
AMDA: Matching the Model-Driven-Architecture's goal s using Extended
Automata as a common model for design and execution

D. Dayan1,2,3, R. Kaplinsky4, A. Wiesen2, S. Bloch3

1Sami Shamoon College of Engineering, Industrial Eng. and Manag. Dept, Bialik/Basel Str.,
Beer Sheva 84100, Israel

2Jerusalem College of Technology - POB 16031- Jerusalem 91160, Israel
 3Univ. Reims, CReSTIC, Reims, France

 4Jerusalem College of Engineering, POB 3566, Jerusalem 91035, Israel
david674@bezeqint.net, rkaplins@ort.org.il, wiesen@jct.ac.il,

simon.bloch@univ-reims.fr

Abstract

This paper proposes a model of execution platform
for the OMG request of a generic Platform-
Independent-Model (PIM) allowing realization of the
Model Driven Architecture (MDA) standard.

We propose AMDA (Automata based MDA), a
method based on the use of parallel automata, which
can be a common tool for building a PIM from UML
diagrams (including OCL) and transforming the PIM
to PSM automata and further to compilable code.
Each platform would then have a mechanism to
execute the translated code.
Our architecture for a general PSM translator of these
automata allows portable execution on various specific
implementation platforms. This general translator
must be written, once, for the languages and with the
libraries of the required specific PSM. This allows also
interoperability between different PSMs. An ATM case
study example is presented to illustrate the approach.

Keywords: MDA, UML, Extended Automata, XSLT.

1. Introduction

OMG (Object Management Group) is an
organization which proposes standards to unify the
specification and the design of applications. For that, it
developed the UML standard.

The Unified Modeling Language (UML) [1] adopts
a pluralistic attitude toward the multiplicity of
notations. Several diagrams and notations are
incorporated within UML, addressing various aspects
of system development. UML is not a method for
executing the models, and thus does not address the
way these diagrams are to be used. On the contrary,
there are several diagrams, each one with its own

distinct syntax and semantics, which can be used
interchangeably to convey different views of the same
information (e.g., Statecharts and Activity Diagrams,
Sequence Diagrams and Collaboration Diagrams).

OMG proposed a new standard: MDA (Model
Driven Architecture) which aims to separate
application logic from underlying platform technology,
so that the applications are platform independent and
can be realized on various underlying platforms
(including J2EE, .NET, Web-based platforms etc.). So
platform-independent application models can help to
free the application development from technology
specifics and allow easier interoperability between
various applications and platforms.

Let us quote the OMG objectives [2]: "The MDA is
a new way of writing specifications and developing
applications, based on a platform-independent model
(PIM). A complete MDA specification consists of a
definitive platform-independent base UML™ model,
plus one or more platform-specific models (PSM) and
interface definition sets, each describing how the base
model is implemented on a different middleware
platform. A complete MDA application consists of a
definitive PIM, plus one or more PSMs and complete
implementations, one on each platform that the
application developer decides to support."

Jon Siegel, Director of Technology Transfer at
OMG says [3]: "For platform independence, OMG
will standardize – and MDA tools will implement –
mappings to multiple middleware platforms. Each
mapping – formally, a UML profile – defines the route
from an application’s single PIM to a PSM on a target
platform, i.e. UML profiles will be mapped through a
PIM to middleware technology". This view is summed
up in Figure 1 (quoted from [3]).

 PSM1 PSM2 PSM3 PSMn

Figure 1. MDA portability through PIM-PSM

In this view, the middleware technology is at the

level of the implementation system (PSM for CORBA,
Java, XML etc.).

2. AMDA: Our PIM/PSM Software
Proposal

With AMDA, we propose a particular approach to
the generic PIM-PSM transition problem: the Extended
Automata model. The modeled application PIM is
based on these automata and is a result of an automatic
translation of the applicative UML diagrams, persisting
in XML format.

In order to facilitate transition from automata-based
PIM to automata-based PSM, a middleware translator
is required. AMDA addresses this task using XSLT
transformation.

The final transformation to compilable source code
is performed in AMDA with the aid of XSLT and
additional tuning instructions of the tool.

