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Abstract

Surveillance of areas of interest through image acquisition is becoming increasingly essential

for intelligence services. Several types of platforms equipped with sensors are used to collect

good quality images of the areas to be monitored. The evolution of this field has different

levels: some studies are only based on improving the quality of the images acquired through

sensors, others on the efficiency of platforms such as satellites, aircraft and vessels which

will navigate the areas of interest and yet others are based on the optimization of the

trajectory of these platforms. Apart from these, intelligence organizations demonstrate an

interest in carrying out such missions by sharing their resources. This thesis presents a

framework whose main objective is to allow intelligence organizations to carry out their

observation missions by pooling their platforms with other organizations having similar

or geographically close targets. This framework will use Multi-Objective Optimization

algorithms based on genetic algorithms to optimize such mission planning. Research on

sensor fusion will be a key point to this thesis, researchers have proven that an image

resulting from the fusion of two images from different sensors can provide more information

compared to the original images. Given that the main goal for observation missions is to

collect quality imagery, this work will also use High-Level Information Fusion to optimize

mission planning based on image quality and fusion. The results of the experiments not only

demonstrate the added value of this framework but also highlight its strengths (through

performance metrics) as compared to other similar frameworks.
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Chapter 1

Introduction

This chapter introduces observation missions, the planning of observation missions and how

High-Level Information Fusion (HLIF) can be used in observation missions. The first part

will highlight the motivation of this work and its added value. Following the motivation,

contributions of this work will be listed. The structure of the thesis ends this chapter.

1.1 Motivation

Observation missions to collect images of Areas of Interest (AOIs) are of great importance.

The need for situational awareness, border surveillance and environmental analysis pushes

intelligence organizations to deploy aircraft, satellites, vessels and ground vehicles to collect

imagery of AOIs. The costs of carrying out large-scale observation missions that would

require the use of platforms such as Unmanned Air Vehicles (UAVs), Unmanned Ground

Vehicles (UGVs), Unmanned Underwater Vehicles (UUVs), vessels, satellites, and others

are enormous. Due to their high costs, mission planning software are often used to evaluate
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the usefulness of missions and optimize them.

Many of these mission planning software use Multi-Objective Optimization (MOO)

algorithms in order to realistically and satisfactorily achieve observation missions [1–5].

The goal of these algorithms is to propose solutions maximizing and/or minimizing a

certain number of fixed objectives while respecting constraints. Obtaining satisfactory

results when using MOO algorithms requires the clear definition of both objectives and

constraints. This is very important because objectives and constraints allow the system

to compare typically non-dominant solutions. They also assess whether the functioning of

the system meets the expectations. Most often, the objectives are ascribed to the variables

to be maximized or minimized while the constraints are restrictions to the objectives.

Like MOO algorithms, Genetic Algorithms (GAs) are part of Artificial Intelligence (AI)

and are a key solution to optimize observation missions. One of the main advantages of

GAs is that they are inspired by genetic evolution to make it possible to create new solu-

tions using populations of existing solutions. Instead of generating all possible alternative

solutions to a problem, GAs also have this capability to assimilate search spaces in order to

find the best solutions. This will be very useful in the optimization process of observation

missions since the system may go from spending several hours to a few minutes searching

for the most optimal solutions.

The costs of observation missions have the consequence of also pushing intelligence

services to carry out their observation missions by pooling their resources, especially their

platforms [6, 7]. UAVs, UGVs, vessels, satellites, etc. are used to carry out missions

that could benefit several organizations at the same time. So on one hand, there are

organizations with task requests (these organizations are called agencies) to perform and

on the other hand there are other organizations that may have their own Task Requests

(TRs) but also make their platforms available in order to reduce the individual cost of

2



carrying out their missions. These organizations are called Sub-Planners (SPs).

Research in the sensor fusion field has proven that an image resulting from the fusion of

two images from different sensors can provide more information than individual images [8].

This is well illustrated in the fusion of images obtained within the Electro-Optical (EO)

and the Infrared (IR) spectrum. The IR spectrum allows to better detect objects during

the night while the EO spectrum is more effective during daytime operations [9]. The

complementary aspect of these spectra often leads to obtaining images in each of the

spectra in order to carry out an analysis by having either the two separate images or by

fusing them. This is also the case for images obtained with Synthetic Aperture Radars

(SARs) and those obtained with IR sensors. IR sensors provide images with good resolution

but their capacities are reduced in bad weather conditions while SAR, despite their average

resolution, offer acceptable capacities even in bad weather conditions [10].

Hence, this thesis highlights a mission planning framework optimizing the management

of platforms by allowing SPs to carry out their TRs while also carrying out some TRs of

the agencies. On the other hand, an emphasis will also be placed on the use of HLIF to

assign TRs to SPs by taking into account the quality of acquired images, including fused

ones.

1.2 Objectives and Contributions

This thesis has three main objectives. (1) Propose an optimizer of observation or surveil-

lance missions allowing organizations to perform missions by pooling their resources con-

sidering different strategies. (2) Enable the optimizer to use HLIF to assign TRs to SPs

by taking into account the quality of acquired images and the eventuality of fusing some

of the acquired images. (3) Explore and propose methods to estimate the quality of future
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images given a mission plan. These methods must consider the benefit of sensor fusion by

predicting the quality of subsequent fused images given the mission plan.

To fulfill these objectives, this thesis uses and enhances an existing optimizer by adding

the following contributions:

• The implementation of an algorithm allowing the system to optimize surveillance

missions by reducing the number of platforms to only reach a minimum coverage

percentage of AOIs. This work was presented at [11] and published at [12].

• The design and implementation of algorithms computing the quality of future images

given a mission plan. Three algorithms were designed to consider three different

strategies of mission planning optimization. The goal was to consider the quality of

future images as one of the objectives of the optimization. This work was presented

at [11] and published at [12].

• The use of the General Image-Quality Equation (GIQE) [13] and the Information

Fusion Effectiveness (IFE) metric [14] to design and implement an algorithm to pre-

dict the quantity of information in future fused images. This algorithm was designed

to take into account the complementary aspect of sensors.

• The proposition of a method that considers the ability of detection, recognition,

classification and identification of objects in future images (including fused images)

as an objective in the surveillance mission optimization process.

• The design of a method that computes the perception quality of future images (in-

cluding fused images) given a mission plan.

4



1.3 Thesis Structure

This thesis is structured as follows. This section ends the first chapter. Chapter 2 presents

a deep review of different studies pertinent for this thesis. Chapter 3 describes the pro-

posed framework allowing the optimization of surveillance missions using some designed

objectives. Analysis and comparisons of experimental results of the framework is done

at the end of the chapter. Chapter 4 proposes and experiments with metrics to predict

the quality of future images, including eventual fused images. The proposition of those

metrics will consider the mission planning context and the sensor fusion benefit. Chapter

5 concludes this thesis and looks at future prospects.
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Chapter 2

Background and Related Work

This chapter will present and analyze previous works that are essential to understand

the contributions of this thesis. On one hand, there will be works giving some contexts

on the importance of the thesis and on the other hand some technical concepts. The

first sections of the chapter will focus on observation missions, surveillance missions and

mission planning. The following sections will analyze the different methods to optimize

observation missions. Among these methods, MOO will be the central theme. Then,

the rest of the sections will show the importance of image quality on surveillance and

observation missions before putting the emphasis on image fusion algorithms as well as

determining image quality.

2.1 Observation Missions

During the last decades, certain fields of science and technology have known major ad-

vances. These areas include: forecasting weather, tracking biodiversity, wildlife trends,

6



measuring land-use change, monitoring and responding to disasters, military surveillance

1. In the military domain, the protection of a territory no longer requires as many troops

at its borders as before. Indeed, the best protected countries are those which have the

best means of surveillance and communication. Likewise in meteorology, although some

challenges persist, science and technology make it possible to push back several limits.

Thanks to meteorological predictions, today’s tsunamis can be predicted several days or

weeks in advance.

Several advances in the aforementioned fields are particularly due to recent and current

capacities to carry out observation and surveillance missions. More public and private

organizations are using satellites, UAVs, UUVs, UGVs and vessels equipped with sensors

in order to collect information on target areas.

The following subsections will carry out analysis to better understand the usefulness

and the advances acquired thanks to observation and surveillance missions. The analysis

will mainly focus on Earth observation and military surveillance missions.

2.1.1 Earth Observation Missions

Improving the quality of images is an important task for image analysts. Images from

observation missions need a lot of preprocessing to be put to good use. The authors

of [15] confirm this fact and focus on improving the resolution of images collected during

observation missions. They propose the use of a Generative Adversarial Network (GAN) to

improve the resolution of images. Their model is trained using pairs of images: on one hand,

images with low resolution and, on the other hand, images with better resolution. The

goal is to train the GAN to improve the resolution of images by using images with better

1https://www.earthobservations.org/g_faq.html
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resolutions as targets. Their method highlights the usefulness of observation missions in

image resolution enhancement.

Almost similarly, [16] proposes the use of GANs, more precisely conditional Generative

Adversarial Networks (cGANs), to remove clouds from images. Their cGAN uses EO

images as inputs and uses images obtained from SAR as targets to remove clouds from

the images. Indeed, SARs are recognized to have this ability to perceive objects beyond

clouds. As with the previous GAN, this method requires training images obtained from

observation missions to provide descent results.

The analysis of ground deformations is of great importance in the field of geology.

It makes it possible to prevent phenomena such as volcanic eruptions. Therefore, it is

important to continuously study the soil in order to detect its deformations. [17] proposes

the use of time series to carry out a continuous and semi-automatic analysis of the ground

to alert as soon as there is a risk. The authors of [17] succeed in proving the effectiveness

of their method by using data from the Sentinel-1 Earth observation mission in their

experiments. This study is therefore proving to be an eventual milestone in the disaster

prevention pipeline thanks to observation missions.

Data from the Sentinel-2 Earth observation mission are also used to study climate

change, or rather how visible the impacts of climate change are. At a time when the debate

on climate change is central, measuring and proving its impact is more than essential.

Phenology is the study of repetitive phenomena in living beings (including plants). It is

often used to show the impact of climate change. [18] reviews various phenological studies

done using data from Sentinel-2. This review not only shows the importance of different

studies but also points to new aspects that would be important to analyze.

Environmental dangers do not only come from climate change, some living organisms
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are also dangerous for nature and other living beings. This is the case with algae which

are species or organisms living in an aquatic environment. Their proliferation is often a

danger because they often absorb polluting content that poses a danger to the health of

humans and other living beings. [19] presents the danger of their proliferation not only

on the health plan but also on the tourism and commercial plans. There is therefore a

need to first detect areas of algae proliferation and then a way to make these areas of new

proliferation frequentable. The study by [19] begins by presenting traditional methods

based on collecting soil and performing laboratory analysis. These methods turn out to

be extremely expensive and laborious. Instead, [19] proposes a method based on the

analysis of water images obtained with EO sensors combined with others from in situ data.

Experiments on this method, with images from Sentinel-2 mission, produce better results

than traditional ones.

The analysis of the snow level during the winter seasons in the world is not only of

great importance for measuring the effects of climate change but it also allows for analysis

of energy, water and carbon cycles as mentioned in [20]. The authors of [20] go further by

also indicating that the economy can therefore be impacted by the slightest changes in the

quantities of snow. They therefore propose an approach based on the simultaneous use of

two Sentinel satellites in order to study the quantities of snow in the globle and to have a

snow map making it possible to predict sudden changes in the quantities of snow.

Data from observation missions are also used to carry out analysis of urban areas.

These are important because they allow to prevent various dangers that may arise as a

result of bad constructions in the city. The outbreak of erosion near residential areas is a

perfect illustration of the dangers that can arise in urban areas. Another importance of

the analysis of urban areas could be the detection of anarchic constructions, i.e. ones that

do not respect urban regulations. The use of data from observation missions intervenes
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to counter the examination on a case-by-case basis of urban areas and move it to a semi-

automated or even fully automated analysis. The authors of [21] propose a method to

classify different urban areas using data from Sentinel missions. The data used in their

studies come from the cities of Stockholm and Beijing. They also manage to prove that the

combined use of data from EO and SAR sensors in the classification of urban areas lead to

better results than data from these sensors used individually. Another almost similar way

to make sure that urban constructions follow the rules is to detect any new construction

or changes in an urban area. If a zone with constructions initially followed the rules, there

are only changes or new constructions that can cause the rules to be broken. The authors

of [22] propose a system for detecting changes in urban areas. Their method uses three sub-

methods, two of which are based on neural networks and the third is a multiband optical

filter. The main method uses a fusion based on a proportionate average of the results of

the sub-methods to give final results. They thus manage to prove, like the authors of [21],

that data fusion produces better results in detecting changes in urban areas.

2.1.2 Intelligence, Surveillance and Reconnaissance

The need for information gathering is a necessity in several areas. Military and security

fields are no exception to the rule. In fact, the ability to gather information in these areas

is vital. However, collecting information is only the first step in the process called Intelli-

gence, Surveillance and Reconnaissance (ISR) in which target acquisition is often included

to morph into Intelligence, Surveillance, Target Acquisition and Reconnaissance (ISTAR).

