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Abstract 
 

This paper proposes a model of execution platform 
for the OMG request of a generic Platform-
Independent-Model (PIM) allowing realization of the 
Model Driven Architecture (MDA) standard. 

We propose AMDA (Automata based MDA), a 
method based on the use of parallel automata, which 
can be a common tool for building a PIM from UML 
diagrams (including OCL) and transforming the PIM 
to PSM automata and further to compilable code. 
Each platform would then have a mechanism to 
execute the translated code.   
Our architecture for a general PSM translator of these 
automata allows portable execution on various specific 
implementation platforms. This general translator 
must be written, once, for the languages and with the 
libraries of the required specific PSM. This allows also 
interoperability between different PSMs. An ATM case 
study example is presented to illustrate the approach. 
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1. Introduction  
 

OMG (Object Management Group) is an 
organization which proposes standards to unify the 
specification and the design of applications. For that, it 
developed the UML standard.  

The Unified Modeling Language (UML) [1] adopts 
a pluralistic attitude toward the multiplicity of 
notations. Several diagrams and notations are 
incorporated within UML, addressing various aspects 
of system development.  UML is not a method for 
executing the models, and thus does not address the 
way these diagrams are to be used.  On the contrary, 
there are several diagrams, each one with its own 

distinct syntax and semantics, which can be used 
interchangeably to convey different views of the same 
information (e.g., Statecharts and Activity Diagrams, 
Sequence Diagrams and Collaboration Diagrams). 

OMG proposed a new standard: MDA (Model 
Driven Architecture) which aims to separate 
application logic from underlying platform technology, 
so that the applications are platform independent and 
can be realized on various underlying platforms 
(including J2EE, .NET, Web-based platforms etc.). So 
platform-independent application models can help to 
free the application development from technology 
specifics and allow easier interoperability between 
various applications and platforms. 

Let us quote the OMG objectives [2]: "The MDA is 
a new way of writing specifications and developing 
applications, based on a platform-independent model 
(PIM). A complete MDA specification consists of a 
definitive platform-independent base UML™ model, 
plus one or more platform-specific models (PSM) and 
interface definition sets, each describing how the base 
model is implemented on a different middleware 
platform. A complete MDA application consists of a 
definitive PIM, plus one or more PSMs and complete 
implementations, one on each platform that the 
application developer decides to support."   

Jon Siegel, Director of Technology Transfer at 
OMG says [3]: "For platform independence, OMG 
will standardize – and MDA tools will implement – 
mappings to multiple middleware platforms. Each 
mapping – formally, a UML profile – defines the route 
from an application’s single PIM to a PSM on a target 
platform, i.e. UML profiles will be mapped through a 
PIM to middleware technology". This view is summed 
up in Figure 1 (quoted from [3]).    
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Figure 1. MDA portability through PIM-PSM 

 
In this view, the middleware technology is at the 

level of the implementation system (PSM for CORBA, 
Java, XML etc.). 
 
2. AMDA: Our PIM/PSM Software  
Proposal 
 

With AMDA, we propose a particular approach to 
the generic PIM-PSM transition problem: the Extended 
Automata model. The modeled application PIM is 
based on these automata and is a result of an automatic 
translation of the applicative UML diagrams, persisting 
in XML format.  

In order to facilitate transition from automata-based 
PIM to automata-based PSM, a middleware translator 
is required. AMDA addresses this task using XSLT 
transformation.  

The final transformation to compilable source code 
is performed in AMDA with the aid of XSLT and 
additional tuning instructions of the tool. 

So, we think that it is possible that the PIM will be a 
small software layer between the UML application 
Model and the implementation systems (Java, .NET, 
XML etc.). This PIM software layer will have two 
objectives: a) it will be an intermediate translation of 
the UML Model of the application, similar for instance 
to the "byte code" which is an intermediate translation 
of Java source text, and b) it will be interpreted by the 
various implementation systems. 

This software PIM will be a real interpretation 
middleware between the application model and the 
implementation systems. The applicative model 
translation will be unique, and the execution will be 
specific for each implementation system (each one will 
have its adapted interpreter), see Figure 2. 

 

Figure 2. PIM software intermediate layer 
 
Furthermore, the coordination and the synchronization 
between various systems will be simpler. It will be 
made at the level of the applicative models, i.e. at the 
level of the translated PIM intermediate layer. 