So, we think that it is possible that the PIM will be a
small software layer between the UML application
Model and the implementation systems (Java, .NET,
XML etc.). This PIM software layer will have two
objectives: a) it will be an intermediate translation of
the UML Model of the application, similar for instance
to the "byte code" which is an intermediate translation
of Java source text, and b) it will be interpreted by the
various implementation systems.

This software PIM will be a real interpretation
middleware between the application model and the
implementation systems. The applicative model
translation will be unique, and the execution will be
specific for each implementation system (each one will
have its adapted interpreter), see Figure 2.

Figure 2. PIM software intermediate layer

Furthermore, the coordination and the synchronization
between various systems will be simpler. It will be
made at the level of the applicative models, i.e. at the
level of the translated PIM intermediate layer.

The dynamic behavior of the system objects is
captured by the UML statechart diagrams, which are
based on the notion of statecharts, introduced by David
Harel [4]. Many different variants of Harel statecharts
are known from the literature [5], and various
formalizations were proposed, such as Extended
Hierarchical Automata (EHA) [6] and the Parallel
Automata [7].

We have based our approach to MDA's
transformations on building PIM out of blocks which
correspond to objects modeled by UML state
diagrams. Each such block is an extended automaton
of a kind we introduce in this section, namely,
Statechart Sequential Automaton (SSA), Hierarchical
Sequential Automaton (HSA) and Parallel Hierarchical
Sequential Automaton (PHSA). Each of these models
is an expansion of the previous.

class A class B

state
A1

state
A2

state
B1

state
B2

UML Modeled Application

Translation into
Parallel Automata

PSM Interpreter PSM Interpreter PSM Interpreter
for .NET for Java for XML/SOAP

Usage of Automata Tables for

PIM Soft Layer

.NET
System

J2EE
System

XML/SOAP
System

2.1 The Statechart Sequential Automaton

The SSA includes four components (see Fig.3): the
first is a reactive component A which is essentially a
Moore automaton, whose states correspond to those of
the UML statechart and the role of input alphabet play
combinations of an incoming event and a guard
(Boolean expression involving system variables). The
output symbols are actions performed by the
automaton when it enters a destination state. Second
component is a stateless transformational scheme C,
which centralizes computation of conditions and is
responsible for executing local methods. The third is a
memory register M for storing the system variables.
The fourth component, I/O, performs input-output
routines.

Figure 3. The SSA structural scheme

This decomposition helps us to separate the
platform-independent part of the modeled system (the
Moore automaton) from other components, which are
to some extent platform-dependant: implementation of
the memory and the conditional scheme depends on
data types supported in the target platform, and the I/O
system is completely platform-dependant.

2.2 Extending the SSA model to include
hierarchy (composite states)

The HSA is an SSA extension that treats composite
states of a UML statechart, and PHSA goes forth to
deal with parallel execution of the sub-automata.

An application defined by UML statechart may
contain composite states. Such states are themselves
statecharts, so the application can be represented by a
hierarchical structure. In general, a composite state
may contain several “inner” statecharts, which in this
case must be executed concurrently, but at this step of
the modeling we suppose that each composite state
contains exactly one statechart, that is, we deal at this

step only with hierarchy, but not with concurrency
(parallelism). Here, we describe a formal model that
we call Hierarchical Statechart Automaton (HSA).

Let us consider a hierarchy of K+1 automata made
of a main automaton A0 and sub-automata A1 , …, AK.
The only restriction we put on the structure of the
system is that it has to be a tree, that is, each sub-
automaton belongs only to one parent.

The hierarchical behavior of a system means that
each transition is on its definite level, so each
transition changes the state of one definite sub-
automaton only, and access to other sub-automata
allowed only through their initial states. Therefore,
each transition takes the form:

Kkstatestate kn

condevent

km
ji ,...,1,0,

/
= → , (1)

where kknkm STATESstatestate ∈, (the set of the states

of the automaton Ak).
We assume that the statecharts CHART0, CHART1,

… , CHARTK of the main automaton A0 and its sub-
automata A1, …, AK are given. Some of the vertices of
CHART0 (i.e. states of A0) are composite states of A0
and are interpreted as sub-automata from the list A1,
…, AK ; the same may occur for some of the states of
any one of sub-automata. Our restriction means that all
the connections in the system are arranged in a tree.