Surveillance, target acquisition and reconnaissance are often carried out through the de-

ployment of different devices in surveillance missions with the objective of collecting as

much information or data about a target or subject of interest as possible. The intelligence
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step comes after that to make rational use of this information or to give it more value. As

the remainder of the subsection will show, the scopes of surveillance and ISTAR missions

are multiple.

National armies are not only used in times of war or when it comes to ensuring the

territorial integrity of countries. They are also useful for helping populations before, during

or after disasters. High-tech equipment, their speed of action or their deployment capacity

in at-risk and difficult to access areas justify their presence during disasters. The corona

virus crisis is a recent example of the need for the armed forces in urgent situations. Some

vaccination centers in the United States of America have been assisted by the military

to facilitate vaccination campaigns 2. [23] confirms the need for ISR operations during

emergencies caused by natural or health disasters. They explain this need in particular by

the ability of intelligence services to quickly collect information. They bring great precision

to the collection of information. In the context of ISR, the collection of information is

often defined as the data collected after deployment of UAVs, satellites and other types of

vehicles. The authors of [23] add that the notion of collecting information from the ISR

process can also take into account information collected from newspapers or all types of

information gathered online. While this information may require filtering, it is nonetheless

important. They also suggest fusing data or information received from various sources in

order to get a better idea of emergency situations. [23] illustrates the use of ISR during

the 2010 earthquake in Haiti. The authors detail that the deployment of American aid

was made possible thanks to the images and videos of their platforms in order to serve as

a precursors and make it possible to know which places are the most affected and what

would be the best way to come to the populations in relief.

2https://www.defense.gov/Newsroom/Releases/Release/Article/2440556/dod-announces-

covid-19-vaccine-distribution-plan/
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One of the keys to surveillance missions is the management of information in the ISR

process. In addition to highlighting important factors thanks to the data collected, in-

formation management must also be used to better distribute the tasks to the various

platforms available, considering the information collected about these tasks. This aspect

of information management is quite similar to mission planning which will be discussed

in depth in the next section. [24] studies the use of information collection management

during the ISR process. The authors propose to assign tasks to platforms using AI. The

first step of the proposed solution consists of representing the problem in a state-space

representation, followed by a search for the best solution using graph search algorithms.

The authors nevertheless point out a drawback to this type of solution: finding the best

solution can be time consuming if the graph is large. As an alternative, they offer to choose

in this case the best solution found within a reasonable amount of time even if it is not

the best solution of the graph.

Although the use of ISR missions is common in the military fields of many countries,

problems, and space for improvement of ISR missions abound. [25] makes an analysis of

several factors which can have a negative impact during ISR missions before proposing

solutions for some of these problems. To gain insight into the typical problems that arise

when performing surveillance missions, the authors interview 14 US military personnel with

proven experience in carrying out surveillance missions. Here are two examples of problems

listed by [25] that emerged from these interviews: ”It is extremely rare to find useful intelli-

gence without prior information (i.e., formalized as information requirements)”, ”Unofficial

ISR requests (Soldiers call these ‘drug deals’)”. Notice that these problems are of various

orders, they affect safety, comfort, better administration or even organization and many

other aspects. For each category of problem, the authors of [25] suggest solutions that can

improve the execution of missions. Generally speaking, [25] suggests using technologies to
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solve or reduce the gap caused by most of these problems.

Among the ISR missions, several aim to detect certain objects in areas of interest.

Without the use of AI, object detection in areas of interest would require human inter-

vention for every object in sight. This may be acceptable in situations where there are a

limited number of objects to be processed. Unfortunately, during ISR missions, the number

of objects to be detected or exploited can turn out to be enormous. So to avoid continually

multiplying the number of human operators in order to keep the ratio of objects to be pro-

cessed per human acceptable, AI is often used to overcome this problem in order to replace

or reduce the number of operators thanks to computer systems performing the detection

task. [26] offers a similar system. The added value of the system proposed by [26] consists

of making the system aware of the geographical context of the place where the object to

be identified is found in order to increase the precision of the system.

While the trend to automate surveillance missions is growing, human intervention re-

mains important. Indeed, UAVs, satellites, UUVs and other devices often need remote

human intervention in order to either fully guide them or at least provide reassurance that

everything is going as planned and be ready to intervene otherwise. It is with this in

mind that the authors of [27] propose a decision-making system that will play the role of

the human operator in an ISR mission. Ideally, the proposed system will have two roles:

knowing when to act and acting by making the best decision. Since the study done in [27]

is intended to be a basis for this field, the authors propose the creation of an operator

in a simplified environment with several variables not taken into account. The simplified

problem takes a system where the operator has a binary decision to make at each step.

The methodology used first consists of letting the operator make quasi-random decisions

and then giving rewards in relation to the decisions taken. The goal is to push the operator

to have more rewards and therefore make better decisions. After obtaining a significant

13



number of rewards, the operator’s decisions will be used to setup a policy on which the

other operators will base themselves.

2.2 Mission Planning

Mission planning is an important step in the realization of surveillance missions. It is

through this step that mission planners will be able to assess how achievable mission

objectives are and how to deploy platforms to achieve those objectives. Thus, after having

planned an observation or surveillance mission, the mission’s planners can have an idea of

its cost, the time needed to carry out the mission, the number of operators required as

well as other indicators or variables. Nowadays, mission planning systems go further, they

also have the role of providing machines or their remote-control systems with intelligence

in order to be able to react to various unforeseen events that may arise during missions.

The research on mission planning covers several aspects of surveillance missions. Some

researchers rely exclusively on how to plan observation missions by better allocating the

tasks to the platforms. In the latter context, the allocation of tasks to the platforms takes

into account the capacities of the different platforms in order to spend a minimum cost

and still achieve the objectives. Other researchers analyze observation missions within a

Risk Management Framework (RMF). In RMF, the main objective of mission planning

is to optimize the use of platforms at the slightest alert given by the RMF. There are

also studies on Collection Scheduling Optimization (CSO) with the aim of optimizing the

collection of images on the platforms’ planned trajectories. In this subsection, a broader

review of RMFs, CSO and different mission planning systems will be done in order to fully

understand their utility and their operations.

[28] conducts a survey on the state of research in mission planning. The purpose of its
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study is first of all to take stock of the advances that have taken place in the deployment

of satellites and spacecraft during observation missions. Then, a comparison is made

between two alternatives: Markov Decision Process (MDP) and model-based approaches.

The National Aeronautics and Space Administration (NASA) and the European Space

Agency (ESA) are among the organizations with enough significant resources to carry out

observation missions with satellites and spacecraft. The observation missions undertaken

by these two organizations with autonomous satellites and spacecraft are proof of recent

advances in the field. In 1999, the NASA used the Remote Agent software on the Deep

Space 1 spacecraft to perform one of its most important missions as it was later used as

a base in carrying out missions with satellites and autonomous spacecraft 3. The Aurora

Programme mission launched in 2001 by the ESA aimed to explore the solar system in

order to examine the existence of life outside Earth 4.

In order to better explain autonomous systems, [28] establishes 4 different levels of

autonomy. First, there are autonomous systems with intelligent sensing. This level of

autonomy consists of determining a platform’s state by using its sensors’ information.

The second level of autonomy is defined by [28] as the level of planning and execution of

the mission. This level of autonomy uses the strategy often called ”divide and conquer,”

mission objectives are broken down into partial objectives each with limited resources.

After satisfactory planning, it will be a question of carrying out the mission. In most

definitions of autonomous systems, one still wants to have a human presence in order to

intervene in case of unforeseen circumstances. One of the qualities of some autonomous

systems is that they have the capacity to deal with the unforeseen themselves, thereby

3https://ti.arc.nasa.gov/tech/asr/groups/planning-and-scheduling/remote-agent/
4https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/

The_European_Space_Exploration_Programme_Aurora
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reducing human intervention even further. These systems which take into account or are

able to manage the unforeseen quasi-independently are part of the third level of autonomy

established by [28]. Finally, the last level of autonomy presented by [28] corresponds to

distributed decision making. The particularity of this level of autonomy is that it enables

the cooperation of several autonomous agents in order to achieve certain objectives.

In the rest of their work, the authors of [28] return to the comparison of systems using

MDP and model-based approaches. MDPs can be defined as problems in which we have

an agent located in an environment. The agent located in the environment is always in a

precise state. He can take actions that can cause him to change state and receive a reward

if the action was good or a reward whose value is proportional to the distance remaining

to his goal. At the end, policies are established when the agent has learned well from the

system. The main disadvantage that the authors point out with autonomous spacecraft

systems using MDPs is the lack of data to be able to have good agent policies. Model-

based approaches can also be compared to agents being in an environment. Unlike MDPs,

these agents have a certain knowledge of the environment which enables them, when in any

situation or state, to decide to take actions given their knowledge of the environment. Here,

the disadvantage pointed out by [28] is that as in most model-based approaches, one can

easily reach an unmanageable number of states for a spacecraft system. The comparison

of two types of systems also leads the authors to state that despite their advantages and

disadvantages, recent articles on these two approaches tend to overcome the obstacles that

exist in the planning of observation missions and the use of autonomous spacecraft.

UUVs are an important type of unmanned vehicles. Their particularity is, as their

name suggests, that they are the only types of unmanned vehicles capable of effectively

exploring the waters. Nevertheless, some communication problems were noted during the

missions with UUVs [29]. These communication concerns are due to delays caused by
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the water. Despite these concerns, the most technologically up-to-date countries cannot

do without them given their particularity. The authors of [30] analyze the progress of

research in the field of mission planning with deployment of UUVs. Unlike the authors

of [28], those of [30] are based not only on mission planning but also on mission management

and their different architectures. They consider that mission management differs from

mission planning since mission management includes all the techniques used to manage

the mission from its inception to its end; whereas mission planning is a series of steps to

achieve a goal [28,30]. They also noted that several articles on mission planning and mission

management use architectures that are specific to their problems and often difficult to re-

use. Thus, [30] lists categories of features considered as important for mission planning and

management architectures. Then, they propose some architectures using these key features

in order to present the differences between them and possibly their fields of application.

The authors emphasize that even if the majority of articles cited and analyzed by [30] are

based on UUVs, their proposals can be applied to missions taking into account other types

of vehicles.

The first important feature to define for a mission planning and management architec-

ture according to [30] is the specification of the mission plan. This feature is also defined

in [30] as a set of actions in order to achieve a goal. Thus, they propose the use of AI

techniques to achieve the generation of a mission plan. This leads to listing different types

of mission plan specifications divided according to two characteristics. First, there are

deterministic and non-deterministic planners. Then there are multi-agent planners, with

temporary constraints and/or with hierarchization of tasks. The second feature is the

specification of a contingency management system. For this, they focus on an architecture

called Monitor, Analyze, Plan, Execute - Knowledge. This architecture receives data input

from sensors and at output, it executes an action. Between the perception provided by
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the sensors and the action, the data is successively monitored, analyzed, used to plan and

then execute, according to a certain knowledge which is updated. The third feature is

the specification of UUV heterogeneity management. To overcome the problems that may

arise due to the differences between UUVs used, [30] suggests the use of a certain level

of abstraction in order to take into account the commonalities between the UUVs used.

Finally, the last feature is the specification of how to dispatch and execute the mission

plan to UUVs. According to this feature, the authors divide the mission planning and

management architectures into several groups depending on whether the mission plan is

entrusted or not to the vehicles before the mission or whether the mission plan is assigned

through a task-by-task manner to vehicles.

2.2.1 Mission Planning in Risk Management Framework

As mentioned above, mission planning plays a key role in RMFs. There are places that

require high security and in which the slightest security breach could cause diplomatic,

economic, or other types of incidents. It is within this context that studies on RMFs

have the role of designing systems establishing frameworks to adequately protect these

places. Two ways in which mission planning are used in RMFs will attract attention in

this subsection. First the use of platforms to ensure adequate surveillance of these places.

Then there are systems where the use of platforms is only required when a security breach

is detected.

One of the solutions for the protection of critical infrastructures is the use of Robotic

Sensor Networks (RSNs). An RSN is a type of Wireless Sensor Network, where a node can

be a simple sensor or a complex robot [31]. The efficiency of an RSN is directly linked to

the management of the allocation of tasks to the different robots. Indeed, a good allocation
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of tasks to robots will reduce the use of available resources and therefore, in some cases,

allow to perform more tasks. The authors of [32] propose algorithms based on auction

protocols for an efficient allocation of tasks to robots. Three variants of auction protocols

are proposed by [32]. In the First-Price Sealed Bid Protocol, at the announcement of a new

task, each robot will send a bid based on its battery level, its distance to the task, and other

characteristics. The system will then select a specific number of top bidders depending on

the task. As for the Dutch-Japanese Protocol, it is a protocol in which the emphasis is

placed on the number of robots to take part in carrying out the tasks. For each task, an

interval in which the number of robots must be found is established by the auctioneer.