The dynamic behavior of the system objects is 
captured by the UML statechart diagrams, which are 
based on the notion of statecharts, introduced by David 
Harel [4]. Many different variants of Harel statecharts 
are known from the literature [5], and various 
formalizations were proposed, such as Extended 
Hierarchical Automata (EHA) [6] and the Parallel 
Automata [7]. 

We have based our approach to MDA's 
transformations on building PIM out of blocks which 
correspond to objects modeled by UML state 
diagrams. Each such block is an extended automaton 
of a kind we introduce in this section, namely, 
Statechart Sequential Automaton (SSA), Hierarchical 
Sequential Automaton (HSA) and Parallel Hierarchical 
Sequential Automaton (PHSA). Each of these models 
is an expansion of the previous. 
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2.1 The Statechart Sequential Automaton 
 
The SSA includes four components (see Fig.3): the 
first is a reactive component A  which is essentially a 
Moore automaton, whose states correspond to those of 
the UML statechart and the role of input alphabet play 
combinations of an incoming event and a guard 
(Boolean expression involving system variables). The 
output symbols are actions performed by the 
automaton when it enters a destination state. Second 
component is a stateless transformational scheme C, 
which centralizes computation of conditions and is 
responsible for executing local methods. The third is a 
memory register M for storing the system variables. 
The fourth component, I/O, performs input-output 
routines.  
 

 
 

Figure 3. The SSA structural scheme 
  

This decomposition helps us to separate the 
platform-independent part of the modeled system (the 
Moore automaton) from other components, which are 
to some extent platform-dependant: implementation of 
the memory and the conditional scheme depends on 
data types supported in the target platform, and the I/O 
system is completely platform-dependant. 

 
2.2 Extending the SSA model to include 
hierarchy (composite states) 
 

The HSA is an SSA extension that treats composite 
states of a UML statechart, and PHSA goes forth to 
deal with parallel execution of the sub-automata. 

An application defined by UML statechart may 
contain composite states. Such states are themselves 
statecharts, so the application can be represented by a 
hierarchical structure. In general, a composite state 
may contain several “inner” statecharts, which in this 
case must be executed concurrently, but at this step of 
the modeling we suppose that each composite state 
contains exactly one statechart, that is, we deal at this 

step only with hierarchy, but not with concurrency 
(parallelism). Here, we describe a formal model that 
we call Hierarchical Statechart Automaton (HSA). 

Let us consider a hierarchy of K+1 automata made 
of a main automaton A0 and sub-automata A1 , …,  AK.  
The only restriction we put on the structure of the 
system is that it has to be a tree, that is, each sub-
automaton belongs only to one parent. 

The hierarchical behavior of a system means that 
each transition is on its definite level, so each 
transition changes the state of one definite sub-
automaton only, and access to other sub-automata 
allowed only through their initial states. Therefore, 
each transition takes the form: 

Kkstatestate kn

condevent
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ji ,...,1,0,

/
= → , (1) 

where kknkm STATESstatestate ∈,  (the set of the states 

of the automaton Ak ). 
We assume that the statecharts CHART0, CHART1, 

… , CHARTK  of the main automaton A0 and its sub-
automata A1,  …,  AK are given. Some of the vertices of 
CHART0 (i.e. states of A0) are composite states of A0 
and are  interpreted as sub-automata from the list A1,  
…, AK ; the same may occur for some of the states of 
any one of sub-automata. Our restriction means that all 
the connections in the system are arranged in a tree. 

For each statechart CHARTk   there is a subset Hk of 
its vertices that present composite states of Ak that are 
to be interpreted as sub-automata from the same list 
above A1 , …,  AK, i.e. we mean that there is given the 
set of functions  fk: 

},...,1{: KHf kk →  (2) 

)(α
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Each function fk maps the indices of the composite 
state in Ak into the indices of their corresponding 
automata on the next (lower) level of hierarchy. In the 
simplest case, we suggest that no automaton in the list 
may correspond to more then one composite state of 
any other automata, i.e. our net of automata form a tree 
structure.  

Now, in order to represent hierarchical automaton 
(HSA) as composition of components which are SSA 
automata, we add for each composite state statekα four 
new elements: 

1. entry action 
αknDummyActio  to start execution 

of the sub-automaton )(αkf
A  

2. “dummy” state DummyStatekα 
3. event DummyEventkα  that each sub-automaton 

)(αkf
A  produces when it  reaches its final state 

4. transition from the state statekα to the 

αkDummyState  

event 

AAAA 
 

CCCC 

guard 

MMMM 

action_send* 

action_assign 

Output VAR I/O 
Input 



The purpose of the 
αknDummyActio is to move 

down to the lower level of hierarchy, while the rest 
three two elements cause the automaton to return to the 
previous level. 