For each statechart CHARTk there is a subset Hk of
its vertices that present composite states of Ak that are
to be interpreted as sub-automata from the same list
above A1 , …, AK, i.e. we mean that there is given the
set of functions fk:

},...,1{: KHf kk → (2)

)(α
α kk fstate a

Each function fk maps the indices of the composite
state in Ak into the indices of their corresponding
automata on the next (lower) level of hierarchy. In the
simplest case, we suggest that no automaton in the list
may correspond to more then one composite state of
any other automata, i.e. our net of automata form a tree
structure.

Now, in order to represent hierarchical automaton
(HSA) as composition of components which are SSA
automata, we add for each composite state statekα four
new elements:

1. entry action
αknDummyActio to start execution

of the sub-automaton)(αkf
A

2. “dummy” state DummyStatekα
3. event DummyEventkα that each sub-automaton

)(αkf
A produces when it reaches its final state

4. transition from the state statekα to the

αkDummyState

event

AAAA

CCCC

guard

MMMM

action_send*

action_assign

Output VAR I/O
Input

The purpose of the
αknDummyActio is to move

down to the lower level of hierarchy, while the rest
three two elements cause the automaton to return to the
previous level.

Introducing the dummy states is simply made by
extending the original set of UML state diagram states
Sk with:

}){(
~

ki
Hi

kk DummyStateSS
k∈

= UU , (3)

That is, for every automaton Ak which contains a
set Hk of composite states, the set kS has to be

extended with only one dummy state for each
composite state.

Appropriately, we will need to add new entities in
the XML document representing the table of events in
the serialized form of our automaton.

}){(
~

ki
Hi

kk DummyEventEE
k∈

= UU (4)

The event kiDummyEvent must be triggered when

the sub-automaton Af(k,i) reaches its final state. This
requires adding an entry action of “send event” kind in
the final state of every sub-automaton in all the
hierarchy. In this way we can reduce each composite
state in UML statechart to a composition of SSA
blocks.

3. AMDA Work Outline

After we have described our formal model of
extended automata and the representation of UML
statecharts as extended automata, let us determine the
role of the automata in MDA-oriented development
process, as shown in Fig. 4.

3.1 Transformation of a UML diagram's XMI
File to an Automata-based PIM

In our vision of this process we have been guided

by various sources related to OMG, of which is worth
to mention [8] and [9]. In order to allow open
development process, we have to export these
diagrams to XMI format, which is standard de facto for
interchanging XML and UML documents and is
supported by various tools, e. g. I-Logix Rhapsody,
Rational Rose, IBM WebSphere, Borland Together
and others. The UML models and exported XMI files
contain OCL constraints and expressions [10], [11].

At the first stage of application modeling, the
designer builds UML diagrams. In our tool AMDA, we
use three kinds of diagrams: class, state and sequence.
These diagrams capture both structural and dynamic
aspects of the modeled application.

The UML diagrams are exported to XMI
documents, which are the input to AMDA. The tool
reads XMI, strips all irrelevant information such as
geometry and colors, and creates XML documents
according to our PHSA automata model. The contents
of the PHSA components for each object are in the
tables we present in the use case.

According to the PHSA automata model, the
platform-dependent and platform-invariant
components are separated to facilitate transformations
to PSMs. Further, it is possible a) to simulate the
behavior of the modeled application in order to check
its functionality, b) to export PHSA tables in XML
format according to DTD we have defined, and c) to
transform the PIM to PSMs using XSLT style sheets
for various platforms (.Net and J2EE).

4. Automata PIM Structure and Execution
Semantics

Now we will describe the use of our formal automata
model to define the PIM structure and semantics. We
create our PIMs as XML documents according to DTD
that reflects PHSA structure. Since in PHSA the
platform dependant and platform independent parts are
already separated, this technique facilitates further
transformations to PSMs.