Thus, in order to respect this constraint, the bid threshold will be continuously modified

until an acceptable number of robots can be able to respond to it. The English Protocol

suggests fixing the bid threshold to 0 at the beginning and the coalition (the set of selected

robots) will then be formed by robots that bid. The bid threshold will be continuously

increased until no new bids are received. Then the coalition will be formed by the robots

of the last round. Still in the protection of critical infrastructure using RSNs, [33] studies

two types of alternatives for selecting robots through auctions. First, the pre-optimization

auctioning scheme. In this type of solution, when a risk is detected, the system selects

the robots able to accomplish the task. Then, an optimization process starts to select

the best ones given the task and the task’s location. Then, there is the post-optimization

auctioning scheme where the auctioneer starts with the optimization which consists of

finding the best locations for the robots. Then, based on those results, it lets the robots

bid. After experimenting with the two methods, [33] conclude by indicating that each of

these methods has a particular context in which it is preferable over the other. Thus, the

pre-optimization method is preferable when the distances to be covered are short while the

post-optimization is preferable in the opposite situations.
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Maritime traffic is part of the most important traffic on Earth, especially involving trade

[34]. RMFs are important in the maritime domain given the need for countries to ensure

near-permanent surveillance in waters since the number of pirate attacks are still increasing

5. Like several articles mentioned earlier, [33, 35] are based on continuous monitoring of

maritime areas to detect suspect events and intervene if needed. [35]’s solution consists

of using UAVs to monitor selected areas. Each area will be divided into genes to allow a

better coverage of UAVs. Soft-data is assimilated to data coming from humans (data on

the internet, in social networks, etc.) while hard-data is often assimilated to data from

sensors [33]. Unlike several existing surveillance methods, [33] proposes the use of soft-

data combined with hard-data in order to get an idea of the level of security of different

maritime areas. This method saves resources like UAVs, vessels, helicopters and others to

only intervene when there is a risk signaled by the system.

2.2.2 Collection Scheduling Optimization

The scheduling optimization problem can be defined as one in which each task given to

an individual at a precise moment contributes to maximize one or more objective(s), and

this, while respecting certain constraints 6. This type of problem can also be assimilated to

Constraint Satisfaction Problems (CSPs) which are problems of finding valid values to be

attributed to a set of variables each having a domain and possibly constraints [36]. Unlike

the scheduling optimization problems, the main objective of CSPs is to meet constraints

and not to optimize objectives.

[37] presents the use of CSO algorithms as a solution to a two-stakeholder problem.

5https://www.statista.com/statistics/266292/number-of-pirate-attacks-worldwide-

since-2006/
6https://optimoroute.com/schedule-optimization/
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On one hand, there are organizations that want to carry out surveillance missions but

do not have satellites. On the other hand, there are organizations that not only have

their own missions to carry out but also possess satellites for this purpose. Organizations

with platforms capable of performing observation missions often market the use of their

platforms. This is very often made possible when in the initial trajectories of platforms to

collect images for their organizations, there is also the possibility of collecting images for

other organizations. The CSO algorithms are used to formalize the objectives of the mission

in order to make the deployment of platforms profitable for all stakeholders. Although [37]

studies this problem only from the perspective that the platforms are satellites, the study

of this problem can be extended to UAVs, UUVs, vessels, etc.

The several articles in this research area can be grouped into three. Centralized ar-

chitectures are architectures in which the optimization of the image collection to satisfy

different stakeholders is done regardless of the organizations to which the platforms be-

long [2,3]. Distributed architectures are architectures in which the optimization process is

done on each platform considered as an individual agent. [6] proposes a distributed CSO ar-

chitecture in which each agent optimizes its collection of images but can also at some point

during the mission, affiliate with another agent to form a fixed-term cohort. There are

also decentralized coordinated architectures where tasks are only assigned to organizations

with platforms so that they perform them independently. [7] solves this type of problem

and compares two types of algorithms: Highest-Weight-First-Allocated algorithm, and the

second is a Tabu-List-based Simulated Annealing (SA-TL) algorithm. The authors came

to the conclusion that SA-TL performs better.
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2.3 Image Quality in Mission Planning

The quality of the images obtained from observation missions is an important factor in

determining the success of a mission. The images obtained during observation missions are

used in various ways as mentioned in the previous sections. Some applications in GANs

improve the quality of certain images by using others of better quality [38]. If the images

used as targets have a poor quality, this kind of application will not provide satisfactory

results. Soil moisture is a very important variable in determining climate change and even

preventing natural disasters [39]. The authors of [39] propose the use of images obtained

from observation missions to analyze soil moisture. The success of this method depends

on obtaining good resolution images as mentioned by the authors.

2.3.1 Image Quality Assessment

There are several methods to determine the quality of an image. These methods can be

divided into two groups: no-reference image quality assessment and full-reference image

quality assessment. In full-reference image quality assessment, the image quality is the

result of a comparison between an input image and a reference image. The comparison is

done based on metrics like mean-squared error, peak signal to noise ratio and others. No-

reference image quality assessment methods use statistical metrics to evaluate the quality

of the image. Some of them compute the quality based on the level of distortion of the

input image.

Some image quality assessment methods are classified as no-reference although they

use machine learning and therefore images during training to determine the quality of

the images. The Blind/Referenceless Image Spatial Quality Evaluator and the Natural

Image Quality Evaluator are part of these methods [41, 42]. Their main objective is to
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examine the quality of the image taking into account its distortions. Another objective of

these methods is to correlate this quality value with human perception. Unlike these two

methods, the Perception based Image Quality Evaluator (PIQE) [43] does not use trained

models to determine the quality of an image, instead this method is based on the use of

distortion as one of the factors influencing the quality of an image.

2.3.2 Image Quality Prediction

As for mission planning, using the image quality assessment methods described in the

previous subsection has limitations. When planning observation missions, mission planners

do not yet have images and therefore cannot use these methods. These methods could be

useful if one uses previously acquired images to predict the quality of future images. In

order to predict the quality of images given a mission plan, several authors suggest the use

of the GIQE [13,44–46]. The GIQE is in fact a linear regression model whose features are

the ground-sampled distance, the system modulation transfer function and the signal-to-

noise ratio.

The goal of the first release of the GIQE was to predict the image quality based on

sensors’ characteristics. The quality was expressed in terms of the National Imagery In-

terpretability Rating Scale (NIIRS) that describes the quality of an aerial image based on

10 rating levels 7. Each of the 10 levels describes what information can be drawn from the

image to be acquired. The rating level 0 describes the future image as an image where

”Interpretability of the imagery is precluded by obscuration, degradation, or very poor res-

olution” while one of the descriptions of the rating level 9 is: ”Identify vehicle registration

numbers (VRN) on trucks.”

7https://fas.org/irp/imint/niirs.htm
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The authors of [44] performed an analysis of the quality of imagery to be acquired

with an EO sensor from two specific UAVs: Global Hawk and Predator. The quality

was obtained using the GIQE and expressed in terms of NIIRS. These analytical works

demonstrate how the NIIRS is influenced by the flight altitude, the focal length of the

sensor and the angle of view from the sensor to the target. Similarly, Defence Research and

Development Canada [45] analyzed the performance of the GIQE with EO and IR sensors.

Still in the aim of analyzing and facilitating the use of the GIQE, the Air Force Research

Laboratory built a Python package, pyBSM [46], that uses environmental conditions and

EO and IR sensors’ information as inputs to predict the NIIRS based on the GIQE.

2.4 Sensor Fusion

2.4.1 Background on Sensor Fusion

Several articles analyzed in the previous sections highlight the use and amalgamation of

data from different sensors to obtain a better image or a better perception of the envi-

ronment. This fusion process is called sensor fusion [47]. [48] studies the performance of

three classifiers that detect, from images, the land use. They compare the performance of

Support Vector Machines (SVMs), Random Forests and k-Nearest Neighbor. The authors

test each classifier with three types of data: data obtained from SARs, others obtained

in the visible near-infrared spectrum as well as a combination of both. Their experiments

show that the SVM obtains much better results than the other classifiers. On top of that,

the accuracies, for each classifier, obtained from the fused data are superior than the oth-

ers. On the other hand, [49] carries out a study to measure the growth of agricultural

production. The authors of [49] propose a method called Phenological Sequence Pattern
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to automatically count the number of agricultural areas in different images. They analyze

the performance of their classifier, compare it with a Random Forest classifier and show

that their classifier gives better accuracy. In their experiments, the authors test the effi-

cacy on data from Sentinel 1 (SAR), Sentinel 2 (EO/IR) and then a combination of both.

Although the different accuracies of Random Forest shows that the fused data achieves

better accuracy, for their new classifier, it is the data from Sentinel 1 that gives better

results. This proves that the efficiency of the fusion methods is not always automatic,

several analyses are often necessary in order to take advantage of the efficiency of the data

fusion.

2.4.2 Image Fusion

As for fusing images from multiple sensors, there are three main groups of image fusion

methods: pixel-level fusion, feature-level fusion and decision-level fusion. With pixel-level

fusion, images are fused pixel by pixel, this process requires having pairs of images almost

completely aligned. Feature-level fusion consists of extracting features of pairs of images

then obtain fused images based on those pairs of features. Decision-level fusion considers

hypotheses drawn from pairs of images to make a final one. Several authors including

those of [50] demonstrate that deep learning methods have reached state-of-the-art results

in sensor fusion.

[51] proposes a pixel-level fusion method of visible and infrared images called hybrid-

multi scale decomposition. Multi-scale decomposition is a method generally used for pixel

level fusion. [51] finds that this method has issues concerning the level of perceptuality of

the fused image. The main purpose of the method proposed by [51] is to use the knowledge

gained from multi-scale decomposition and add new features to it in order to give better
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results from a human perception point of view. The results of the experiments of [51] show

that the images fused with their method have a better perception.

Still concerning the fusion of visible and IR images, the authors of [52] propose a feature-

layer fusion method. [52] proposes the use of deep learning to merge the features of pairs

of images at several levels before reconstructing them and obtaining the fused images.

Image fusion is also used in applications such as object classification. It then consists

of fusing the images to better predict the types of objects. [40] suggests the use of decision-

level fusion to perform this type of task. The method proposed is based on a training step

of two Convolutional Neural Networks (CNNs) with SAR or IR images. After this step (i.e.

the training mode), the models can be used (i.e. the testing mode), and their predictions

fused.

2.5 High-Level Information Fusion

2.5.1 Joint Directors of Laboratories

For a better identification of different levels of fusion, the Joint Directors of Laboratories

carries out a work which consists in describing and distinguishing between levels of fu-

sion [53]. Their work was then modified by [54] to obtain five levels of fusion: sub-object

assessment, object assessment, situation assessment, impact assessment and process refine-

ment. As for the sub-object and object assessment, it consists of fusing data to predict the

states of signals, objects and entities. Situation assessment predicts the entity states con-

sidering some links between them. Impact assessment aims to predict the impact that some

actions can have in the environment. Finally, process refinement uses fused information to

predict the best actions to take.
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2.5.2 Information Fusion Effectiveness

In order to better protect maritime traffic, [14] suggests the use of a method based on the

combination of soft- and hard-data. To this end, the authors propose a metric to measure

the added value of data fusion. This metric is based in particular on the sensors used and

the dates in order to estimate the added value of an eventual fusion. The impact of the

time on the fusion value is measured through the use of fuzzy logic.

2.6 Artificial Intelligence

Many articles on mission planning opt for the use of AI to achieve improvement in one

or more aspects of observation missions. For example, [55] analyses how AI can be used

to reduce operator load on the ground during UAV missions. This section will provide a

technical background on some AI topics used in mission planning.

2.6.1 Evolutionary and Genetic Algorithms

AI is often defined as a set of methods that allow machines to perform tasks that normally

require human intelligence. Several AI algorithms are inspired by natural phenomena.

This is particularly the case with Evolutionary Algorithms (EAs) which are inspired from

natural evolutionary mechanisms in order to find the best solutions to problems. There

are two prerequisites in order to apply EAs to a problem. First, it requires to define in a

computer program what a solution to the problem can be. Then, it will be necessary to

define a fitness function which is an evaluation function of the solutions of the problem.

Multi-Objective Evolutionary Algorithms (MOEAs) are EAs used to solve problems where
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solutions are evaluated based on several criteria. The different steps when looking for

solutions to a problem by EAs are:

• Generation of an initial population of solutions

• The evaluation of each solution that is part of this population

• Generation of a new batch of solutions from the previous batch of solutions. This

new batch of solutions will replace the bad solutions from the old batch.

• Repeat the last two steps until you reach a defined stop condition.

It is in the generation of new batches of solutions that imitations of natural evolutionary

phenomena happens, through the use of operations like crossover, and mutation in the

generation of new solutions. GAs are a part of EAs but differ from others in that their

solutions are encoded in strings.

2.6.2 Multi-Objective Optimization

MOO problems are problems which consist of seeking the best solutions while taking into

account more than one objective or criterion. Often, the search for solutions to these

problems must consider certain constraints. Objectives are variables to be maximized or

minimized while constraints are restrictions to the objectives.

The objectives of MOO problems often conflict: the maximization of one can cause the

minimization of another. This is often the case in surveillance missions where the most

frequent objectives are: the maximization of areas monitored and the minimization of the

cost; monitoring areas increases the cost of the mission. MOO algorithms must take into

account trade-offs in order to find the best solutions given the conflicts.
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In cases where objectives conflict, it is very rare for MOO algorithms to find only one

solution. The best solutions to the problem are rendered in a Pareto Front to eventually

allow end-users to choose the most suitable one. There is domination of a solution A over

a solution B if and only if the objective values of solution A are better compared to all the

objective values of solution B. If only some of the objective values of solution A are better

than those of solution B, solutions A and B are non-dominated [56].

