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000 halflifeadmin, total−1420716

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

10000

20000

30000

40000

50000

Figure 4. HLA: large change after the Sept. 2002
release.

Another pattern is that of a step-release. This is a release
that leads to an abrupt and continuous increase in the down-
load rate, to the degree that it can be said that this release
“made the system”. In the example of Fig. 4 we see that

3

such an effect occurs after the September 2002 release. A
similar effect is also seen in Fig. 6.

It should be noted that not all releases always lead to a
peak in the rate of downloads. There are often many re-
leases during the life of the project, indicative of a “living”
project, but with no distinct correlation between releases
and peaks in the downloads rate. One reason why the down-
load rate may not be directly affected by the release is that
the releases are extremely frequent, and most users do not
really need such frequent updates. For example, this may
be happening in the gaim example (Fig. 2), where growth is
continuous rather than being tied with specific releases.

screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000
screem, total−175645

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000

Figure 5. screem: multiple releases with constant
downloads rate.

Another example is screem (Fig. 5), a project that had a
very successful period in 2000–2001, but later the download
rate declined. However, during 2002–2005 it exhibited a
strong “liveliness” based on frequent releases, coupled with
a steady download rate.

The above observations lead to an interesting distinction
between “activity” and “success”. In principle, a project
can be very active, with multiple developers churning out
frequent releases, but be completely ignored by users. On
the other a project with few releases may have many users
that continue to use it. The question is whether in general
these two axes are indeed independent, or whether there is
some correlation between them.

Constant Download Rate

This category contains projects that are relatively stable
over time. There are a few possible explanations for this.
One, noted above, is that there might be frequent releases
which generate a largely constant curve. Another possibility
is that the application is a niche application and its user base
is saturated.

One example for a constant download rate is HLA in Fig.
4, where the last release was in 2004 but the download rate

has stayed 15,000–25,000 a month ever since. The exam-
ple in Fig. 6 is TCL (Tool Command Language) which is
an interpreted language and interpreter. This language was
created in 1988, and this specific project became popular to-
wards the end of 2001. After an initial surge of downloads,
it has seen a steady rate of downloads ever since. This ex-
ample can match either explanation.

tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000 tcl, total−2210252

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

15000

30000

45000

60000

75000

Figure 6. tcl: example of continuous downloads —
high average.

spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250 spf, total−21820

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

250

500

750

1000

1250

Figure 7. spf: example of continuous downloads —
medium average.

Two more examples, the spf project (Fig. 7) and the
JOODA project (Fig. 8), demonstrate continuous down-
loads with different levels of averages — while spf has a
monthly download average of 250, JOODA has an average
of only 25 monthly downloads.

Another explanation for constant downloads might be
sporadic use of the application. The bpe project (Fig. 9)
is a screen-oriented, curses-based binary editor. The usage
pattern can be explained by such sporadic usage.

These examples motivate a possible distinction between
different levels of continuous downloads. A project that ex-
hibits a continuous but low level of downloads may be a
niche application that only has limited potential users, but
is still a success as witnessed by the fact that the potential
users continue to use it. To judge whether this is the case it

4

jooda, total−14523

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

400

800

1200
jooda, total−14523

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

400

800

1200
jooda, total−14523

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

400

800

1200
jooda, total−14523

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

400

800

1200
jooda, total−14523

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

400

800

1200
jooda, total−14523

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

400

800

1200

Figure 8. JOODA: example of continuous down-
loads — low average.

bpe, total−89

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

5

10 bpe, total−89

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

5

10

Figure 9. bpe: example of continuous sporadic use.

may be useful to compare the constant rate with the initial
peak, based on the assumption that the initial peak reflects
the potentialuser base. For example, for JOODA (Fig. 8)
the constant rate of∼25 is much lower than the peak of
1250, so this constant rate most probably does not indicate
success. But for bpe (Fig. 9), with only one release and no
peak, even a much lower rate might indicate modest suc-
cess.