4.1 PHSA Automata Realization in XML

The PHSA building blocks are SSAs which, as
described above, consist of four main components: the
Moore automaton, the condition scheme, the memory
and the input-output system.

a) the Moore automaton is defined in the DTD
in automat element. In this part we write all
the states belonging to the automaton, the
events that this automaton receives from other
objects, and all the transitions of the
automaton. The events that the automaton
sends will be written as entry actions.

Figure 4. Integration of PHSA extended automata in MDA process

Each automaton includes at least two states: the

initial and the final pseudo-states. Each state has
identifier and name. On entering a state, the
automaton may produce some entry actions, which
are output symbols in terms of Moore automaton. An
entry action may be of one of the three kinds: inline,
function or send-event. An inline action, defined by
act_inline element, is a simple instruction like
an assignment; its body is written immediately within
the state element. A function action, defined by
act_func element, is essentially a function, which
is called through a function identifier. The state

element contains only the id, and the function body
appears in the condition scheme (see below). A send-
event action, defined by act_send_event
element, is the action that permits sending events to
other objects.

b) the condition scheme is defined in
condscheme element. This part is responsible for
evaluating expressions (guards) and performing
computational actions, i.e. of function kind. It
consists of two collections: conditions and
func_actions. Each condition element has
identifier and body. The id references the condition

PIM
as UML State

Diagram

File PIM as XMI

PHSA Automata
Run-Time Objects

Application behavior
display for intuitive

verification

Transformations to
Target Platforms

Export to XMI

Parsing XMI to PHSA

JVM Execution
 Platform

Java Code

.Net Execution
 Platform

C# Code

.Net PSM

Metadata
for .Net

Transformation
to .Net PSM

Transformation
to C# Code

Simulation
Serialization
to/from XML

PIM as
XML Documents

Transformation
to J2EE PSM Metadata

for J2EE

J2EE PSM

Transformation
to Java Code

from a transition where it occurs as a guard, and the
body contains a boolean OCL expression. The
func_action element has a unique id to be
referenced from a state as an entry action, and a
function body.

c) the memory is defined in memory element.
This part stores the PHSA variables (the object's data
members). A variable is defined by its name, type
and initial value. Types supported for now are
integer, real, flag, char, string,
ord_collect and unord_collect (for ordered
and unordered collections). The initial value is an
OCL expression.

d) the input-output system is defined in
iosystem element. This is a virtual driver for
performing input-output operations. An input is read
into a variable stored in the memory, while an output
can be any expression. We implemented two modes
of input-output: stream and GUI. The input-output
operations are regarded as entry actions and are
executed from the condition scheme. The
iosystem element contains a collection
io_actions, each member of which can be either
i_action or o_action. In both cases it has
following attributes: the operation id (to be
referenced from the condition scheme), the mode of
operation, reference to the variable or expression and
the destination of input or output.

4.2 Application Execution Sequence in XML

In addition to defining the structure and behavior
of single objects captured by PHSA automata, we
have to define objects' instantiation and their
interaction, i.e. methods calls. This information is
supplied in additional XML file, which reflects the
dynamic aspect of the application and is generated
from the sequence diagram represented as XMI file.
We call this file the "application dispatcher" file.

5. Transformation from PIM to PSM

At this stage we have the PIM of the whole
application in form of in XML files containing PHSA
definitions and the "application dispatcher". We will
explain the rules of transformation from the PIM to
PSM.

To define the transformation rules we have chosen
to use XSLT [12] in combination with Octopus OCL
processor [13]. Thus, transformation definition for
each specific platform will be in form of an XSL
stylesheet.

5.1 Transformation of PHSA Components

Since the reactive component of PHSA (the
Moore automaton) is platform-independent, it is
copied as is to the destination PSM XML file.

 The memory register is but slightly dependant on
the platform. In order to transform it, we have to
specify concrete data types and structures that
support generic types (listed in 4.1, item c) in the
list). For example, the generic type flag in PIM will
be translated for Java platform as boolean, and for
.Net platform as bool. The generic type
ord_collect will be translated to ArrayList in
Java and to Array in .Net. The initializers are OCL
expressions and are interpreted by the OCL
processor.

The condition scheme contains definitions of
conditions (guards) and function bodies. Both are in
OCL, with the difference that the first are Boolean
expressions and the second are routines.