2.6.3 Machine Learning

Machine Learning (ML) is a part of AI that unlike others uses data to ”learn” to perform

a task. The importance that ML has acquired in recent years even leads some people to

bluntly confuse AI with ML 8. Three main branches of ML are often distinguished, these

are: supervised ML, unsupervised ML and Reinforcement Learning (RL).

In supervised ML, the data used to train the system to perform a task is made up of

inputs and outputs. The inputs are the data from which the system should learn to predict

the outputs. There is a training phase where the system uses inputs and outputs to learn,

an evaluation phase which consists of using only the inputs and evaluating the predictions

of the system. Artificial Neural Networks (ANNs) are an ML method used to train a model

to predict output values from a set of features. They are composed of several layers having

a number of well-defined neurons through which the input values are transformed to obtain

predictions. Depending on the complexity of the task, different architectures of ANNs can

be adopted. They are often defined according to the number of neurons on each layer of

the ANN [57]. If there are no intermediate layers between the inputs and the outputs, the

8https://pub.towardsai.net/differences-between-ai-and-machine-learning-and -why-it-

matters-1255b182fc6
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ANN becomes a logistic or linear regression model depending on whether the value(s) to be

predicted are categorical or continuous values, respectively. CNNs are also an ML method,

more specifically a Deep Learning (DL) one, used to analyze images (among other types

of data). They are composed of a feature extraction phase and a fully connected network

phase whose architecture is similar to those of ANNs [58].

In supervised ML, K-Fold Cross Validation is often used to obtain a generalized model

when faced with limited amount of data. K-Fold Cross Validation is a process used to

train and evaluate models by alternating training and evaluation data. If K equals 10, the

dataset will be divided in 10 sets and the model will be successively trained using nine of

the 10 sets and evaluated using one of them. In this case, 10 epochs will be necessary to

train and evaluate the model with the different sets.

The mean squared error is a metric often used with supervised ML methods predicting

continuous output values. Equation 2.1 describes how to compute the mean squared error.

For supervised ML methods with discrete output values, the metric generally used is the

accuracy. The latter is the ratio of correctly predicted values.

mse =
K∑
k=1

(y2k − yk2)/K (2.1)

where:

• mse is the mean squared error.

• y represents ground truth values.

• y represents predicted values.

• K is the size of the dataset.
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Unlike supervised ML, unsupervised ML receives data containing only a set of inputs.

The goal of unsupervised ML is to get the model to detect relationships between certain

entries in order to group them into different categories.

Since these ML methods often require enough data to achieve satisfactory results and

in some cases this data is scarce or difficult to collect, transfer learning techniques can be

used to impart knowledge from one solved problem to a similar yet unsolved one.

There are several well-defined architectures of CNNs proposed by researchers, among

which are ResNet [59], MobileNet [60], MobileNetV2 [61] and others. Most of these CNN

architectures can also be used for transfer learning purposes since pre-trained versions of

them exist. In this case, the feature extraction stage, the pre-trained stage, is only used

to output the inputs of the fully connected layers during training, evaluation and testing.

In RL, the objective is to teach an agent, in an environment, to perform a task by

pushing the agent to choose the best actions for the different states of the environment in

which it may find itself. During the learning phase, the agent is driven to make the best

decisions through the use of rewards. The reward value given for an action in a specific

state will be proportional to the effectiveness of the action. Thus, at the end of the training,

the agent will have a policy which it can use to carry out this task.

2.6.4 Correlation Coeffecient

In AI, it is often important to measure the dependence between pairs of variables. One of

the most used metrics to measure the dependence of two variables is the Pearson Correla-

tion Coefficient (PCC), it allows to measure the linear correlation between two variables.

If PCC between two variables X and Y is 1, there is a perfect linear correlation, they can

be both written as an increasing affine function of the other. If PCC is -1, the linear cor-

31



relation is also perfect but the affine function is decreasing. There is no linear correlation

if PCC is 0. The closer PCC gets to 1 or -1, the greater the linear correlation between

the variables. On the other hand, the closer PCC gets to 0, the least the linear correlation

between the variables. Equation 2.2 describes how to compute the PCC of two variables.

pcc =

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2
(2.2)

where:

• x is the mean value of the variable X.

• y is the mean value of the variable Y .

2.7 Chapter Summary

This chapter had two main objectives: first, explain what observation missions are, then

analyze the different techniques used to improve these missions.

In order to better understand the observation or surveillance missions, different con-

texts requiring these missions have been highlighted: environmental analyses, protection

of territories, etc. In addition to this, it has been shown that the images collected during

the missions have an impact on several research areas, in particular ML. Emphasis was

also placed on mission planning to achieve satisfactory results.

From a technical point of view, several methods used to optimize observation missions

were analyzed. A particular emphasis has been placed on AI methods which make it

possible: to quantify the objectives that can be achieved for each mission plan, to find the
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best mission plans when these objectives are in conflict, and also to estimate the qualities

of the images afterwards acquired according to the mission plans.
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Chapter 3

Multi-Objective Heterogeneous

Multi-Asset Collection Scheduling

Optimization with High-Level

Information Fusion

This chapter presents a surveillance missions’ CSO: the Multi-Objective Heterogeneous

Multi-Asset Collection Scheduling Optimization with High-Level Information Fusion (MOHMA-

CSO-HLIF). MOHMA-CSO-HLIF’s main contribution will be its ability to consider the

benefit of sensor fusion in the optimization process. Other than that, three different vari-

ants of MOHMA-CSO-HLIF are proposed, each prioritizing either a certain number of

platforms used per AOI or a minimum coverage of each AOI.

34



3.1 Problem Definition

MOO problems are quite suitable when looking for solutions, MOHMA-CSO-HLIF will

have to take into account more than one objective or criterion among which some could

be in conflict. The choice of solutions must then take into account the trade-off between

the different criteria. In this work, the type of MOO problem to be solved can be defined

as follows:

• Let A be a number of platforms (UAV, vessel, satellite, UGV, etc.) having well-

defined trajectories and each equipped with at least one sensor.

• These platforms are managed by B SPs, B being less than or equal to A.

• Let C be the number of TRs submitted by agencies.

The questions that need to be addressed become:

• How to assign these TRs to SPs, given the trajectories of their platforms, so that the

objectives (which will be presented later on in this chapter) can be maximized?

• Additionally, for each TR that is assigned to a SP, how to optimally use the platforms

in order to maximize the objectives?

3.2 Methodology

The mission planning problems to solve in this work can handle heterogeneous types of

assets (UAVs, UGVs, Satellites, etc). However the scenarios used in the experiment section
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only use UAVs and satellites as assets. A TR is an area or a moving target for which

agencies or SPs require imagery products. MOHMA-CSO-HLIF has four types of TRs:

AOIs, Points of Interest (POIs), dynamic tracks and circuits. In this work, TRs are

limited to AOIs and POIs. A TR will be qualified as local to a SP if, in the definition of

the problem, it is assumed that it will be accomplished by that SP. A TR that is not a

Local Task Request (LTR) to a SP is a System-level Task Request (STR).

Each platform will have an image acquisition schedule: different periods of time when

they turn on their sensors to acquire images of AOIs or POIs. Platforms can observe

TRs by using different loitering trajectories: circle, spiral, racetrack, snake, etc. In this

thesis, MOHMA-CSO-HLIF handled two different types of sensors models used: SAR with

multiple beam modes, and EO/IR with different surveillance modes. Total::Perception™ 1

will be used to run user-based scenarios and generate Collection Opportunities (COs). A

CO represents the opportunity of a platform’s sensor model to acquire images of a specific

TR. Each AOI will be divided into a number of surface tiles, while a POI is considered to be

represented by a single tile. A CO will then have as attributes: the cost of the observation,

the Quality of Observation (QoO), the start time and end time of the observation, the

platform observing the AOI or POI, the sensor used to observe the AOI or POI, the name

of the AOI/POI (only one AOI/POI per CO) being observed, and the list of tiles of the

AOI/POI being observed.

Research in the sensor fusion field shows that an image resulting from the fusion of two

images from different sensors can provide more information than the original images [47].

This work is based on this in order to create novel capabilities in the field of mission plan-

ning. This innovation, termed MOHMA-CSO-HLIF, can be summed up in two points:

1. It takes into account the image quality that a sensor can offer in the suggested solu-

1Total::Perception™ is a proprietary ISR Systems Simulation Engine developed by Larus Technologies
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tion. A reminder that the main purpose of these surveillance missions is to obtain images

of AOIs/POIs. Thus, taking into account the image quality that one sensor can provide

compared to another is more than crucial. 2. MOHMA-CSO-HLIF does not stop there, it

also takes into account the image fusion factor. This second point can push the optimizer

to select solutions where one or more platform(s) equipped with different sensors monitors

the same area so that the resulting image (fusion) is one of superior quality. Without

HLIF, MOHMA-CSO-HLIF becomes Multi-Objective Heterogeneous Multi-Asset Collec-

tion Scheduling Optimization (MOHMA-CSO). The difference between these two frame-

works is that MOHMA-CSO-HLIF takes into account the QoO when assigning STRs to

SPs while MOHMA-CSO does not. To take into account the QoO of STRs observed by

more than one sensor, MOHMA-CSO-HLIF will use COs generated by Total::Perception™

to create new COs, Fused Collection Opportunities (FCOs), with tiles observed by more

than one type of sensor. These FCOs will have a new QoO. Figure 3.1 shows a TR divided

into equal tiles, some tiles are covered by COs (including one FCO) and others are not

covered.

3.3 Proposed Solution

The output of MOHMA-CSO-HLIF is a set of Task Assignment Plans (TAPs) representing

assignments of STRs to SPs. These TAPs are binary numbers of M x N bits, M being

the number of SPs and N being the number of STRs. The ith bit of this binary number

represents the assignment (1) or not (0) of the STR d (the latter being the result of the

integer division of i by M) to the SP e (the latter being the result of i modulo M). Thus,

the MOEAs (NSGA-II [62], NSGA-III [63] and SPEA2 [64]) will be able to generate several

TAPs and evaluate them using the objectives which will be defined in the following sections.
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Figure 3.1: A TR observed by three different COs. Opp1, Opp2 and Opp3 are COs using

different types of sensors. Since Opp1 and Opp2 have some tiles in common, there will be

a FCO, Fused Opp, covering their common tiles.

After the assignment of STRs to SPs, each SP will execute Multi-Objective - Genetic

Algorithm-based collecTion scHedulER (MO-GATHER) [2] to optimize the realization of

the TRs assigned to it and obtain as output a Collection Plan (CP). The latter can be

simulated and visualized using Total::Perception™.

3.3.1 Motivation behind Strategies in MOHMA-CSO-HLIF

MOHMA-CSO-HLIF has a mechanism for finding the best solutions taking into account

different strategies. The purpose of using strategies is to capture what the mission plan-

ners are most sensitive to during the mission. Three types of strategies are available in

MOHMA-CSO-HLIF. The first is All-Asset Coverage Maximization (AACM): choosing

this strategy pushes the SPs to maximize the coverage of STRs by using all their plat-

forms. In the second strategy, Single-Asset Coverage Maximization (SACM), the system
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pushes each SP to maximize the coverage of each STR by using only one platform. Finally,

Cost-Aware Coverage Maximization (CACM) aims to reach a minimum coverage for each

STR in order to reduce the cost of the mission. Since finding the optimal solutions is

directed by evaluating the objectives, depending on the strategy chosen, objective function

evaluation when assigning a STR to a SP will differ. Depending on the strategy, the only

modification in the evaluation of an objective will be the selected platforms. For example,

if the strategy chosen is SACM and a STR is assigned to a SP of three platforms, the dif-

ferent objective function evaluations will only use the platform that has best covered the

AOI or POI (one wants to push the SP to take into account only one platform); whereas if

the strategy was AACM, they would use the three platforms. For the same example, if the

strategy chosen was CACM, the minimum coverage was 60% and two specific platforms

of these three were sufficient to reach at least 60% (no other combination allowed to have

more than 60% with a lowest cost), then these two platforms would be used to compute

the different objectives. See Algorithm 3.1 for more details on how platforms are selected

for CACM.
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Algorithm 3.1 Selection of a Sub-planner’s Platforms with CACM Strategy

Input: STR S, sub-planner’s assets A, set of Collection Opportunities CO, minimum

coverage threshold γ

Output: The subset of assets required to achieve the minimum user-specified coverage

threshold γ or ∅ if γ cannot be achieved by the sub-planner

1: ∆a ←− the coverage on S achieved by all assets a ε A using all the collection opportu-

nities oa,kεCO.

2: if (∆a<γ) then

3: return ∅

4: end if

5: B = A; ∆ = ∆a;notTried = A

6: while ((∆>γ)&(notTried 6= ∅)) do

7: b ←− the asset in notTried with the highest estimated cost Cb while covering the

STR S

8: ∆b ←− the coverage on S achieved by all assets in B − {b}

9: if (∆b>γ) then

10: B = B − {b}

11: ∆ = ∆b

12: end if

13: notTried = notTried− {b}

14: end while

15: return B
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3.3.2 Objectives Definition

When assigning STRs to SPs, MOHMA-CSO-HLIF uses four objectives in the evaluation

of solutions.