Limited Time Span

This category deals with projects that were downloaded
at a high rate for some time, and then their download rate
has then dropped to almost none. Here, four different cases
have been identified:

1. Irrelevant Projects: The project was a leader at the
time when it was relevant. Nowadays, it is irrelevant.
Hence, we see a decline in the downloads rate. The ex-
ample in Fig. 10 is of Linux PCMCIA Card Services.
This application introduces Linux support for PCM-
CIA and CardBus devices, including kernel services,
client drivers, and user-level utilities. The kernel com-
ponents are deprecated for 2.4 and later kernels. The

user-level tools are deprecated for 2.6.13 and later ker-
nels. Since these are deprecated we expect the down-
load rate to decrease.

pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000 pcmcia−cs, total−428554

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

4500

9000

13500

18000

Figure 10. PCMCIA: a successful project that lost
relevance.

Replaced Projects

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

5000

10000

15000

20000

25000 Replaced Projects

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

5000

10000

15000

20000

25000 Replaced Projects

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

5000

10000

15000

20000

25000

kicq (205968)

Kxicq (208763)

Kopete IM Client (477073)

Figure 11. ICQ clients: successful projects that re-
place each other.

2. Replaced Projects: The project was a leader for some
time, but was then replaced by another project. The
example in Fig. 11 displays this phenomenon for ICQ
clients for KDE (K desktop environment for Unix).
Initially there were two open source implementation
— kicq and Kxicq — which had many downloads
(more than 200,000) and competed against each other
for about three years. Then, in September 2002 a new
application with the same purpose was introduced, and
ever since it has become the leader. Currently, it was
downloaded over 470,000 times in the range of less
than 5 years. The other two projects download rate
was reduced to almost 0.

3. Fashion / Periodic hits: An application which was pop-

5

ular for some time, but is no longer popular. This
doesn’t have to do with outside effects like a better re-
placement or environmental changes, but just due to
fashion. The example in Fig. 12 is of Tux Racer. This
is a simple OpenGL-based racing game featuring Tux,
the Linux Penguin. The object of the game is to slide
down a snow- and ice-covered mountain as quickly as
possible, avoiding the trees and rocks that will slow
you down. Naturally, new game’s popularity expires
over time.

tuxracer, total−2286854

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

30000

60000

90000

120000

150000 tuxracer, total−2286854

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

30000

60000

90000

120000

150000 tuxracer, total−2286854

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

30000

60000

90000

120000

150000 tuxracer, total−2286854

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

30000

60000

90000

120000

150000 tuxracer, total−2286854

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

30000

60000

90000

120000

150000 tuxracer, total−2286854

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

30000

60000

90000

120000

150000

Figure 12. Tux: a successful project that lost popu-
larity.

openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000 openscenegraph, total−52661

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

1000

2000

3000

4000

5000

Figure 13. OSG: a successful project that moved to
another site.

4. Moving Projects: We also found projects that fol-
low the described pattern, and the reason for the sud-
den drop is moving the project website from Source-
Forge to a different location. The example (Fig. 13)
is of Open Scene Graph application, which is an
open source high performance 3D graphics toolkit.
In November 2004 a new site was launched, and
at about the same time the download rate from
SourceForge dropped dramatically. The new site is
http://www.openscenegraph.com/.

The Limited Time Span downloading pattern most re-
sembles the classic marketing Product Life Cycle model.

This model captures the sales pattern of a product over
time. According to this model, the product goes through
four sales stages: The first stage is Introduction, in which
the sales are pretty low, and are growing slowly. Customers
are not yet familiar with the product and have to be either
real innovators or to be promoted in order to buy the new
product. The second stage is the Growth stage, where sales
increase rapidly and significantly, due to the growing pub-
lic awareness. In this stage competition also starts, afterthe
competitors have identified the potential of the new product.
The third step is Maturity, in which sales reach their peak
and then start to diminish. The last step is the Decline stage,
at this stage the sales either decline or stabilize to a constant
level. The idea is that the cycle captures the market poten-
tial of the product, and at the end of the cycle, the product
has been fully adopted by it’s potential customers.

