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Abstract— The assessment and prognosis of pipe life in
water distribution networks has great potential in optimizing
asset investment and protecting water resources. In the state-
of-the-art, most of the research work about pipe life assessment
focuses on revealing associated variables and regulations for the
occurrence of pipe failures, which has scientific value but still
far from assisting water industry directly in real operation. In
order to provide a pipe life assessment and prognosis approach
with practical significance, this paper presents: 1) a comparable
approach to quantify impact of different factors (mainly age,
material and diameter) on the occurrence of pipe failures
using statistical reliability model based on cumulative Weibull
distribution, survival model based on neural networks and evo-
lutionary polynomial regression model for pipe deterioration;
2) a prognosis method for the remaining useful life of pipes
using previous algorithms; 3) a maintenance and renewal plan
of the network to assist daily operation of water operators by
means of a checklist including risk levels (low, medium, high)
under different factor ranges. The Barcelona water distribution
network is used as a real life case study, demonstrating how
the proposed approaches can be used.

I. INTRODUCTION

Pipe life assessment is a complex task which requires
knowledge of the influencing variables and their association
with occurrence of the pipe failures. As presented by [1],
there are various investigations which collect state-of-the-art
approaches on this problem from the scientific perspective
and have been classified into three categories: reliability
models, degradation models and data-driven statistical mod-
els. The reliability models are usually developed through
considering a probability model of pipe failure that allows
determining the reliability of the pipelines, as defined in [2].
The probability model depends on a parameterized function
and usually considers some important factors (for instance:
material, age, etc.) into the function. Different reliability
models can be obtained from [3], [4] and [5], among others.

The degradation models attempt to characterize the aging
process of the pipes based on their physical principles. [6]
provides a comprehensive review of the physical processes of
pipe degradation and classifies the models according to the
following three dimensions: the smallest described element,
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the type of events and the modelled process. The smallest
element dimension relates to whether the object of study
is a pipe (pipe model) or a network of pipes (network
models). Regarding the type of events, the occurrence of
the failures (failure model) or the remaining useful life
(RUL) is characterized, while the model tries to represent
different physical degradation processes. Any combination
of these three dimensions is possible, although from the
available literature, only a part of these combinations have
been considered. A review of statistical methods based
on experimental data has been presented in [7]. In [8],
evolutionary polynomial regression models are proposed to
characterize the dependence of the failure rate with different
feature variables (age, diameter, total length, number of pipes
and failures). In [9], ANFIS-type 1 neural networks are
proposed to fit an experimental regression model that relates
the failure rate with diameter, age, pipe length, installation
depth and pipe pressure. The results obtained with the neural
network are compared with a non-linear regression, as well
as with different reliability models that consider different
probability distributions (Poisson and Khomsi formula, etc.).
According to the results presented, the method based on
neural networks works better than the rest of the methods
considered. In most of these research works, the associated
variables and the occurrence law of pipe failures in the WDN
have been gaining more and more scientific significance [10].
However, there are still obstacles to assist the water operators
in decision making on their daily management. Therefore,
proposed approaches to prognosis pipe life in WDN from
both scientific and practical perspective are still needed.

The main contribution of this paper includes: 1) Propose
a statistical reliability model, a survival model to quantify
comparably impact of different features on the occurrence of
the pipe failures and an evolutionary polynomial regression
(EPR) model for pipe deterioration. After considering the
state-of-the-art and correlation analysis, age, material and
diameter are selected as the most influencing variables to
be used to characterize the pipe reliability. To describe
probability distribution of the reliability model, cumulative
Weibull distribution (CDF) is used. Besides, the survival
model consists of Cox nonlinear proportional hazards regres-
sion with neural networks (CoxMLP). Eventually, the EPR
is a hybrid regression method. 2) Pipe life evolution is used
for prognosing the remaining useful life of pipes using the
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proposed methods. 3) In order to assist water manager on
their daily operation, a maintenance and renewal plan in form
of easy-reading checklist is generated which includes risk
levels (low, medium, high) under different physical factor
ranges. All of these approaches have been demonstrated
using the Barcelona WDN.