Local Conflict Cost

The first objective is the Local Conflict (LC) cost. The idea behind LC is to assess the

degree of conflict if a STR X is assigned to a SP Y. This degree of conflict is evaluated

by considering LTRs to SP Y. If the STR X is performed by the SP Y during a moment

when the SP Y can also perform its LTRs then there is a conflict. The LC will be a

function of the intersection between the time when the SP can perform an assigned TR

X (which is a STR) and the time when it can perform its LTRs. The goal is to minimize

LC. The Equation 3.1 details how to compute the LC when assigning a TR to a SP using

as parameters: the STR, the SP, the list of COs in the scenario and the list of local COs

(COs used to collect images of a LTR) to SPs. Equation 3.2 computes the LC for a specific

solution i.e. TAP.

LCi,j =
K∑
k=1

L∑
l=1

Overlap(Oppk, LOppl,j)xi,j,k (3.1)

LCTAP =
I∑

i=1

J∑
j=1

LCi,jyi,j (3.2)

where:

• Oppk is an interval representing the interval: [start time, end time] of the kth CO.

• K is the number of COs in the scenario.
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• LOppi,j is an interval representing the interval: [start time, end time] of the lth local

CO (to fulfill a LTR) of the jth SP.

• L is the number of local COs associated with the jth SP in the scenario.

• Overlap(Oppi, Oppj) is the amount of time when Oppi and Oppj are overlapping.

• xi,j,k is 1 if the TR associated with the kth CO is the ith STR and the platform

associated with the kth CO is one of the selected platforms (to fulfill the ith STR

depending on the strategy) of the jth SP. Otherwise it is 0.

• LCi,j is the LC of assigning the ith STR to the jth SP.

• I and J are respectively the number of STRs and SPs.

• yi,j is 1 if the ith STR is assigned to the jth SP in the TAP . Otherwise it is 0.

• LCTAP is the LC of the TAP.

Resource Cost

The second objective is the Resource Cost (RC). The RC of a solution represents the cost,

in monetary value, spent in order to carry out this mission: having sensors switched on for

a certain period of time, going through an entire area by UAV, UGV, satellite or boat (the

cost of the battery or gasoline), capacity of the memory to store the images. Similarly, the

value of RC will have to be minimized. The Equation 3.3 computes the RC of assigning a

STR to a SP by using as parameters: the STR, the SP, all the COs and their RCs. Then

Equation 3.4 computes the RC of a TAP.
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RCi,j =
K∑
k=1

rckxi,j,k (3.3)

RCTAP =
I∑

i=1

J∑
j=1

RCi,jyi,j (3.4)

where:

• rck is the RC of the kth CO.

• K is the number of COs in the scenario.

• xi,j,k is 1 if the TR associated with the kth CO is the ith STR and the platform

associated with the kth CO is one of the selected platforms (to fulfill the ith STR

depending on the strategy) of the jth SP. Otherwise it is 0.

• RCi,j is the RC of assigning the ith STR to the jth SP.

• I and J are respectively the number of STRs and SPs.

• yi,j is 1 if the ith STR is assigned to the jth SP in the TAP . Otherwise it is 0.

• RCTAP is the RC of the TAP.

Profit

The third objective is the profit. The latter represents the execution rate of the STRs. The

more images of different zones of AOIs or POIs a solution has collected or has monitored,

the greater the profit will be. Unlike the first two objectives, the value of profit will have

to be maximized. The Equation 3.5 computes the number of tiles observed when assigning

a STR i to a SP j. It uses the STR, the SP, the list of COs of the scenario and their list of
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tiles as parameters. Then, the profit of a specific TAP is computed as shown in Equation

3.6.

Tilesi,j = Tilesi,j,1 ∪ ... ∪ Tilesi,j,K (3.5)

ProfitTAP =
I∑

i=1

J∑
j=1

Size[(Tilesi,j ∩Xi,j)]Priorityi/Sizei (3.6)

where:

• Tilesi,j,k is equivalent to the set of tiles of the kth CO if the TR associated with the

kth CO is the ith STR and the platform associated with the kth CO is one of the

selected platforms (to fulfill the ith STR depending on the strategy) of the jth SP.

Otherwise it is ∅.

• K is the number of COs in the scenario.

• Tilesi,j is the set of tiles of the ith STR observed by the jth SP’s selected platforms.

• I and J are respectively the number of STRs and SPs.

• Priorityi and Sizei are respectively the priority of the ith STR and its size (number

of tiles).

• Xi,j is ∅ if the ith STR is not assigned to the jth SP in the TAP, otherwise it is the

set of positive integers.

• ProfitTAP is the Profit of the TAP.
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Quality of Observation

The transition from MOHMA-CSO to MOHMA-CSO-HLIF is made possible thanks to

the addition of another objective, the QoO, in the assignment of STRs to SPs. Using the

result of Equation 3.7, which computes the QoO of each tile, Equation 3.8 will compute

the QoO of a specific TAP. These Equations use as parameters: the TAP, the list of COs,

the QoOs associated with COs and the list of tiles of COs.

QoOTilea,i,j = max
∀k∈N,0<k<K+1

(qOppkxa,kyi,j,k) (3.7)

QoOTAP =
I∑

i=1

[
J∑

j=1

Ai∑
a=ai

(QoOTilea,i,jzi,j)/Sizei] (3.8)

where:

• qOppk is the QoO associated with the kth CO. Note that here, FCOs (resulting from

the fusion of two COs with different types of sensors) are included in the list of COs.

• xa,k is 1 if the ath tile (of the scenario) is one of the tiles associated with the kth CO.

Otherwise it is 0.

• yi,j,k is 1 if the TR associated with the kth CO is the ith STR and the platform

associated with the kth CO is one of the selected platforms (to fulfill the ith STR

depending on the strategy) of the jth SP. Otherwise it is 0.

• K is the number of COs (including the FCOs) in the scenario.

• QoOTilea,i,j is the quality of the ath tile when assigning the ith STR to the jth SP.

• ai is the first tile (with the smallest id) of the ith STR.
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• Ai is the last tile (with the biggest id) of the ith STR.

• Sizei is the number of tiles of the ith STR.

• I and J are respectively the number of STRs and SPs.

• zi,j is 1 if the ith STR is assigned to the jth SP in the TAP . Otherwise it is 0.

• QoOTAP is the QoO of the TAP.

3.4 Experiments and Results

In order to demonstrate the operation and utility of MOHMA-CSO-HLIF, this section will

be divided into three parts. First, an analysis will be performed to underscore the added

value of the QoO. In the second part, a comparison between the three different variants of

MOHMA-CSO-HLIF will be made using their results after their executions on the same

scenario. Then, a comparison of the results of this framework will be made with those of

other frameworks with different architectures.

The last two scenarios used in this section are created using a meta-tool that generates

scenarios by using the number of platforms as a hyper-parameter. For all the cases where

CACM is the selected strategy, the minimum coverage, which is an end-user entry, was

set at 70%. The minimum coverage was experimentally set at that threshold since if it

is too high (i.e. 90%), the profit and QoO will be low since most SPs will not be able

to achieve that minimum coverage percentage for STRs. Moreover, on the other hand,

if the threshold is too low, then it will behave similarly to SACM since that constraint

will only need one or two platforms per SP to reach the minimum coverage. The use of

the meta-tool confirmed the relative impact of the number of platforms on the objectives.
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Without platforms, there is no possibility to collect imagery, the QoO will then be 0. On

the other hand, the more platforms there are in a scenario, the greater the probability to

obtain a good QoO which will ultimately depend on the sensors used and on the platforms’

coverage of STRs. Figure 3.2 shows the impact of the number of platforms on QoO.

Figure 3.2: Impact of the Number of Platforms on QoO.

3.4.1 Added Value of the QoO

One of the indicators to measure the impact of the objectives in an MOO is the indepen-

dence of the objectives. If all the objectives have a perfect dependence, their collective

value will be diminished since having one of them would be enough to estimate the value

of the others. On the other hand, if each objective is independent from the others, each of

them becomes even more important since replacing one by another will lose an important

indicator.

The PCC between each of the four objectives will therefore be examined. The emphasis

will be placed on the correlations between the QoO and each of the other objectives in

order to confirm or not that its inclusion as an objective in MOHMA-CSO-HLIF is not
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vain. In the case of a mission planning system, with the objectives like those proposed, it

would be almost abnormal not to have any dependence between the objectives: an increase

of the QoO or of the profit will necessarily have an effect on the RC. However, it is still

interesting to know if the value of PCC is the same regardless of the strategy.

The TAPs of the scenario described in Figure 3.3 were selected in order to measure the

PCCs between each of the objectives.

The PCCs of Table 3.4 confirm what was mentioned above. The majority of the objec-

tive values implemented often have fairly strong positive linear correlations between them.

However, the correlation coefficients are not always the same when switching TAPs from

one strategy to another. This is also confirmed between QoO and the other objectives.

This variability of the PCCs confirms that each of the objectives remains important since

it is not possible in each scenario or each strategy to exactly predict one of them from the

others. The PCCs of CACM are even more reassuring about this: the QoO is only fairly

linearly correlated with the profit and the LC. This is because the threshold in CACM

cancels out several TAPs that do not reach the minimum coverage required for each STR.

The importance of an objective also lies in its impact when the end user has to choose

between several solutions. Two TAPs of the scenario described in Figure 3.3, obtained

with AACM, were selected to confirm the importance of the QoO as an objective. Their

objective values are mentioned in Table 3.1. In the situation described by Table 3.1, without

the QoO as an objective, the end user might wonder whether it is justified to choose the

solution TAP 1 since its cost increases by 15% while profit only increases by 4%. With the

QoO, the user is led to reconsider their decision since the growth percentage of the QoO

is almost equivalent to the cost’s. In this case, the QoO is an indicator highlighting the

benefit of one solution against another for the end user.
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Figure 3.3: Snapshots of a scenario in Google Earth. In the top image, the three SPs

deploy their platforms to observe six TRs. The bottom image shows the execution of the

scenario several hours later.

Table 3.1: Comparison of Objective Values.

TAPs QoO Profit RC LC

TAP 1 3.27 0.76 7.94 x 106 0.0

TAP 2 2.89 0.73 6.90 x 106 0.0
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Figure 3.4: PCCs of Objectives.

3.4.2 MOHMA-CSO-HLIF Variants

Tables 3.2, 3.3 and Figure 3.5 describe a scenario in which there are 29 TRs submitted by

2 SPs and 7 agencies. Two types of TRs are in Table 3.2: STRs which are submitted by

the agencies and LTRs submitted by the SPs. Recall that the first goal of MOHMA-CSO-

HLIF is to optimize the assignment of STRs to SPs using the four objectives defined in

the previous section.

Table 3.4 gives the different results obtained after the execution of MOHMA-CSO-HLIF

using AACM, SACM and CACM strategies. For each of these variants, MOHMA-CSO-

HLIF presents non-dominant solutions in a Pareto Front (see Figure 3.6 for a sample Pareto

front where three of the four objective variables were selected). Then, in order to compare

the solutions, we chose, for each variant, the solution with the highest QoO.

Let us note that with these results, the highest profit and the highest quality are

obtained with AACM. This is very logical since with this strategy, each SP uses all its

platforms (even those covering exact same areas) in order to carry out the STRs entrusted
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Table 3.2: Scenario 2’s Requests.

Requester AOIs POIs

Agency-1 Somali land Liverpool Airport,

Hormuz, Quebec

City Airport,

Montreal

Airport Trudeau

Agency-2 Kosovo1, Gaden Mid, Atlantic Canada

Azov Ukraine

Agency-3 Hormozegan, Damerdjog Finlay Air Park,

T4, Artic North

Agency-4 North Alaska, Azoz Russia Base5,

FOL Yellow Knife

Agency-5 Op Box1, Hurmoze McArthur

River Mine Airport

Agency-6 North Arctic Circle, Coldbrook -

Caledonia , Annapolis

Agency-7 - T1, Base1

SP-1 Aegean to Marmara -

SP-4 - Halifax Airport
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Table 3.3: Scenario 2’s Sub-planners’ Assets.

Sub-planner Number of UAVs Number of Satellites

SP-1 6 2

SP-2 10 1

SP-3 0 0

SP-4 6 1

SP-5 4 1

SP-6 0 0

SP-7 2 1

SP-8 3 0

SP-9 3 0

Table 3.4: Scenario 2’s Results.

Strategy QoO Profit RC LC

AACM 55.56 12.94 7.99 x 107 1.89 x 107

SACM 54.63 12.17 3.74 x 107 1.79 x 107

CACM 50.63 12.62 1.58 x 107 2.29 x 106
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Figure 3.5: Snapshots of a TR and some platforms of Scenario 2.
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Figure 3.6: 3D Chart with the non-dominant solutions obtained by MOHMA-CSO-HLIF.
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to it. But this result is obtained at the expense of the RC and the LC. Let us also realize

that compared to SACM which uses a maximum of one platform per SP for each STR,

CACM gets the highest profit. Although this will not happen in all scenarios, in this

specific case, this is explained by the fact that with CACM no SP will be assigned with a

STR if it cannot cover at least 70% of its tiles. This forces MOHMA-CSO-HLIF to assign

STRs to SPs that can contribute with highest profit. CACM does it by only using the

necessary platforms per SP per STR to reach 70%, this is why the RC is low.