Introducing the dummy states is simply made by 
extending the original set of UML state diagram states 
Sk with: 

}){(
~
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Hi

kk DummyStateSS
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That is, for every automaton Ak  which contains a 
set Hk of composite states, the set kS has to be 

extended with only one dummy state for each 
composite state. 

Appropriately, we will need to add new entities in 
the XML document representing the table of events in 
the serialized form of our automaton.  

}){(
~
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The event kiDummyEvent must be triggered when 

the sub-automaton Af(k,i) reaches its final state. This 
requires adding an entry action of “send event” kind in 
the final state of every sub-automaton in all the 
hierarchy. In this way we can reduce each composite 
state in UML statechart to a composition of SSA 
blocks.  
 
3. AMDA Work Outline 
 

After we have described our formal model of 
extended automata and the representation of UML 
statecharts as extended automata, let us determine the 
role of the automata in MDA-oriented development 
process, as shown in Fig. 4.  
 
3.1 Transformation of a UML diagram's XMI 
File to an Automata-based PIM 

 
In our vision of this process we have been guided 

by various sources related to OMG, of which is worth 
to mention [8] and [9]. In order to allow open 
development process, we have to export these 
diagrams to XMI format, which is standard de facto for 
interchanging XML and UML documents and is 
supported by various tools, e. g. I-Logix Rhapsody, 
Rational Rose, IBM WebSphere, Borland Together 
and others. The UML models and exported XMI files 
contain OCL constraints and expressions [10], [11]. 

At the first stage of application modeling, the 
designer builds UML diagrams. In our tool AMDA, we 
use three kinds of diagrams: class, state and sequence. 
These diagrams capture both structural and dynamic 
aspects of the modeled application.  

The UML diagrams are exported to XMI 
documents, which are the input to AMDA. The tool 
reads XMI, strips all irrelevant information such as 
geometry and colors, and creates XML documents 
according to our PHSA automata model. The contents 
of the PHSA components for each object are in the 
tables we present in the use case.  

According to the PHSA automata model, the 
platform-dependent and platform-invariant 
components are separated to facilitate transformations 
to PSMs. Further, it is possible a) to simulate the 
behavior of the modeled application in order to check 
its functionality, b) to export PHSA tables in XML 
format according to DTD we have defined, and c) to 
transform the PIM to PSMs using XSLT style sheets 
for various platforms (.Net and J2EE). 

 
4. Automata PIM Structure and Execution 
Semantics 
 
Now we will describe the use of our formal automata 
model to define the PIM structure and semantics. We 
create our PIMs as XML documents according to DTD 
that reflects PHSA structure. Since in PHSA the 
platform dependant and platform independent parts are 
already separated, this technique facilitates further 
transformations to PSMs. 
 
4.1 PHSA Automata Realization in XML  
 

The PHSA building blocks are SSAs which, as 
described above, consist of four main components: the 
Moore automaton, the condition scheme, the memory 
and the input-output system. 

a) the Moore automaton is defined in the DTD 
in automat element. In this part we write all 
the states belonging to the automaton, the 
events that this automaton receives from other 
objects, and all the transitions of the 
automaton. The events that the automaton 
sends will be written as entry actions.  



 
 

Figure 4. Integration of PHSA extended automata in MDA process  
 
Each automaton includes at least two states: the 

initial and the final pseudo-states. Each state has 
identifier and name. On entering a state, the 
automaton may produce some entry actions, which 
are output symbols in terms of Moore automaton. An 
entry action may be of one of the three kinds: inline, 
function or send-event. An inline action, defined by 
act_inline element, is a simple instruction like 
an assignment; its body is written immediately within 
the state element. A function action, defined by 
act_func element, is essentially a function, which 
is called through a function identifier. The state 

element contains only the id, and the function body 
appears in the condition scheme (see below). A send-
event action, defined by act_send_event 
element, is the action that permits sending events to 
other objects. 