The rest of this paper is organized as follows: In Section
2, the case study is described firstly to prepare the valid data
set. Besides, a preliminary analysis is also provided in order
to achieve importance of different influencing factors through
a pairwise correlation. In Section 3, the proposed approaches
including the reliability model based on CDF, the survival
model based on CoxMLP, and the EPR model are presented.
After that, Section 4 includes the application results of the
proposed approaches using the Barcelona WDN. Finally, in
Section 5, a conclusion and future work are presented.

II. CASE STUDY

A. Description of the available data

The case study is based on the Barcelona WDN, where
historical data measurements for the pipe facilities are pro-
vided comprising 15 concerned parameters in a total number
of 153285 records. The facilities were installed from the year
of 1900 to 2017, while the recorded failures were recorded
from 2002 to 2015. A valid data set is firstly extracted from
the raw measurements following three cases: 1) The raw data
includes all kinds of operations over a pipe, we only focus on
the records corresponding to pipe failures; 2) We deleted the
records which are lack of data. For instance, some records
have ’NaN’ values for pressure measurements; 3) We filter
only for the information we needed. For example, there were
some features related to the operation company which are not
relevant to our problem.

Once the data was filtered, we compute the historical
failure rate for each pipe. This is important because models
will be developed to learn this rate from parameters of the
pipe. There are different ways of defining failure rate as
discussed in [9]. In our case study, it is defined as:

R =
number of failures

pipe′s age · pipe′s length
(1)

In other references, failure rate is computed using the
kilometer where the leak appears. In our case study, we have
considered this option as we concentrate on failures for each
pipe. Note that the same pipe may have had more than one
failure. Besides, the age has been considered as the difference
between the Installation Year of the pipe and the Failure Year
when the break was detected and the pipe was repaired.

Finally, we have worked with a data set with useful
information of dimensions 153285 × 8, where the structure
of this data set is described in the Table I, where the Case
Study column represents the input variables in our case, the

columns of Reference No.1 and Reference No.2 represent
input variables considered in [9] and [11], respectively.

Case Study Reference No.1 Reference No.2
Age Age NOPB

Material Diameter Material
Diameter Length Diameter
Length Pressure Length
Usage Height Traffic

Pressure
Temperature

Pressure floor’s code
TABLE I

INPUT VARIABLES ON DIFFERENT CASES.

With regards to Table I, Pressure floor’s code, is a
codification of the zone where the pipe is installed. It is very
common in WDNs to divide the system into segments based
on the pressure of the installation of the area. This factor can
also be called as height (or head) in other papers like [9].
Another factor that must be explained is Number of Previous
Breaks (NOPB). This input shows a different way of working
with the data. In our case, we have grouped all the breaks
in a pipe together. However, it could also be interesting not
to do so and work with NOPB because once the pipe failure
is repaired, the pipe has a different resistance than before.
Furthermore, it is also important to explain that Temperature
has been extracted from the historical meteorological open
database of Barcelona local government. So, even this work
tries to give a basic pattern to define a predictive model over
WDN, the truth is that it might have some modifications
depending on the initial considerations over the problem.

B. Preliminary Analysis

Generally, the more features/factors input, the better
the model can be. However, more variables also means
more measurements to be required, which can increase
uncertainties and difficulties for real application. In order
to develop an approach which can have a wide application,
a preliminary analysis is taken firstly to get importance
of different influencing factors. Afterwards, only the most
important factors for failure rate are considered.