There are several metrics to analyze the quality of Pareto fronts including: the Hy-

perVolume (HV) and the Inverted Generational Distance (IGD). The HV measures the

volume of space dominated by the approximation set (the set of solutions provided by

MOHMA-CSO-HLIF) while the IGD measures the average of distances of solutions in the

reference set (estimated set of best solutions) to their closest solutions in the approximation

set. These values are normalized to an interval from 0 to 1 where 1 is the optimal value.

The author of [56] gives more details and explanations on those metrics and on how the

reference set is constructed.

Table 3.5 provides the median HV and the median IGD for each strategy. For the HV,

which takes into account almost all the Pareto front’s solutions to calculate the volume, it

is SACM which provides the best set for this scenario. This is explained by the fact that

each SACM’s solution constitutes a type of compromise since the number of platforms per

SP for each STR is limited to 1. Thus, even if a STR is assigned to X SPs to increase

the profit and the QoO, the RC will always be minimized since the number of platforms

used will be X (it would be greater than X for the other strategies). On the other hand

for IGD, which takes into account only one solution (the closest in the approximation set)

for each solution of the reference set, one notes that it is AACM which provides the best

set. This means that although several of AACM’s solutions favour certain objectives to
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Table 3.5: Scenario 2’s Pareto Front Quality.

Strategy HVMean IGDMean

AACM 0.21 0.20

SACM 0.28 0.15

CACM 0.21 0.09

the detriment of others, the fact remains that it also contains the best solutions since one

can play on the assignment of STRs to SPs to select solutions that create compromises.

These inputs turn out to be vital during the choice of which strategy to undertake.

3.4.3 Comparison of MOHMA-CSO-HLIF with MOHMA-CSO,

DCSO and MO-GATHER

Using the scenario described in Tables 3.6, 3.7 and Figure 3.7, the results of four different

configurations were analyzed and compared: MOHMA-CSO-HLIF (decentralized coor-

dinated architecture with HLIF), MOHMA-CSO (decentralized coordinated architecture

without HLIF), MO-GATHER [2] (centralized architecture) and Distributed Collection

Schedule Optimization (DCSO) [6] (Distributed Architecture). These frameworks were

chosen given that their outputs (CPs) use the same objectives (and metrics): Collection

Value (CV), Demand Satisfaction (DS) and Dollar Cost (DC) 2. The CV is proportional

to the coverage percentage of all the TRs in the scenario by taking in consideration their

priorities. The DS is the ratio of TRs whose tiles are completely covered. The DC is the

2For MOHMA-CSO-HLIF, the comparison will use the final CP as a result and not the TAP’s objective

values. The CP is also evaluated in terms of CV, DS, and DC.
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Table 3.6: Scenario 3’s Requests.

Requester AOIs POIs

Agency-1 Bridgewater, Lassqoray, Hormuz

Stanley

Agency-2 Yarmouth, Polygon, Quebec City

North Bearing Sea, Labrador Airport,

Ugolny Airport,

McArthur

River Mine Airport,

Yarmouth Airport,

Liverpool Airport,

Russia North1

cost of acquiring the different images as suggested by the solution.

Figure 3.7: Snapshots of some TRs of Scenario 3.
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Table 3.7: Scenario 3’s Sub-planners’ Assets.

Sub-planner Number of UAVs Number of Satellites

SP-2 1 0

SP-3 2 1

SP-4 2 0

SP-5 3 0

The results of Table 3.8 show that although the cost to complete a mission suggested by

MOHMA-CSO-HLIF (AACM) is high compared to other missions, the best CV is obtained

with this framework. It goes from a CV of 1.30 with MO-GATHER and MOHMA-CSO

(AACM) (second best solutions) to 1.33 with MOHMA-CSO-HLIF (AACM), an increase

of 2% with a much lower cost. This proves that when the different SPs are efficiently

used, the results obtained are better in some scenarios. In situations where the cost can

be a problem, one can always take into account the different strategies and their non-

dominant solutions (see Figure 3.6) that MOHMA-CSO-HLIF displays in order to choose

the most suitable one. By comparing the results of MOHMA-CSO and MOHMA-CSO-

HLIF, strategy by strategy, it is clear that the HLIF feature obtains better CVs with almost

equivalent costs. This is explained by the fact that pushing SPs to have a better QoO also

pushes them to better cover STRs. One can also notice that even if the CV just increased

by 2% from MOHMA-CSO (CACM) to MOHMA-CSO-HLIF (CACM), the DC increased

by 40%. This contrast between the increase of DC and that of CV can be explained by

the type of platforms used to obtain a better CV, satellites for example may cost more,

but also by the distance traveled by platforms to increase the coverage of TRs.
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Table 3.8: Scenario 3’s Results.

Optimizer CV DS DC

MO-GATHER 1.30 0.36 6.09 x 106

MOHMA-CSO (AACM) 1.30 0.36 3.77 x 106

MOHMA-CSO (SACM) 1.27 0.36 3.68 x 106

MOHMA-CSO (CACM) 1.17 0.36 4.87 x 105

MOHMA-CSO-HLIF (AACM) 1.33 0.36 3.51 x 106

MOHMA-CSO-HLIF (SACM) 1.29 0.36 3.68 x 106

MOHMA-CSO-HLIF (CACM) 1.19 0.36 6.90 x 105

DCSO-MB coop 0.76 0.21 7.42 x 105

DCSO-MB comp 0.74 0.21 8.83 x 105

DCSO-CC coop 0.68 0.21 4.40 x 104

DCSO-CC comp 0.76 0.21 1.59 x 106
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3.5 Chapter Summary

The objective of this chapter was to propose a CSO mission planning system whose par-

ticularity is to consider the quality of future images including fused ones.

The optimization process was done using MOO algorithms with four different objec-

tives:

• The first objective was to maximize profit to allow the optimizer to cover as many

STRs as possible.

• The RC’s goal was to estimate and reduce the cost of each solution presented to end

users.

• The LC aim was to reduce conflicts between the LTRs of the SP and those submitted

by the agencies.

• Finally, the objective of the QoO was to maximize the quality of acquired images.

In addition to this, MOHMA-CSO-HLIF has an added value by proposing different

strategies to maximize the objectives when assigning STRs to SPs. The strategy will

depend on how to maximize the objectives: whether we want to use a single platform per

SP, as many as possible platforms or the minimum number of platforms to reach a certain

coverage percentage and minimize the cost of the mission. The experiments detailed in the

previous section demonstrate indeed that choosing a specific strategy has an effect on the

proposed solutions.
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Chapter 4

High-Level Information Fusion in a

Mission Planning Context

The imagery collected during observation missions are subject to several analyses. Some are

used for real-time analysis by decision support systems while others are used by computer

models or humans [65–68]. These applications highlight the importance of collecting good

quality imagery. This chapter will propose image quality estimation methods. Several

articles on image quality estimation do not consider the benefit of sensor fusion during

mission planning. Therefore, the main innovation of this chapter will be the prediction of

the quality of fused images.

4.1 Problem Definition

Some mission planning articles [2, 3, 6, 7] and mission planning software use the notion of

COs to represent image acquisition opportunities. A CO encapsulates information such as
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the start time and end time of the observation, the zone being covered, the type of sensor

being used, the type of platform being used and other characteristics. See Figure 4.1 for

an illustration of COs. For zones being covered by more than one CO, there will be FCOs,

with each FCO encapsulating information of a pair of COs covering a common zone.

Figure 4.1: Illustration of UAVs’ Collection Opportunities (in white and pink).

Since a CO encapsulates information of an image acquisition opportunity, predicting

the quality of future images will then lead to predicting the quality of COs (including

FCOs).

4.2 Methodology

Assessing or predicting the quality of an image should take into consideration how the

mission planners would use those images. Depending on whether the image should be used

by humans or computer models and on the usage of the image, the quality should differ.

This work proposes three techniques to predict the quality of images based on two different

contexts. The first context is one where the images will be analyzed by humans in order

to perceive and extract as much information as possible. There are also contexts where

the images obtained will be only processed by computer models. This second context can

particularly be useful to automatically recognize objects in imagery.
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4.3 Proposed Solutions

4.3.1 Expert-Driven Approach

The objective of this method is to predict the Quantity of Information (QoI) that humans

would be able to detect in subsequently-acquired aerial images from EO and IR sensors.

This prediction will be based on the information encapsulated in the COs. The GIQE

will be used to predict the NIIRS, each rating level of which indeed corresponds to what

humans can detect in an image.

The authors of [14] proposed a risk-aware fusion effectiveness metric of hard and soft

data fusion in maritime domain awareness. Given that the main purpose of our work is also

to predict the quality of fused images, the concepts of the risk-aware fusion effectiveness

metric with the GIQE can be combined to predict the QoI of both fused and non-fused

images.

Equation 4.1 estimates the QoI in future images using the Information Benefit (IB),

the Information Confidence (IC) and the Fusion Possibility and Revelance (FPR).

QoI = IB.IC.FPR (4.1)

In Equation 4.2, IB measures the completeness of the amount of information an image

can contain given the type(s) of sensor(s) used.

IB = RV1.IB1 +RV2.IB2 (4.2)

Where:

• IBi will be 1 if the sensor I is used, and 0 otherwise.
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• RV: relevance value. RVi will be 0.5 considering that the EO and IR sensors are

complementary.

This formulation is justified considering that EO and IR sensors are complementary.

As stated in the introduction, a fusion of images from EO and IR sensors gives a better

situational picture within the AOI. Figure 4.2 illustrates this with images extracted from

[69].

As for IC, its value will be proportional to the NIIRS and computed using the GIQE

given a CO.

Equation 4.3 describes how to compute IC for cases where research has demonstrated

that if the fusion is well performed the fused images would give more information compared

to the individual images. Since the added value of the fused image depends on many factors,

it will be assumed that the fused image gives at least as much information as the best of

the two images. Another way of saying that is that the fused image should not be worse

than the best of the two images.

IC = Max(IC1, IC2) (4.3)

where:

• ICi = NIIRSi / 10. The NIIRS value is divided by 10 to keep ICi between 0 and 1.

The FPR will measure the utility of performing fusion taking into account the types of

platforms and the time separating the two COs. FPR will depend on the Fusion Revelance

(FR) and the Fusion Possibility (FP). FPR will be determined using propositional logic.

• FPR values: good, middle, bad.
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Figure 4.2: An AOI was captured within the IR spectrum and the EO spectrum. Notice

that in both of the top images some information is missing: the name of the store is clearly

readable in the EO image while it is not in the IR; the pedestrians that can be seen in

the IR image are hardly visible the EO image. The fused image contains almost all the

features of the original images.
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• FR values: relevant, moderately relevant, irrelevant.

• FP values: yes, no.

The propositions to determine FPR are the following:

• If there is just one CO (one image from one sensor, the system will consider that

same image as being fused), FPR will be good.

• If there is a FCO and (FR is irrelevant or FP is no), FPR will be bad.

• If there is a FCO and FR is moderately relevant and FP is yes, FPR will be middle.

• If there is a FCO and FR is relevant and FP is yes, FPR will be good.

The proposition to determine the FP is: FP is yes if the COs’ platforms are of the

same type and their COs have a common covered zone. Otherwise, it’s no. This will have

the role of avoiding fusion of images obtained by platforms of different types (e.g. fusion

of images obtained by satellites and ground vehicles).

The propositions for FR are:

• FR is relevant if the COs’ time intervals are intersecting.

• FR is moderately relevant if the COs’ time intervals are not intersecting and their

start times differ by less than one hour.

• FR is irrelevant otherwise.

If FPR is good, its value will be 1, middle: 0.5 and bad: 0.1.
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4.3.2 Distributed Data Fusion-Based Approach

Among the various observation missions, there are some whose main goal is to automat-

ically analyze the objects on collected imagery. This type of analysis is often done by

computer models and can be grouped into four types: Detection, Recognition, Classifica-

tion or Identification (DRCI) of targets. The detection of targets consists of assessing if

there is an object or not in the imagery. On the other hand the recognition of targets

consists of assessing which type of object is it (is it a vessel, a building, a computer, etc.).

Target classification comes down to selecting the class or category to which the object be-

longs to. If the goal is to classify vessels, the system should choose whether it is a merchant,

a cargo, etc. Finally, target identification consists of identifying the specific object as an

individual different from others. The identification of humans could consist of stating if

the human in the imagery is Person A, Person B, etc.

The objective of the Distributed Data Fusion (DDF) method will be to predict how

accurate the results of DRCI would be given a mission plan. Performing such an operation

is important since it will aim to guide the mission planners on the best way to carry out

the mission. The accuracy of the detection will not be the same if a satellite is chosen

instead of a ground vehicle; or if the flying altitude of an UAV is 400 meters rather than

1400 meters. By prediction of quality, we mean predicting of the ability of our models to

detect, recognize, classify or identify targets in a subsequently-acquired imagery given a

CO.