The input-output system is totally platform-
dependant PHSA component. In case of stream input-
output, we specify the classes and methods that
support appropriate stream types and input-output
operations in the target platform. For example,
console output in Java will sound as
System.out.print(myVar) and in .Net as
Console.Write(myVar), while the console
input in Java is a bit more complicated and requires
more than a single command, so we have
encapsulated it in a small helper class. Thanks to the
unified stream input-output mechanism, destination
stream can be not just console, but also a file, a
socket etc. For GUI input-output, each variable is
associated with an appropriate control, e.g. a textbox
for a string and a checkbox for a flag.

5.2 The Transformation Rules (PIM to PSM)

The transformation rules are:
1. Write to the PSM import statements for all the
needed framework packages.
2. Write import statements for generic collection
classes.
3. The automat element is copied to PSM
unchanged.
4. The condscheme consists of two parts:
conditions and actions.
4.1 The conditions are OCL expressions and are
copied unchanged, since OCL is translated directly to
code during the transformation from PSM to code.
4.2 Actions : The algorithms of the actions must be
already written before the translation.

5. Translation of the memory element: for each
variable element the type is translated to
appropriate platform-specific basic type or data
structure.
6. The input-output component, iosystem, consists
of input and output actions.
6.1 For each input action:
6.1.1 If the mode is text, write the PSM input
statement, specifying the stream class and its method
responsible for text input on the target platform, and
the variable to input.
6.1.2 If the mode is GUI, the variable value is read
from an input dialog. The PSM input statement is
similar to 6.1.1, but the platform-specific input dialog
class and its appropriate method are used instead of
the stream class.
6.2 The text and GUI output actions are similar to
input actions (as in 6.1) with the difference that
parameters in output statements are expressions and
not just variables.

5.4 Transformation of Associations

Associations between objects are captured by
UML class diagrams. OCL supports association
roles, navigation and multiplicities. The OCL
constraints and queries can be readily translated to
Java or to .Net platforms.

5.5 Single File vs. Split Transformation
Definitions

There are two possibilities: to write all the
transformation rules in a single file, or to split them
into several files, or "libraries" of transformation
rules. For example, it is possible to write a library of
basic functions, input-output operations, and libraries
of application-specific functions. Both methods have
their pros and cons we don't have place to discuss
here. Our choice is a single-file transformation
definition, but it allows attaching additional libraries.

6. Transformation from PSM to Code and
Execution

After we get PSM targeted at a specific platform,
transformation to code is rather straightforward. We
have to create files containing class definitions for all
the PHSA components and to instantiate PHSA
objects.

In more detailed view, following classes are to be
created:

Table 1. PHSA Classes

PHSA Components Aggregated Objects

Main PHSA State, Event, Guard,
Transition, Action

Memory Variable
Condition scheme FunctionalAction,

OclExpression,
SendEvent

I/O System Window, Console,
StreamInput,
StreamOutput, GuiInput,
GuiOutput

6.1 The PSM to Code Transformation Rules

For each PSM PHSA automaton is generated class
definition in a separate source file. All specific PHSA
classes inherit the abstract PHSA class which
implements the generic PHSA structure. The
"application dispatcher" class is generated from its
XML file (see 4.2).

The transformation rules are:
1. The import tags are translated into Java import

statements.
2. The OrderedCollection and UnorderedCollection

tags in the FoundationClasses element define the
types used for PHSA inner components and variables
that are collections. Examples of unordered
collections are states and transitions, while actions
must be an ordered collection, since order of
execution matters. Each occurrence of
OrderedCollection or UnorderedCollection in this
sample is translated to ArrayList or HashTable
respectively.

3. Each PHSA element is translated to its class
definition according to definitions in XML file. All
PHSA classes are derived from the abstract
ClassPHSA. Within these classes are generated
following data members and methods:

3.1 From each automat XML element is generated
a class, which implements the Moore automaton
behavior. The name of the class is defined by
appropriate attribute of the element. The class
contains data members states and transitions, both
are unordered collections. The transition function is
implemented through the handler method (see code
snippet in section 6.7).

3.2 From the condscheme element is generated
the ConditionScheme class. It contains unordered
collections of Guard objects and FuncAction objects.