The preliminary analysis is based on the correlation anal-
ysis (implemented using the pandas.DataFrame.corr method
in Python environment) using the valid data set and pipe
failure rates computed in the previous section. Figure 1
shows the analysis output, which includes importance in
percentage of the different considered factors. From Figure
1, it is clear that Age, Material, Diameter are the top three
important factors to explain pipe failures since the total
importance arrives 95.64%. So that, the following approaches
will mainly consider Age, Material, Diameter as the input
features. Besides, the CodiPis or pressure floor can be used
to segment the whole network due to company’s requirement.

III. PROPOSED APPROACHES

Three approaches, a statistical reliability model based on
CDF, a survival model based on CoxMLP and an evolution-



Fig. 1. Importance of different factors for failure rate.

ary polynomial regression model have been selected accord-
ing to their satisfying performances in modelling numerous
failure characteristics (as in [12]) and in prediction and opti-
mization (as in [13]), respectively. Another aim of proposing
two approaches is for obtaining reliable conclusions through
results comparison.

A. Statistical reliability model

The statistical reliability model is obtained through learn-
ing the model parameters from historical data. This model
allows to characterize the failure probability of a certain pipe
at a given date.

In this way, we will have the cumulative failure proba-
bility that will allow to know for a given pipe with a certain
age what is its failure probability with respect to the total
number of pipes that shared that age.

To represent the analyzed data, different distribution
functions may be selected in order to have a good fitting
between the data and the model. According to the phys-
ical evolution of occurrence of the pipe failures, CDF as
explained in [14] will be used.

The CDF that describes frequency and distribution of
failures is presented in equation 2 through parameters c: the
scale or characteristic life parameter; k: the shape parameter
or Weibull slope and x: the considered pipe feature.

f(x) =
k

c
(
x

c
)k−1e−(

x
c )

k

, (x > 0, k > 0, c > 1) (2)

To obtain the failure probability, f(x) of a given material,
the total number of failures in each date since the pipe
has been installed is taken into account. And the failure
probability of a pipe in a given date is calculated using

F (x) =

∫ x

0

f(x) dx = 1− e−( x
c )

k

(3)

where c and k are the parameters that should be calibrated to
achieve an optimal fitting with historical data and considering
a continuous growth function tending asymptotically to 1.

B. Survival model with neural networks

After evaluating several different survival models,
CoxMLP is selected due to the specific characteristics of the

DWNs and their integration with neural networks providing
good performance in prediction as presented in [13].

As discussed in [15], the CoxMLP approach provides a
semi-parametric specification of the hazard rate, in which
the instantaneous risk of failure function is expressed as a
function of time and influencing factors

λ(t,X1, ..., Xn) = λ0(t)e
∑i=n

i=1 βiXi (4)

where, λ0(t) is the initial value of base risk. The exponential
term is a relative risk that only depends on the studied covari-
ates varying over time. Xi is the vector with multiplicative
factors βi.

This model establishes a framework to fit proportional
Cox models with neural networks. From the vector of
parameters, βi of the linear predictor g(x) = βiXi, the
neural networks have been used to parameterize g(x). This
parameterization of the relative risk function with a neural
network does not affect the proportionality constraint of the
model. Furthermore, a parametric approach without requiring
stratification (grouping matching features) is proposed. In the
new semi-parametric form of the Cox model, the relative risk
function h(t|x) depends on time as follows

h(t|x) = h0(t)e
g(t,x) (5)

In real application, we allow g(t, x) to use time as a
regular covariate, permitting g(t, x) to have model interac-
tions between time and other covariates. This is similar to the
classical approach carried out in survival analysis, in which
the non-proportional effect of a covariate x can be modeled
by including time-dependent covariates.

Moreover, the aforementioned model is no longer a
proportional hazards model, and it is still a relative risk
model with the same partial probability as previously, but
only considering a covariate.

C. Evolutionary polynomial regression model

The EPR is a data-driven technique based on evolutionary
computations. This method deals with pseudo-polynomial
structures that can represent in a precise way a physical
system. This technique has several steps. First of all, EPR
uses an evolutionary procedure based on a genetic algorithm
(GA) to find suitable model structures. Later a linear regres-
sion step is carried and out, to compute the model constants
through a least squares optimization task.