In order to predict the quality, the proposed method will be divided into two main

stages: (1) Training and Evaluation Stage, (2) Real-Time Prediction of Quality Stage. The

training and evaluation stage will consist of training models to predict the quality. This

stage can be compared to a process when the model learns how the quality (capacity) of
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DRCI changes according to the different categories of COs whereas the real-time prediction

of quality corresponds to a process when the quality of each CO is determined according

to what the model has learned in the previous stage for a better planning of the mission.

The Training and Evaluation Stage will be done by using datasets (each corresponding

to a specific category of COs) where each instance of the dataset will have an image and a

label to signify the presence or not of objects, the type of object, the class of the object or

the identity of the object in the image. The label of each instance will be the ground truth

to be predicted by the model. For each categorical model, an accuracy value corresponding

to the ability of the model to correctly predict the label of the images during the evaluation

will be obtained. In the Real-Time Prediction of Quality Stage, the quality of a CO will

be the accuracy value of the category to which it pertains.

Figures 4.3 and 4.4 respectively describe how the Training and Evaluation Stage for

non-fused and fused imagery is carried out. Figure 4.5 shows how the quality of the COs

is determined according to their categories during the Real-Time Prediction of Quality

Stage.

Figure 4.3 describes how different categories of datasets are used to train models to

detect, recognize, classify or identify objects in EO and IR imagery. This process is divided

into different steps. Firstly, if the main dataset is composed of several images acquired

from different sources and with varying characteristics, it should be divided into several

categories of datasets, for each category there should be a dataset for each type of sensors.

Several criteria can be used to divide the datasets into different categories, in particular

the type of vehicle used to acquire these images, on the sole condition of having a sufficient

number of images for each dataset. Secondly, each new dataset will be used to train and

evaluate a CNN. The last step is to bring out the evaluation accuracy of each CNN. Thus

for each category and each type of sensor, there will be an evaluation accuracy as a result
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of the process.

Figure 4.3: Different categories of datasets are used to train models to detect, recognize,

classify or identify objects in EO and IR imagery.

The purpose of the process described in Figure 4.4 is to estimate the DRCI rate of fused

images. Given this, it is required to have pairs of EO and IR images for this process. Then,

similarly to the description given for Figure 4.3, the dataset should be divided into different

categories. For each category, there will be a dataset with pairs of EO and IR images. Each

new dataset should then also be used to train and evaluate three CNNs according to the

three fusion methods (more details on these CNNs are given in the following texts and

Figure 4.6). For each category, the evaluation accuracies of the three types of fusions will
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thus be obtained.

Figure 4.4: Models are trained to detect, recognize, classify or identify using three fusion

methods.

Figure 4.5 describes how to determine the DRCI rate of a CO during the planning of

missions. The DRCI rate will be determined according to the categories used during the

Training and Evaluation Stage. If the categories were simply created based on the type of

vehicle used, the CO’s category will also be determined based on that. Then depending on

whether it is an FCO or a CO obtained with an EO or IR sensor, the DRCI will be equal

to the corresponding evaluation accuracy according to the results obtained in the process

indicated by Figure 4.3 or Figure 4.4.
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Figure 4.5: Prediction of DRCI ability given a CO.

Notice that for non-fused imagery, two accuracy values are obtained for the two types of

sensors used in this work. On the other hand, for fused imagery, the three fusion methods

described in Figure 4.6 (with images extracted from 1 and [70]) are used. Each of these

three methods will have a fusion accuracy among which the best one will be used for the

real-time prediction of quality stage.

The pixel-level fusion will use DL techniques described in [52]. The fused imagery

obtained from the fusion of pairs of EO and IR imagery will be used as inputs of CNNs.

The architecture of the feature-level fusion CNNs consists of two steps: (1) The extrac-

tion of features through features maps. Subsequently, these features are summed up (using

weighting for EO and IR) to fuse features extracted from pairs of EO and IR images. In

order to ensure that the best values were chosen for weighting, an experimental approach

was chosen. The latter consists of using different weight values ranging from 0 to 1 and 1

to 0 respectively for the features extracted from EO and IR images. Thus, by performing

1https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-

networks-the-eli5-way-3bd2b1164a53
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several experiments with pairs of weights, the analysis would allow to choose according to

the results, values leading to better results for the fusion. (2) The results of these sum-

mations will be entries of the fully connected network to obtain the output of each pair of

images.

Two CNNs will be used for decision-level fusion, one for EO images and another one for

IR images. The first step of decision-level fusion will consist of training both CNNs, after

which predictions of those CNNs on each pair of images would be inferred. Subsequently,

these predictions (pairs of confidence levels) serve as entry points of an Ensemble classifier.

The latter also uses the weighted sum of the predictions to determine the output of each

pair of images.

4.3.3 Neural Network - Based Approach

The last metric that this chapter proposes is the Quality of Perception (QoP). Some ob-

servation missions may aim to provide end users with images whose value is measured

according to human perception. Thus, in this section, a method will be proposed to pre-

dict the QoP of images, including subsequently fused images, by using COs’ attributes.

This method uses an ANN that will be trained, evaluated and then used to infer the

predictions. Faced with the lack of dataset allowing to perform such an accurate model

training and inference, the following steps are proposed to form a dataset:

• Select datasets with images from observation or surveillance missions. These datasets

must also contain information on the means and contexts for obtaining those images.

• Fuse (pixel-level fusion) pairs of images if any.
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Figure 4.6: Classifications of vessels done with the three levels of fusion.
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• Determine the quality of each image. Since the PIQE method, used to determine

the quality of the images, gives values between 0 and 100 (the lower the values, the

better the perception), the following formula was used to keep the quality between 0

and 1 (with 1 being the higher quality): QoP = 1 - PIQE(Image)/100.

• The dataset will therefore be formed of attributes characterizing the context and the

means of obtaining the image, as well as the QoP of the image.

4.4 Experiments and Results

4.4.1 Expert-Driven Approach

Sample COs of UAVs have been selected and will be used to validate the proposed method.

This experiment will allow us to understand what are the key factors of the QoI. [46] will

be used to compute the NIIRS using the GIQE. Figure 4.7 lists the attributes of sample

COs and the results obtained for their QoIs.

Figure 4.7: Sample QoI Values of COs.

The QoIs of all these COs are computed with the same values excepted for the attributes

in Figure 4.7. The lines with the best QoI are lines 4, 6 and 8. They are all lines with

fusions of COs. In contrast, line 1, although performing a fusion, has a low QoI value given
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the huge time difference between the two COs. The QoI of line 2 is lower than the one of

line 7 because of its fairly high altitude.

In the case of fusion, a great time difference could bias the relevance of the information

that will be contained in the fused image. As for the altitude, these results confirm the

observation of [44] which affirmed that the more one UAV rises in altitude, the less the

quality will be. These results also show that fusing the EO and IR images, if possible and

pertinent, increases the QoI.

4.4.2 DDF-Driven Approach

Consider this real-world scenario: the maritime surveillance organization of a country X

wants to gather statistics on the types of vessels navigating its waters. They plan to send

a dozen coast guard vessels, equipped with EO and IR sensors, to the sea in order to

identify the different types of vessels. They would like the tracking and classification to be

done automatically in order to minimize labor. They would also like to get an idea of the

classifier’s performance given their mission plan and the sensors they will be using.

The task will consist of classifying vessels on EO, IR and fused images. The images

of [70] will be used to train, evaluate models and fusion methods. The dataset described

in [70] contains more than 1000 pairs of EO and IR imagery of vessels labeled with their

classes (merchant, sailing, etc). The imagery of this dataset were obtained using vessels

equipped with sensors. Given the small amount of images in the dataset, K-Fold Cross

Validation was used wit k = 10.

[60] was selected as CNN architecture. Still considering the size of the dataset, a

pre-trained version of [60] was used to achieve satisfactory results. The pre-trained version

of [60] was trained with ImageNet, a dataset containing 14 million of images [71].
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Table 4.1: Mean Accuracies after 10 Experiments.

Model Number Fusion Method Mean Evaluation

Accuracy

Model 1 No Fusion 0.875

EO Images Only

Model 2 No Fusion 0.635

IR Images Only

Model 3 [52] Fusion 0.801

Model

Model 4 Proposed 0.871

Feature Level

Fusion

Model 5 Proposed 0.884

Decision Level

Fusion

The proposed fusion methods will be compared to [52]. Table 4.1 lists the results

of classification of EO, IR and of the three aforementioned fusion methods. In order to

confirm statistical significance of the results, they are presented in Table 4.1 as an average

of the 10 experiments that were carried out.

The results of Table 4.1 not only show that it is possible to obtain an accuracy of almost

90% but they also highlight the performance of the accuracy through fusion methods,

particularly the decision-level fusion proposed in this work.
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4.4.3 Neural Network - Based Approach

The efficiency of this method will be proven by evaluating the results of ANN models

trained to predict the QoP by taking into account some characteristics of COs.

Figure 4.8 shows some images used to form the dataset using the steps described in

Section 4.3.3. The selected datasets have specificities that will be used in this experiment.

First, [72, 73] are datasets with EO and IR imagery respectively obtained with ground

vehicles and UAVs. [70]’s dataset, described in the previous section, whose images are

obtained using vessels also contains information on the period of the day during which

each image was obtained as well as the type of sensor used. This will be an added value

given the complementary of EO and IR imagery during day and night. In addition, the

images from [74] are obtained with satellites equipped with EO sensors. Apart from that,

for each image used, the season in which the image was obtained is mentioned.

Table 4.2 shows sample instances of the dataset formed using data from [70, 72–74]

according to the steps indicated in 4.3.3. The ’unknown’ values have been replaced by the

mode (for the same feature) of the samples with closest qualities [75].

The results in Table 4.3 show that the QoP can be predicted using a trained model

and COs’ attributes. These results also provide information on the efficiency of models

with hidden layers compared to linear regression. Figure 4.9 illustrate how the predictions

of the experimented models approach the ground truth values. As one can notice, for all

the three models, the predicted values are close to the ground truth ones. This not only

confirms the results in Table 4.3 but also highlights the efficiency of the method.
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Figure 4.8: Images whose qualities and characteristics were used to experiment with some

models. The images of the first line are those obtained with UAVs [72], those of the second

line with ground vehicles [73], those of the third one with vessels [70] while those of the

last one are obtained with satellites [74]. Except the last row, where all the images are

obtained with EO sensors, the images of the first column are obtained with EO sensors,

the second one with IR sensors and the last column contains their fusions.
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Table 4.2: Platform, Time, Season, Sensor of the Synthesized Dataset.

Vehicle Day or Season Sensor Fusion QoP

Type Night Type or not

UAV unknown unknown IR No 0.72362

Fusion

Satellite unknown fall EO No 0.68756

Fusion

Vessel day unknown EO IR Fusion 0.78098

Table 4.3: Testing Mean Squarred Error.

Model Number ANN’s Architecture Mean Squarred

Error

Model 1 Linear Regression 0.0185

Model 2 2 hidden layers of 10 and 0.0152

5 neurons

Model 3 2 hidden layers of 150 0.0146

neurons
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Figure 4.9: Prediction values of models 1, 2 & 3 and the associated ground truth values.
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4.5 Chapter Summary

The objective of this chapter was to propose different methods in order to estimate the

quality of the images subsequently acquired given a surveillance mission plan. The differ-

ence with several existing methods is the emphasis on sensor fusion.

It was first shown that depending on the context and the objective of the missions, the

estimation of the quality of the images would differ. Thus, three methods, each with a

specific metric, have been proposed to predict the quality of images in different contexts:

• The QoI is a metric used to measure the amount of information that the future image

will contain.

• The DRCI rate is a metric used to predict the ability of models to detect, recognize,

classify or identify objects in future images.

• Finally, the role of QoP is to predict the quality of perception of future images given

their COs.
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Chapter 5

Future Work and Conclusion

This chapter concludes this thesis by giving some perspectives for future work in this

domain and summarizing the contributions of the conducted research.

5.1 Future Work

The observation missions optimizer proposed in chapter 3 is a CSO which receives as inputs

the STRs, the planned trajectories of the SPs and their LTRs in order to assign STRs to

the SPs . Having to submit platform planned trajectories as inputs to the system could

be a disadvantage in cases where SPs also want to know what would be the best way to

observe their LTRs. So as a perspective for the future, it would be interesting to see how

the integration of a path planner could make the optimizer more usable. The role of the

path planner will be to suggest trajectories of vehicles given their starting point and their

main tasks locations, which will eventually be the LTRs of their SPs.

As for the prediction of the quality of images, the existence of a version of the GIQE
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taking into account the fused images could improve this work. Still regarding the GIQE,

the NIIRS values were designed to predict the quality of aerial images (captured by UAVs

or aircraft), it would also be interesting to extend it to other types of platforms or simply

generalize it.

Two of the proposed image quality prediction methods use ML to predict image quality.

These methods were faced with the lack of suitable datasets to predict the quality for

different categories of images and the lack of datasets containing as many attributes as

desired. [76, 77] highlight these problems and suggest solutions that can lead to datasets

with synthetic images.