3.3 From the memory element is generated the
Memory class. It contains an unordered collection of
Variable objects generated from variable elements.

3.4 From the iosystem element is generated the
IOSystem class. It contains an unordered collection
of IOAction objects. Each action object may be of one
of four types: input or output and stream or GUI.

6.2 Execution

The generated program is in fact a working
simulation of the modeled system. In order to use it
in a real system, there must be provided some
program interface for interchanging events with the
ambient environment on the target platform. To use
the program as a simulation, e.g. for an intuitive
visual verification, we added a GUI window offering
to the user a list of possible external events with

explanative descriptions (taken from appropriate
attribute of the event XML element). Also are shown
the current state, performed transitions and system
variables. Input-output is performed from GUI
controls, which in a real environment would be
substituted with a real program interface using the
same virtual driver.

7. Case Study: Automatic Teller Machine

We have prepared an illustrative case study on
ATM (Automatic Teller Machine) which includes
several use cases. In Figure 5 is given UML state
diagram describing behavior of the ATM main logic
controller in use case of client identification. The use
case logic works as described below.

Figure 5. UML state diagram of the ATM main logic controller in use case of client identification

ev 3

entry / send (ev 4) , send (ev 5)

S 2 : Card detected

entry / send (ev 1) , send (ev 2)

S 1 : Waiting for card

[Boo

& Sel

- Test OK]

entry / verifyPINCode ()

S 3 : PIN code received

ev 8

entry / send (ev 11) , send (ev 12)

S 6 : Three errors in PIN code

ev 15

[errors = 3]

entry / send (ev 10)

S 5 : One or Two Errors
in PIN Code

entry / send (ev 9)

S 4 : PIN Code is OK

[PI

_ code _ OK = false and errors < 3] [PI

_ code _ OK = true]

entry / send (ev 14)

S 7 : Card confiscated

ev 13

ev 7

7.1 Application Logic

On completion the boot and self-test, the ATM
waits in state S1 until the user inserts a credit card. On
entering S1 it sends signal ev1 telling the monitor to
display the welcome message, and signal ev2 to the
card reader unit to start checking for a card. On
receiving signal ev3 from the card reader indicating
that a card was inserted, it changes to the state S2 and
waits for the PIN code from the keyboard. On entering
this state, the controller sends two signals: ev4 to the
monitor telling to display the prompt for the user, and
ev5 to the keyboard to start reading the PIN code. On
receiving ev8 from the keyboard telling that the all the
digits of PIN code were entered, the controllers moves
to S3 and calls the routine verifyPINCode that
checks if the entered code matches the code written on
the credit card. If the code is OK, the signal ev9 is
sent to the monitor to display the user menu, and the
use case of client identification is completed. If the
enterd code is wrong, the user is given two more trials
(ev10 tells the monitor to display the "wrong code"
message), and in case wrong codes were entered three
consecutive times, the card is confiscated.

7.2 Synthesizing an SSA from the UML
Statechart

From the UML state diagram of the ATM Main
Controller object (Fig. 5) we get the following SSA
components:

1. States table S={S0, S1, S2, S3, S4, S5, S6, S7,
End}. The names S0 and End will be used
constantly for the SSA initial and final pseudo-
states.

2. Events table E= {ev3, ev7, ev8, ev13, ev15}.
3. Variables table V ={ errors, PIN_code_OK }.
4. Conditions table C = {

 [PIN_code_OK=true],
 [errors=3],
 [PIN_code_OK=false and errors<3] }.

5. Assignment actions table AS = {
 v2 = true,
 v1= v1 + 1,
 verifyPINCode() }.
6. "Send event" actions table

 SE = { send(ev1), send(ev2), send(ev4),
 send(ev5), send(ev9), send(ev10),
 send(ev11), send(ev12), send(ev14) }.