b) the condition scheme is defined in 
condscheme element. This part is responsible for 
evaluating expressions (guards) and performing 
computational actions, i.e. of function kind. It 
consists of two collections: conditions and 
func_actions. Each condition element has 
identifier and body. The id references the condition 
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from a transition where it occurs as a guard, and the 
body contains a boolean OCL expression. The 
func_action element has a unique id to be 
referenced from a state as an entry action, and a 
function body. 

c) the memory is defined in memory element. 
This part stores the PHSA variables (the object's data 
members). A variable is defined by its name, type 
and initial value. Types supported for now are 
integer, real, flag, char, string, 
ord_collect and unord_collect (for ordered 
and unordered collections). The initial value is an 
OCL expression. 

d) the input-output system is defined in 
iosystem element. This is a virtual driver for 
performing input-output operations. An input is read 
into a variable stored in the memory, while an output 
can be any expression. We implemented two modes 
of input-output: stream and GUI. The input-output 
operations are regarded as entry actions and are 
executed from the condition scheme. The 
iosystem element contains a collection 
io_actions, each member of which can be either 
i_action or o_action.  In both cases it has 
following attributes: the operation id (to be 
referenced from the condition scheme), the mode of 
operation, reference to the variable or expression and 
the destination of input or output. 
 
4.2 Application Execution Sequence in XML 
 

In addition to defining the structure and behavior 
of single objects captured by PHSA automata, we 
have to define objects' instantiation and their 
interaction, i.e. methods calls. This information is 
supplied in additional XML file, which reflects the 
dynamic aspect of the application and is generated 
from the sequence diagram represented as XMI file. 
We call this file the "application dispatcher" file. 
 
5. Transformation from PIM to PSM  
 

At this stage we have the PIM of the whole 
application in form of in XML files containing PHSA 
definitions and the "application dispatcher". We will 
explain the rules of transformation from the PIM to 
PSM.  

To define the transformation rules we have chosen 
to use XSLT [12] in combination with Octopus OCL 
processor [13]. Thus, transformation definition for 
each specific platform will be in form of an XSL 
stylesheet. 
 

5.1 Transformation of PHSA Components 
 

Since the reactive component of PHSA (the 
Moore automaton) is platform-independent, it is 
copied as is to the destination PSM XML file. 

 The memory register is but slightly dependant on 
the platform. In order to transform it, we have to 
specify concrete data types and structures that 
support generic types (listed in 4.1, item c) in the 
list). For example, the generic type flag in PIM will 
be translated for Java platform as boolean, and for 
.Net platform as bool. The generic type 
ord_collect will be translated to ArrayList in 
Java and to Array in .Net. The initializers are OCL 
expressions and are interpreted by the OCL 
processor. 

The condition scheme contains definitions of 
conditions (guards) and function bodies. Both are in 
OCL, with the difference that the first are Boolean 
expressions and the second are routines. 

The input-output system is totally platform-
dependant PHSA component. In case of stream input-
output, we specify the classes and methods that 
support appropriate stream types and input-output 
operations in the target platform. For example, 
console output in Java will sound as 
System.out.print(myVar) and in .Net as 
Console.Write(myVar), while the console 
input in Java is a bit more complicated and requires 
more than a single command, so we have 
encapsulated it in a small helper class. Thanks to the 
unified stream input-output mechanism, destination 
stream can be not just console, but also a file, a 
socket etc. For GUI input-output, each variable is 
associated with an appropriate control, e.g. a textbox 
for a string and a checkbox for a flag. 

 
5.2 The Transformation Rules (PIM to PSM) 
 
The transformation rules are: 
1. Write to the PSM import statements for all the 
needed framework packages. 
2. Write import statements for generic collection 
classes. 
3. The automat element is copied to PSM 
unchanged. 
4. The condscheme consists of two parts: 
conditions and actions.  
4.1 The conditions are OCL expressions and are 
copied unchanged, since OCL is translated directly to 
code during the transformation from PSM to code. 
4.2 Actions : The algorithms of the actions must be 
already written before the translation.  



5. Translation of the memory element: for each 
variable element the type is translated to 
appropriate platform-specific basic type or data 
structure. 
6. The input-output component, iosystem, consists 
of input and output actions. 
6.1 For each input action: 
6.1.1 If the mode is text, write the PSM input 
statement, specifying the stream class and its method 
responsible for text input on the target platform, and 
the variable to input. 
6.1.2 If the mode is GUI, the variable value is read 
from an input dialog. The PSM input statement is 
similar to 6.1.1, but the platform-specific input dialog 
class and its appropriate method are used instead of 
the stream class. 
6.2 The text and GUI output actions are similar to 
input actions (as in 6.1) with the difference that 
parameters in output statements are expressions and 
not just variables. 
 