The Limited Time Span pattern of downloads seems to
match the changes in sales predicted by the product life cy-
cle. This might indicate that the model is relevant also for
open source projects, and helps us to explain some of the
phenomena: both irrelevant projects and fashion hits can be
fully explained — the projects reached their full market po-
tential, and therefore decline. The replacing project model
can also be explained: In the growth stage competition starts
to appear, and in this case the competitors became leaders,
therefore causing the initial projects to move on to the next
stage of the product life cycle, until they fade.

Downwards Trend

This pattern is a gradual decrease to oblivion of the
download rate. The projects that are in this category have
a decreasing trend over time. This can be part of another
pattern, such as the tail end of a limited time span project.

In other cases theses projects were never successful.
They started high and ever since have deteriorated. From
this step onwards there are two possibilities for these
projects — either to die (and reach essentially no down-
loads), or to remain in a constant (low) level. It is hard to
determine why the project was not successful, it can be due
to better competition, lack of interest in such an application,
or maybe just a badly coded and buggy implementation.

The example in Fig. 14 is of a project with such a down-
ward trend. This one is of a Internet-based communications
program. It can be explained that it didn’t succeed due to
the saturated market of such applications.

Dead Projects

This category includes projects which were never really
downloaded very much. We picked projects which have
more than 1 download, but there are also many projects
that have an average of about 1 download per month. The

6

gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000 gnomeicu, total−222905

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

3500

7000

10500

14000

Figure 14. A project that didn’t take off despite sev-
eral years of work and multiple releases.

downloads seem as a “noise level”, there are a few sporadic
downloads over time. In some cases, the projects had a
(much) higher download rate in the past. However, in con-
tradistinction from the time-span category, this looks more
like users trying it out and giving up, rather than continued
success until the project is replaced.

arpe, total−142

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

5

10

15

20

25 arpe, total−142

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

5

10

15

20

25

Figure 15. A project that didn’t take off and died
after the first release.

codecommander, total−20411

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000 codecommander, total−20411

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000 codecommander, total−20411

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000 codecommander, total−20411

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000 codecommander, total−20411

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000 codecommander, total−20411

99 00 01 02 03 04 05 06 07

do
w

nl
oa

ds

0

2000

4000

6000

8000

Figure 16. A project that was successful for a few
months but didn’t survive.

The example in Fig. 15 displays such a project. The
application is for building and managing a Beowulf-style
cluster: remote reboot and power control, and remote and
centralized cluster management Web-based GUI. However,
there are many such examples in SourceForge, and this is
just a random one.

Another possible metric for dead projects is that the ac-
tivity is observed only in a certain fraction of the months.
For example, Fig. 16 displays such a project. The appli-
cation is a code editor for Linux with many advanced fea-
tures. The most successful month of the project were June
and July 2000. In those two month, there were 21 different
releases (out of 40 total releases within five month). But
since mid 2000 there have been no more releases, and since
mid 2002 most months show no downloads at all.

5. Conclusions

The question of whether an open source software project
is successful has many facets, and can be answered in many
different ways based on many different metrics. A promi-
nent metric that is often used is downloads. However, the
total number of downloads alone does not provide enough
information to assess the degree to which an open source
project is successful. Rather, we suggest that the time-
dependent pattern of the downloads should be studied. We
have identified six main patterns that characterize projects
that enjoy different levels of success, and provide possible
interpretations of why they emerge. The downloads of real
projects may be a combination of several such patterns.

In particular, using monthly observations over several
years we come up with two novel findings. The first is pat-
terns such as transient success, which were not recognized
before. These are projects that enjoy a period of high suc-
cess, but are then replaced by another project or just fall out
of fashion. The second is the ability to compensate, at least
to some degree, for the problem of projects that are directed
at different communities of users and therefore have widely
different potential market sizes. Observing consistent activ-
ity for a long time can be taken to indicate success, and even
a saturated market, even if the total number of downloads is
relatively low.