7. Transitions table T: see Table 2.
8. Output table G: see Table 3.

Table 2. Transitions table T

Source
state

Event
detect

Test Condition Dest.
state

S0 S1
S1 ev3 S2
S2 ev7 End
S2 ev8 S3
S3 [PIN_code_OK = true] S4
S3 [errors=3] S6

S3
[PIN_code_OK = false
 and errors < 3]

S5

S4 End
S5 S2
S6 ev13 S7
S7 ev15 End

Table 3. Output table G

State "assign" action "send event" action(s)

(names of the events
sent)

S1 ev1, ev2
S2 ev4, ev5
S3 verifyPINCode()
S4 ev9
S5 ev10
S6 ev11, ev12
S7 ev14

7.3 Execution of the Tables on the Target
Platform

The execution is performed in two stages, as
described above. On the first stage we transform the
PIM PHSA to PSM PHSA automaton using platform
definition in form of XSL file. On the second stage we
use analogous technique to end up with the compilable
code. We present here fragments of the resulting XML
files and code snippets for Java platform.

PHSA PIM Automata in XML Format:

<?xml version="1.0" encoding="UTF-8"
standalone="no"?>
<!DOCTYPE pim SYSTEM "pim_phsa.dtd">
<pim>
 <phsa phsa_id="A1">
 <automat>
 <states>
 <state phsa_ref="A1" state_id="A1_S0"
 state_name="S0">
 </state>

 <state phsa_ref="A1" state_id="A1_S1"
 state_name="S1">
 <entry_action>
 <act_send_event event_id="ev1" />
 </entry_action>
 <entry_action>
 <act_send_event event_id="ev2" />
 </entry_action>
 </state>
 […skipped…]
 <state phsa_ref="A1" state_id="A1_S3"
 state_name="S3">
 <entry_action>
 <act_func act_id="A1_Func1" />
 </entry_action>
 </state>
 […skipped…]
 </states>
 <events>
 <event event_id="ev3" />
 <event event_id="ev7" />
 <event event_id="ev8" />
 <event event_id="ev13" />
 <event event_id="ev15" />
 </events>
 <transitions>
 <transition state_src="A1_S0"
 state_dest="A1_S1"
 <transition state_src="A1_S1"
 state_dest="A1_S2"
 event_ref="ev3" />
 […skipped…]
 </transitions>
 </automat>
 [condscheme, memory and iosystem skipped]
 </phsa>
</pim>

7.4 Excerpt of PIM to PSM Transformation
Definition for Java Platform (XSL Snippet)

<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/pim">
 <psm_j2ee>
 <Imports>
 <import>java.io.*</import>
 <import>javax.swing.*</import>
 <import>amda.streamio.Console</import>
 […skipped…]
 </Imports>
 <FoundationClasses>
 <OrderedCollection>
 ArrayList
 </OrderedCollection>
 <UnorderedCollection>
 HashTable
 </UnorderedCollection>
 […skipped…]

 </FoundationClasses>
 <xsl:apply-templates select="phsa"/>
 </psm_j2ee>
</xsl:template>
[…skipped…]
<xsl:template match="variables">
 <xsl:for-each select="variable">
 <variable>
 <xsl:attribute name="psm_var_name">
 <xsl:value-of select="@name"/>
 </xsl:attribute>
 <xsl:attribute name="psm_var_type">
 <xsl:if test="@type='integer'">
 <xsl:text>int</xsl:text>
 </xsl:if>
 <xsl:if test="@type='flag' ">
 <xsl:text>boolean</xsl:text>
 </xsl:if>
 </xsl:attribute>
 […skipped…]
 </variable>
 </xsl:for-each>
</xsl:template>
[…skipped…]
</xsl:stylesheet>

7.5 PSM Automata for Java Platform (XML
Snippet)

<?xml version="1.0" encoding="UTF-8" ?>
<psm_j2ee>
 <Imports>
 … same as in the XSL file (see 6.4)
 </Imports>
 <FoundationClasses>
 … same as in the XSL file (see 6.4)
 </FoundationClasses>
 <automat>
 … the automaton is copied from the PIM XML file
 (see 6.2)
 </automat>
 <condscheme> … </condscheme>
 <memory>
 <variables>
 <variable psm_var_name="errors"
 psm_var_type="int" init="0"/>
 <variable psm_var_name="PIN_code_OK"
 psm_var_type="boolean"/>
 </variables>
 </memory>
 <iosystem> … </iosystem>
</psm_j2ee>