5.4 Transformation of Associations 
 

Associations between objects are captured by 
UML class diagrams. OCL supports association 
roles, navigation and multiplicities. The OCL 
constraints and queries can be readily translated to 
Java or to .Net platforms. 

 
5.5 Single File vs. Split Transformation 
Definitions 
 

There are two possibilities: to write all the 
transformation rules in a single file, or to split them 
into several files, or "libraries" of transformation 
rules. For example, it is possible to write a library of 
basic functions, input-output operations, and libraries 
of application-specific functions. Both methods have 
their pros and cons we don't have place to discuss 
here. Our choice is a single-file transformation 
definition, but it allows attaching additional libraries. 

 
6. Transformation from PSM to Code and 
Execution 
 

After we get PSM targeted at a specific platform, 
transformation to code is rather straightforward. We 
have to create files containing class definitions for all 
the PHSA components and to instantiate PHSA 
objects.  

In more detailed view, following classes are to be 
created: 

 

Table 1. PHSA Classes 
 

PHSA Components Aggregated Objects 

Main PHSA State, Event, Guard, 
Transition, Action 

Memory Variable 
Condition scheme FunctionalAction, 

OclExpression,  
SendEvent 

I/O System Window, Console, 
StreamInput, 
StreamOutput, GuiInput, 
GuiOutput 

 
6.1 The PSM to Code Transformation Rules 
 

For each PSM PHSA automaton is generated class 
definition in a separate source file. All specific PHSA 
classes inherit the abstract PHSA class which 
implements the generic PHSA structure. The 
"application dispatcher" class is generated from its 
XML file (see 4.2). 

The transformation rules are: 
1. The import tags are translated into Java import 

statements. 
2. The OrderedCollection and UnorderedCollection 

tags in the FoundationClasses element define the 
types used for PHSA inner components and variables 
that are collections. Examples of unordered 
collections are states and transitions, while actions 
must be an ordered collection, since order of 
execution matters. Each occurrence of 
OrderedCollection or UnorderedCollection in this 
sample is translated to  ArrayList or HashTable 
respectively. 

3. Each PHSA element is translated to its class 
definition according to definitions in XML file. All 
PHSA classes are derived from the abstract 
ClassPHSA. Within these classes are generated 
following data members and methods: 

3.1 From each automat XML element is generated 
a class, which implements the Moore automaton 
behavior. The name of the class is defined by 
appropriate attribute of the element. The class 
contains data members states and transitions, both 
are unordered collections. The transition function is 
implemented through the handler method (see code 
snippet in section 6.7). 

3.2 From the condscheme element is generated 
the ConditionScheme class. It contains unordered 
collections of Guard objects and FuncAction objects. 



3.3 From the memory element is generated the 
Memory class. It contains an unordered collection of 
Variable objects generated from variable elements. 

3.4 From the iosystem element is generated the 
IOSystem class. It contains an unordered collection 
of IOAction objects. Each action object may be of one 
of four types: input or output and stream or GUI. 
 
6.2 Execution  
 

The generated program is in fact a working 
simulation of the modeled system. In order to use it 
in a real system, there must be provided some 
program interface for interchanging events with the 
ambient environment on the target platform. To use 
the program as a simulation, e.g. for an intuitive 
visual verification, we added a GUI window offering 
to the user a list of possible external events with 

explanative descriptions (taken from appropriate 
attribute of the event XML element). Also are shown 
the current state, performed transitions and system 
variables.  Input-output is performed from GUI 
controls, which in a real environment would be 
substituted with a real program interface using the 
same virtual driver. 
 
7. Case Study: Automatic Teller Machine 
 

We have prepared an illustrative case study on 
ATM (Automatic Teller Machine) which includes 
several use cases. In Figure 5 is given UML state 
diagram describing behavior of the ATM main logic 
controller in use case of client identification. The use 
case logic works as described below. 