An immediate direction for future work is to automate
the identification of these patterns. This will enable the
mapping of projects to patterns to be determined at a large
scale. For example, we would then be able to classify all
the active projects on SourceForge, and see what fraction
are successful in the different meanings of the term.

A more long-term goal is to integrate this work with
other success metrics, such as those listed by Crowston et
al. [2]. In particular, it seems that many of the other met-
rics can also be tracked over time, and the way they change

7

may be more indicative for success than the overall average
value of the metric.

Appendix: SourceForge Data Extraction

Due to the large number of schema changes in the
SourceForge database between August and September of
2005, and due to some changes between March 2005 and
April 2005, the retrieval of the data from the database was
not trivial.

The downloads data was extracted in two different ways:
data until January 2005 (inclusive) was taken from the
schema “statsprojectmonths” which is available only in
the dumps until August 2005. This schema holds histor-
ical data of monthly downloads from the registration of
the project in SourceForge until January 2005. Between
January 2005 and August 2005, the “statsprojectmonths”
table was not updated, moreover, it was dropped in the
changes of September 2005. Other tables which seem
to hold downloading data (for example “statsprojectall”)
were not being updated as well, and for the range of
January-August still held data updated for January 2005.

Since April 2005, a new table was added to the database:
“statsgroupidalltime agg”. This table holds aggregated
data of downloads since inception of each project. From
April onwards, it was trivial to calculate the monthly down-
loads, simply by subtracting the aggregated data of two suc-
cessive months. However, a gap remained between January
and April, and for that time we could only extract the aggre-
gate number of downloads for these three months. Another
problem in the database was that the subtraction between
September and October of 2005 resulted in a negative num-
ber of downloads in 3.2% of the projects.

For these reasons, we decided to concentrate on the range
of November 1999 to December 2004. The examples in
the paper, however, contain data until March 2007, which
was extracted directly from the SourceForge.net site, and
not through the database.

Extracting Data about releases was much simpler. The
schema “frsrelease” contains historical data of all the re-
leases, in the SourceForge database date format. The date
values are based upon the time functions on UNIX operat-
ing systems that measure the number of seconds from the
epoch (midnight GMT, January 1st, 1970). So the data was
not only daily, but much more accurate (in some cases there
is a record of a few releases in one day). As stated, we gath-
ered the daily data into monthly data by a binary scale of
having one or more release in a given month.

References

[1] R. N. Charette, “Why software fails”. IEEE Spectrum
42(9INT), pp. 36–43, Sep 2005.

[2] K. Crowston, J. Howison, and H. Annabi, “Informa-
tion systems success in free and open source software
development: theory and measures”. Softw. Process
Improvement & Pract.11(2), pp. 123–148, Mar/Apr
2006.

[3] W. H. DeLone and E. R. McLean, “Information sys-
tems success revisited”. In 35th Hawaii Intl. Conf.
System Sciences, vol. 8, p. 238, Jan 2002.

[4] W. H. DeLone and E. R. McLean, “Information sys-
tems success: the quest for the dependent variable”.
Inf. Syst. Res.3(1), pp. 60–95, Mar 1992.

[5] D. G. Feitelson, G. Heller, and S. R. Schach, “An
empirically-based criterion for determining the suc-
cess of an open-source project”. In Australian Soft-
ware Engineering Conf., pp. 363–368, Apr 2006.

[6] H. Goldstein, “Who killed the virtual case file?”.
IEEE Spectrum42(9INT), pp. 18–29, Sep 2005.

[7] F. Hunt and P. Johnson, “On the Pareto distribution
of Sourceforge projects”. In Open Source Software
Development Workshop, University of Newcastle, Feb
2002.

[8] S. Krishnamurthy, “Cave or community? an empiri-
cal examination of 100 mature open source projects”.
First Monday7(6), Jun 2002.

[9] G. Madey, “Sourceforge.net research data archive”.
URL http://www.nd.edu/˜oss/Data/data.html, 2005.

[10] E. S. Raymond, “The cathedral and the bazaar”.
URL http://www.catb.org/˜esr/writings/cathedral-
bazaar/cathedral-bazaar, 2000.

8