7.6 Excerpt of Generated Code for Java
Platform

public class PhsaA1 extends ClassPHSA {
 private boolean PIN_code_OK;
 private int errors=0;

 public void handler() {
 if (_cstate.equals("a1_s0")) {
 _cstate="a1_s1";
 a1_s1();
 }
 else if (_cstate.equals("a1_s1")) {
 if (_event.equals("ev3")) {
 _cstate="a1_s2";
 a1_s2();
 }
 }
 else if (_cstate.equals("a1_s2")) {
 if (_event.equals("ev7")) {
 _cstate="a1_end";
 }
 else if (_event.equals("ev8")) {
 _cstate="a1_s3";
 a1_s3();
 }
 }
 else if (_cstate.equals("a1_s3")) {
 if (PIN_code_OK==true) {
 _cstate="a1_s4";
 a1_s4();
 }
 }
[... skipped …]

8. Conclusion

The AMDA theoretical and technical approaches
that are developed in this paper facilitate MDA process
using UML state diagrams as an input and executable
automata as output. On every step of our technique, the
process is efficient in sense that we preserve the states
of a source statechart and the only added states are
minimal, so the model is transparent for an engineer
and developer-friendly. Though the conflict analysis is
beyond the scope of this paper, we can point out our
model does not add any new conflicts compared to the
source state diagram. The decomposition makes
possible to use the notion of classical automaton with
output (Moore machine) that we extend with two
additional simple and well-known components, namely
a stateless transformational scheme and a memory
register. We also present a technique for handling
concurrency. As next step of the work we intend to
elaborate translation schemes (based on extended
automata modeling) for the other design diagrams of
UML and various execution platforms for achieving
the MDA goals.

References

[1] UML 2.1.1 specification, available at www.uml.org

(2007)

[2] The OMG MDA Guide ver. 1.0.1, available at
www.omg.org/mda (2003)

[3] The OMG MDA, Jon Siegel, The 5th IEEE
International Enterprise Distributed Object
Computing Conference EDOC 2001,
edoc.doc.ic.ac.uk/pdf/MDA_panel_omg.pdf

[4] Harel, D.: Statecharts: A visual formalism for
complex systems. Science of Computer
Programming, Elsevier, (1987) 8(3):231–274

[5] Von der Beeck, M.: A Comparison of Statechart
Variants. In H. Langmaack, W.-P. de Roever, J.
Vytopil (eds.): Formal Techniques in Real-Time and
Fault-Tolerant Systems. Springer-Verlag, Berlin
Heidelberg New York (1994) 128-148

[6] Mikk, E., Lakhnech, Y., Siegel, M.: Hierarchical
automata as model for state-charts. In R.
Shyamasundar and K. Euda, editors, Third Asian
Computing Science Conference. Advances in
Computing Science - ASIAN'97, vol. 1345 of
Lecture Notes in Computer Science. Springer-Verlag
(1997) 181-196

[7] H.G. Mendelbaum & R.B. Yehezkael: Using
'Parallel Automaton' as a Single Notation to Specify,
Design and Control small Computer Based Systems,
Proc. of the 8th Annual IEEE International Conf. on
the Engineering of Computer Based Systems
(ECBS), Washington D.C., IEEE April 2001

[8] The MDA Guide, V1.0.1, http://www.omg.org/mda
[9] Kleppe, A., Warmer, J., Bast, W.: MDA explained:

the Model Driven Architecture: Practice and
Promise, Addison-Wesley, ISBN 0-321-19442-X,
fourth printing (2005)

[10] UML 2.0 OCL Specification,
http://www.omg.org/docs/ptc/03-10-14.pdf

[11] The Object Constraint Language: Getting Your
Models Ready for MDA, 2nd ed., Addison-Wesley,
ISBN: 0-321-17936-6 (2005)

[12] XSL Transformations (XSLT) ver. 2.0, W3C
Recommendation, http://www.w3.org/TR/xslt20

[13] Octopus Project, http://octopus.sourceforge.net, also
http://www.klasse.nl/octopus

View publication statsView publication stats

https://www.researchgate.net/publication/4292061