 

 

Figure 5. UML state diagram of the ATM main logic controller in use case of client identification  
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7.1 Application Logic 
 

On completion the boot and self-test, the ATM 
waits in state S1 until the user inserts a credit card. On 
entering S1 it sends signal ev1 telling the monitor to 
display the welcome message, and signal ev2 to the 
card reader unit to start checking for a card. On 
receiving signal ev3 from the card reader indicating 
that a card was inserted, it changes to the state S2 and 
waits for the PIN code from the keyboard. On entering 
this state, the controller sends two signals: ev4 to the 
monitor telling to display the prompt for the user, and 
ev5 to the keyboard to start reading the PIN code. On 
receiving ev8 from the keyboard telling that the all the 
digits of PIN code were entered, the controllers moves 
to S3 and calls the routine verifyPINCode that 
checks if the entered code matches the code written on 
the credit card. If the code is OK, the signal ev9 is 
sent to the monitor to display the user menu, and the 
use case of client identification is completed. If the 
enterd code is wrong, the user is given two more trials 
(ev10 tells the monitor to display the "wrong code" 
message), and in case wrong codes were entered three 
consecutive times, the card is confiscated. 

 
7.2 Synthesizing an SSA from the UML 
Statechart 
 

From the UML state diagram of the ATM Main 
Controller object (Fig. 5) we get the following SSA 
components: 

1. States table S={S0, S1, S2, S3, S4, S5, S6, S7, 
End}. The names S0 and End will be used 
constantly for the SSA initial and final pseudo-
states. 

2. Events table E= {ev3, ev7, ev8, ev13, ev15}. 
3. Variables table V ={ errors,  PIN_code_OK }.  
4. Conditions table C = { 

                    [PIN_code_OK=true], 
                    [errors=3],  
                    [PIN_code_OK=false and errors<3]    }. 

5. Assignment actions table AS = {  
               v2 = true,  
               v1= v1 + 1,  
               verifyPINCode()  }. 
6. "Send event" actions table  

          SE = { send(ev1), send(ev2), send(ev4), 
                      send(ev5), send(ev9), send(ev10), 
                      send(ev11), send(ev12), send(ev14)  }. 

7. Transitions table T: see Table 2. 
8. Output table G: see Table 3. 
 

Table 2.  Transitions table T 
 

Source 
state 

Event 
detect 

Test Condition Dest. 
state 

S0   S1  
S1 ev3  S2  
S2 ev7  End 
S2 ev8  S3 
S3  [PIN_code_OK = true] S4 
S3  [errors=3] S6 

S3  
[PIN_code_OK = false 
 and errors < 3] 

S5 

S4   End 
S5   S2 
S6 ev13  S7 
S7 ev15  End 

 
Table 3.  Output table G 

 
State "assign" action "send event" action(s) 

(names of the events 
sent) 

S1  ev1, ev2 
S2  ev4, ev5 
S3 verifyPINCode()  
S4  ev9 
S5  ev10 
S6  ev11, ev12 
S7  ev14 

 

7.3 Execution of the Tables on the Target 
Platform 
 

The execution is performed in two stages, as 
described above. On the first stage we transform the 
PIM PHSA to PSM PHSA automaton using platform 
definition in form of XSL file. On the second stage we 
use analogous technique to end up with the compilable 
code. We present here fragments of the resulting XML 
files and code snippets for Java platform. 
 
PHSA PIM Automata in XML Format: 
 
<?xml version="1.0" encoding="UTF-8" 
standalone="no"?> 
<!DOCTYPE pim SYSTEM "pim_phsa.dtd"> 
<pim> 
  <phsa phsa_id="A1"> 
    <automat> 
      <states> 
        <state phsa_ref="A1" state_id="A1_S0"  
                   state_name="S0">  
        </state> 



        <state phsa_ref="A1" state_id="A1_S1"  
                   state_name="S1">  
          <entry_action>  
            <act_send_event event_id="ev1" />  
          </entry_action> 
          <entry_action>  
            <act_send_event event_id="ev2" />  
          </entry_action> 
        </state> 
        […skipped…] 
        <state phsa_ref="A1" state_id="A1_S3"  
                   state_name="S3">  
          <entry_action>  
            <act_func act_id="A1_Func1" />  
          </entry_action> 
        </state> 
      […skipped…] 
      </states> 
      <events> 
        <event event_id="ev3" />  
        <event event_id="ev7" /> 
        <event event_id="ev8" /> 
        <event event_id="ev13" /> 
        <event event_id="ev15" /> 
      </events> 
      <transitions> 
        <transition state_src="A1_S0" 
                          state_dest="A1_S1"  
        <transition state_src="A1_S1" 
                          state_dest="A1_S2" 
                          event_ref="ev3" /> 
      […skipped…] 
      </transitions> 
    </automat>         
    [ condscheme, memory and iosystem skipped ]  
  </phsa> 
</pim> 
 