5.2 Conclusion

The first proposal of this thesis was an observation missions’ optimization framework that

allows platforms to carry out the tasks of more than one organization in order to possibly

reduce the individual cost of missions. The proposed framework brings two main innova-

tions. It takes into account the quality of the images to be acquired and three strategies

during optimization. The strategy depends on how to maximize the objectives: whether

we want to use a single platform per SP, as many as possible platforms or the minimum

number of platforms to reach a certain coverage percentage and minimize the cost of the

mission. The experiments have indeed demonstrated that choosing a specific strategy has

an effect on the proposed solutions. These experiments have also demonstrated that hav-

ing the QoO as an objective can increase the CV while keeping DC low. This has been

proven with two of the three strategies: from MOHMA-CSO (AACM) to MOHMA-CSO-

HLIF (AACM), the CV went from 1.30 to 1.33 while the DC went from 3.77 to 3.51; with

SACM, the CV went from 1.27 to 1.29 for the same cost.
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The second major proposition was the prediction of image quality taking into account

different contexts. Different methods were proposed to take into account different mission

objectives and contexts. The first context was a one where the goal of the mission was to

obtain images containing as much information as possible. The second was to take into

account the use of models to automatically categorize the objects on the images. One of the

innovations of these methods is to take into account the potentiality of fused images in the

prediction of qualities. The effectiveness of each of these methods has been demonstrated.

The results obtained in the QoI experiments have demonstrated their relevance by aligning

with some validations of other research cited in Chapter 4: fused images have better QoI,

the higher the altitude of an UAV, the worse its QoI will be. As for the DRCI rate,

thanks to the methods used, the accuracy rates of the models were around 90%. Another

observation to note: the proposed decision-level fusion method obtained the best accuracy.

The models trained to predict the QoP, despite the challenges mentioned in the previous

section, gave mean squared errors of less than 2%.
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APPENDIX

The purpose of this appendix is to provide more information on the general architecture of

CNNs. As mentioned in Chapter 2, CNNs are composed of two main stages: the feature

extraction stage and the fully connected layers stage.

CNNs are often used for classifying objects on images. They are based on the recog-

nition of certain features in order to recognize the type of objects on an image. These

features can be lines or different shapes whose detection on an image helps CNNs to rec-

ognize objects.

Figure 1, extracted from 1 illustrates how a feature learned (or being learned), in a

feature map, is dragged over the whole image in order to detect all the areas where that

line could be found. The two-dimensional array described as destination will then be

considered as the ”new image”, a pooled feature map, through which other feature maps

will be dragged to detect shapes and lines.

Figure 2, from the same source as Figure 1, describes a more global architecture of

CNNs. The feature extraction stage is a succession of feature maps (filters) and pooled

feature maps (results of convolutional operations between an image and feature maps).

1https://towardsdatascience.com/simple-introduction-to-convolutional-neural-

networks-cdf8d3077bac
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Figure 1: Convolutional operation between a filter and an input image.

At the end of the extraction of features, the last pooled feature maps will be flattened to

become inputs of an ANN, composed with fully connected layers. The training of a CNN

consists of learning the weights of the fully connected layers and the best filters to use for

feature extraction. More details on CNNs can be found in [58].

Figure 2: General architecture of a CNN.
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K., Metsämäki, S., Pinnock, S.: ”Snow Cover Monitoring by Synergistic Use of

Sentinel-3 Slstr and Sentinel-L Sar Data,” IGARSS 2018 - 2018 IEEE International

Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018, pp. 8727-8730,

doi: 10.1109/IGARSS.2018.8518203.

[21] Ban, Y., Webber, L., Gamba, P., Paganini, M.: ”EO4Urban: Sentinel-1A SAR

and Sentinel-2A MSI data for global urban services,” 2017 Joint Urban Re-

mote Sensing Event (JURSE), Dubai, United Arab Emirates, 2017, pp. 1-4, doi:

10.1109/JURSE.2017.7924550.

[22] Benedetti, A., Picchiani, M., Del Frate, F.: ”Sentinel-1 and Sentinel-2 Data Fu-

sion for Urban Change Detection,” IGARSS 2018 - 2018 IEEE International Geo-

science and Remote Sensing Symposium, Valencia, Spain, 2018, pp. 1962-1965, doi:

10.1109/IGARSS.2018.8517586.

[23] Demirtas, U., Turk, Y., Ozer, M.: ”The Role Of Intelligence, Surveillance, And Re-

connaissance In Disaster And Public Health Emergency,” Prehospital and Disaster

Medicine, 29(5), 549-550, 2014, doi:10.1017/S1049023X14001009

[24] Coman, C., Veum, K,: ”Automation within the ISR Collection Management domain,”

2014, 10th International Conference on Communications (COMM), Bucharest, Roma-

nia, 2014, pp. 1-4, doi: 10.1109/ICComm.2014.6866721.

[25] Bakdash, J. Z., Pizzocaro, D., Precee, A.: ”Human Factors in Intelligence, Surveil-

lance, and Reconnaissance: Gaps for Soldiers and Technology Recommendations,”

MILCOM 2013 - 2013 IEEE Military Communications Conference, San Diego, CA,

USA, 2013, pp. 1900-1905, doi: 10.1109/MILCOM.2013.320.

90



[26] Tucker, J. D., Stanfill, S. R.: ”Context Exploitation in Intelligence, Surveil-

lance, and Reconnaissance for Detection Algorithms,” 2015 IEEE Winter Applica-

tions and Computer Vision Workshops, Waikoloa, HI, USA, 2015, pp. 13-20, doi:

10.1109/WACVW.2015.15.

[27] Veverka, J. P., Campbell, M. E.: ”Operator decision modeling for intelligence, surveil-

lance and reconnaissance type missions,” 2005 IEEE International Conference on

Systems, Man and Cybernetics, Waikoloa, HI, USA, 2005, pp. 754-759 Vol. 1, doi:

10.1109/ICSMC.2005.1571237.

[28] Tipaldi, M., Glielmo, L.: ”A Survey on Model-Based Mission Planning and Execution

for Autonomous Spacecraft,” in IEEE Systems Journal, vol. 12, no. 4, pp. 3893-3905,

Dec. 2018, doi: 10.1109/JSYST.2017.2720682.

[29] Allard, Y., Shahbazian, E.: “Unmanned Underwater Vehicle (UUV) Information

Study,” 2014.

[30] Mart́ınez, N., Mart́ınez-Ortega, J.-F., Castillejo, P., Mart́ınez, V.: ”Survey of Mis-

sion Planning and Management Architectures for Underwater Cooperative Robotics

Operations,” Appl. Sci. 2020, 10, 1086, https://doi.org/10.3390/app10031086

[31] Yick, J., Mukherjee, B., Ghosal, D.: “Wireless sensor network survey,” Computer

networks, vol. 52, no. 12, pp. 2292–2330, 2008

[32] Primeau, N., Falcon, R., Abielmona, R., Groza, V., Petriu, E.: ”Improving task allo-

cation in risk-aware robotic sensor networks via auction protocol selection,” 2016 IEEE

20th Jubilee International Conference on Intelligent Engineering Systems (INES), Bu-

dapest, Hungary, 2016, pp. 21-26, doi: 10.1109/INES.2016.7555136.

91



[33] Mccausland, J., Abielmona, R., Falcon, R., Cretu, A., Petriu, E.: ”On the Role

of Multi-Objective Optimization in Risk Mitigation for Critical Infrastructures with

Robotic Sensor Networks,” GECCO 2014 - Companion Publication of the 2014 Genetic

and Evolutionary Computation Conference. 10.1145/2598394.2605436.

[34] Arslanalp, S., Marini, M., Tumbarello, P.: ”Big Data on Vessel Traffic: Nowcasting

Trade Flows in Real Time,” IMF Working Paper, 2019.

[35] Plachkov, A., Abielmona, R., Harb, M., Falcon, R., Inkpen, D., Groza, V., Petriu,

E.: ”Automatic Course of Action Generation using Soft Data for Maritime Domain

Awareness,” 2016, 10.1145/2908961.2931678.

[36] Kumar, V.: ”Algorithms for Constraint-Satisfaction Problems: A Survey,” AI Maga-

zine, 13(1), 32, 1992, https://doi.org/10.1609/aimag.v13i1.976

[37] Mitrovic-Minic, S., Thomson, D., Berger, J., Secker, J.: ”Collection Planning and

Scheduling for Multiple Heterogeneous Satellite Missions: Survey, Optimization Prob-

lem, and Mathematical Programming Formulation,” Fasano G., Pintér J. (eds) Mod-

eling and Optimization in Space Engineering, Springer Optimization and Its Applica-

tions, vol 144. Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-10501-3 11

[38] Salgueiro Romero, L., Marcello, J., Vilaplana, V.: ”Super-Resolution of Sentinel-

2 Imagery Using Generative Adversarial Networks,” Remote Sens. 2020, 12, 2424,

https://doi.org/10.3390/rs12152424

[39] Mattia, F., Balenzano, A., Satalino, G., Lovergine, F., Peng, J., Wegmuller, U., Car-

tus, O., Davidson, M. W. J., Kim, S., Johnson, J., Walker, J., Wu, X, Pauwels, V.R.N,

McNairn, H., Caldwell, T., Cosh, M., Jackson, T.: ”Sentinel-1 & Sentinel-2 for SOIL

92



Moisture Retrieval at Field Scale,” IGARSS 2018 - 2018 IEEE International Geo-

science and Remote Sensing Symposium, Valencia, Spain, 2018, pp. 6143-6146, doi:

10.1109/IGARSS.2018.8518170.

[40] Kim, S., Song, W., Kim, S.: “Double Weight-Based SAR and Infrared Sensor Fusion

for Automatic Ground Target Recognition with Deep Learning. Remote Sensing,”

MDPI (2018), doi: 10.72.10.3390/rs10010072.

[41] Mittal, A., Moorthy, A. K., Bovik, A. C.: ”No-Reference Image Quality Assessment

in the Spatial Domain,” IEEE Transactions on Image Processing. Vol. 21, Number 12,

December 2012, pp. 4695–4708.

[42] Mittal, A., Soundararajan, R., Bovik, A. C, ”Making a Completely Blind Image Qual-

ity Analyzer,” IEEE Signal Processing Letters. Vol. 22, Number 3, March 2013, pp.

209–212

[43] Venkatanath, N., Praneeth, D., Chandrasekhar, Bh. M., Channappayya, S.S,

Medasani, S. S.: ”Blind Image Quality Evaluation Using Perception Based Features,”

In Proceedings of the 21st National Conference on Communications (NCC). Piscat-

away, NJ: IEEE, 2015.

[44] Jingbo, B., Sun, Y., Chen, L., Feng, Y., Liu, J.: ”EO Sensor Planning

for UAV Engineering Reconnaissance Based on NIIRS and GIQE,” Mathemat-

ical Problems in Engineering, vol. 2018, Article ID 6837014, 9 pages, 2018.

https://doi.org/10.1155/2018/6837014

[45] Wong, S., Rahim, J-Z.: ”Predicting image quality of surveillance sensors,” Defence

Research and Development Canada, 2014.

93



[46] LeMaster, D. A., Michael T. E. ”pyBSM: A Python package for modeling imaging

systems,” Long-Range Imaging II. Vol. 10204. International Society for Optics and

Photonics, 2017.

[47] Wu, D., Yang, A., Zhu, L., Zhang, C.: “Survey of Multi-sensor Image Fusion,” Life

System Modeling and Simulation. ICSEE 2014, LSMS (2014). Communications in

Computer and Information Science (2014), doi: 10.1007/978-3-662-45283-7 37.

[48] Clerici, N., Calderón, C., Posada, J.: ”Fusion of Sentinel-1A and Sentinel-2A data for

land cover mapping: a case study in the lower Magdalena region, Colombia,” Journal

of Maps, 13:2, 718-726, 2017, DOI: 10.1080/17445647.2017.1372316

[49] Hedayati, P., Bargiel, D.: ”Fusion of Sentinel-1 and Sentinel-2 Images for Classifica-

tion of Agricultural Areas Using a Novel Classification Approach,” IGARSS 2018 -

2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain,

2018, pp. 6643-6646, doi: 10.1109/IGARSS.2018.8518327.

[50] Yu, L., Xun, C., Zengfu, W., Jane W. Z., Rabab K. W., Xuesong W.: ”Deep learn-

ing for pixel-level image fusion: Recent advances and future prospects,” Information

Fusion, Volume 42, 2018.

[51] Zhou, Z., Wang, B., Li, S., Dong, M.: ”Perceptual fusion of infrared and visible im-

ages through a hybrid multi-scale decomposition with Gaussian and bilateral filters,”

Information Fusion, 2015, 10.1016/j.inffus.2015.11.003.

[52] Li, H., Xiao-Jun W., and Josef K.: ”Infrared and visible image fusion using a deep

learning framework,” 24th international conference on pattern recognition (ICPR).

IEEE, 2018.

94



[53] JDL Data Fusion Group

[54] Steinberg, A., Bowman, C., White, F.: ”Revisions to the JDL data fusion model”,

Proc. SPIE 3719, Sensor Fusion: Architectures, Algorithms, and Applications III,

1999, https://doi.org/10.1117/12.341367
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