7.4 Excerpt of PIM to PSM Transformation 
Definition for Java Platform (XSL Snippet) 
 
<?xml version="1.0" ?> 
<xsl:stylesheet version="1.0" 
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
<xsl:template match="/pim"> 
  <psm_j2ee> 
    <Imports> 
      <import>java.io.*</import> 
      <import>javax.swing.*</import> 
      <import>amda.streamio.Console</import> 
      […skipped…] 
    </Imports> 
    <FoundationClasses> 
      <OrderedCollection> 
           ArrayList 
      </OrderedCollection> 
      <UnorderedCollection> 
           HashTable 
      </UnorderedCollection> 
      […skipped…] 

    </FoundationClasses> 
    <xsl:apply-templates select="phsa"/> 
  </psm_j2ee> 
</xsl:template> 
[…skipped…] 
<xsl:template match="variables"> 
  <xsl:for-each select="variable"> 
    <variable> 
      <xsl:attribute name="psm_var_name"> 
        <xsl:value-of select="@name"/> 
      </xsl:attribute> 
      <xsl:attribute name="psm_var_type"> 
        <xsl:if test="@type='integer'"> 
           <xsl:text>int</xsl:text> 
        </xsl:if> 
        <xsl:if test="@type='flag' "> 
           <xsl:text>boolean</xsl:text> 
        </xsl:if> 
      </xsl:attribute> 
    […skipped…] 
    </variable> 
  </xsl:for-each> 
</xsl:template> 
[…skipped…] 
</xsl:stylesheet> 
 
7.5 PSM Automata for Java Platform (XML 
Snippet) 
 
<?xml version="1.0" encoding="UTF-8" ?>  
<psm_j2ee> 
  <Imports> 
     … same as in the XSL file (see 6.4) 
  </Imports> 
  <FoundationClasses> 
     … same as in the XSL file (see 6.4) 
  </FoundationClasses>  
  <automat> 
     … the automaton is copied from the PIM XML file 
         (see 6.2) 
  </automat> 
  <condscheme> … </condscheme> 
  <memory> 
    <variables> 
      <variable psm_var_name="errors"  
           psm_var_type="int" init="0"/> 
      <variable psm_var_name="PIN_code_OK"  
           psm_var_type="boolean"/> 
    </variables> 
  </memory> 
  <iosystem> … </iosystem> 
</psm_j2ee> 
 
7.6 Excerpt of Generated Code for Java 
Platform 
 
public class PhsaA1 extends ClassPHSA  { 
  private boolean PIN_code_OK; 
  private int errors=0; 



  public void handler() { 
     if (_cstate.equals("a1_s0")) { 
              _cstate="a1_s1"; 
 a1_s1();  
     } 
     else if (_cstate.equals("a1_s1")) { 
 if (_event.equals("ev3")) { 
                   _cstate="a1_s2"; 
     a1_s2();  
               } 
     } 
     else if (_cstate.equals("a1_s2")) { 
 if (_event.equals("ev7")) { 
                   _cstate="a1_end"; 
               } 
 else if (_event.equals("ev8")) { 
                   _cstate="a1_s3"; 
     a1_s3();  
               } 
     } 
     else if (_cstate.equals("a1_s3")) { 
 if (PIN_code_OK==true) { 
                   _cstate="a1_s4"; 
     a1_s4();  
               } 
     } 
[... skipped …] 
 
8. Conclusion 
  

The AMDA theoretical and technical approaches 
that are developed in this paper facilitate MDA process 
using UML state diagrams as an input and executable 
automata as output. On every step of our technique, the 
process is efficient in sense that we preserve the states 
of a source statechart and the only added states are 
minimal, so the model is transparent for an engineer 
and developer-friendly. Though the conflict analysis is 
beyond the scope of this paper, we can point out our 
model does not add any new conflicts compared to the 
source state diagram. The decomposition makes 
possible to use the notion of classical automaton with 
output (Moore machine) that we extend with two 
additional simple and well-known components, namely 
a stateless transformational scheme and a memory 
register. We also present a technique for handling 
concurrency. As next step of the work we intend to 
elaborate translation schemes (based on extended 
automata modeling) for the other design diagrams of 
UML and various execution platforms for achieving 
the MDA goals.  
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