Regarding the EPR model for each material, the work
proposed in [16] and [8] have been very useful to build the
model of our water network (further mathematical details
about EPR can be consulted in the previous papers). In [8],
the model coefficient is assumed to be the same as the one
given by EPR, a1, for pipes without known failures whereas,
for pipes which had failures in the monitoring period, model
coefficient ai is computed using their own burst history.



However, in our approach for every material we estimate
the parameter ak that characterizes jointly both healthy and
faulty pipes by means of linear regression. When carrying
out normalization step taking into account the total number
of pipes, we are considering those that have not had any
faults so far. This way we can model the failure rate over
time independently of the existence of failures. This is that
the number of recorded faults is greater than or equal to 0,
Brp ≥ 0. The steps to obtain the parameter ak for each
material are shown as follows:

1) Compute the cumulative number of failures for each
age of failure in each year of the monitoring period.
This value is normalized taking into account the total
number of pipes and length of each material.

2) For the same age of failure in each year of monitoring,
the parameter ai is computed.

3) The ak parameter of each material is obtained by
weighing each ai taking into account the number of
failures at each age over the total number of failures.

To do this, the failure rate of pipe i according to EPR
model, λEPRi (t), in equation 6 has been rearranged to obtain
the slope, b1, and the y-intercept, b0, of each pipe in equation
8. Note that b1 returns the unknown ai.

λEPRi (t) =
a1
T

Lpi(A0,class + t)

D1.5
class

(6)

where T is the monitoring period, Lpi is the length of
the ith pipe, A0,class is the equivalent age of the pipe class
at the end of the monitoring period, t is the time variable and
Dclass is the equivalent diameter of the pipe class. Dclass

can be obtained in equation 7.

Dclass =

∑
class(Lp ·Dp)

Lclass
(7)

λEPRi (t) · T ·D
1.5
class

Lpi
= a1 · t+a1 ·A0,class = b1 · t+b0 (8)

Thus, the failure rate of each pipe can be obtained in
equation 9. Moreover, the number of leakages predicted can
be obtained by means of the integration for all pipes in
equation 10.

λi(t) =
ak
T

Lpi(A0,class + t)

D1.5
class

, if Brpi ≥ 0 (9)

Moreover, the number of leakages predicted for each
pipe, BRi, can be obtained by means of the integration for
all pipes in equation 10 considering the time horizon, h.

BRi =

∫ h

0

λi(t) · dt (10)

Eventually, the failure probability can be computed in
equation 11.

Failure probability (%) =

∑
BRi∑
pipes

(11)

D. Prediction and prognosis

As it has been aforementioned, CoxMLP is able to
predict failure probability according to the desired features.
Moreover, we can also implement CoxMLP to pipe prognosis
using the non-linear neural network framework as discussed
in [17], as well as removing to a bigger extent the propor-
tionality constant of the Cox model. For this purpose, a 25
years ahead prediction in steps of 5 years has been carried out
while taking into account only the most important features:
age, material and diameter. In addition, Weibull distributions
and the built EPR model will be used to predict failure rate
in the aforementioned time dates.

There are in total 18 kinds of material used in the
Barcelona WDN, the main ones are: ductile iron (41.69%),
gray cast iron (22.35%), asbestos cement (13.92%), high
density polyethylene (10.88%), low density polyethylene
(5.60%), reinforced concrete (1.50%) and reinforced concrete
welded joint (1.48%). The usage of different materials takes
different percentage (as shown after each material) of the
whole network. The material with less usage does not have
enough data. So that in the prognosis, we focus on the
material with more usage. Thus, we will carry out failure
probability prediction only for asbestos cement, gray cast
iron and ductile iron. Thus, altogether with material, the
features of age and diameter will be taken into account as
well in the different forecasts.

IV. RESULTS

Results for statistical reliability model, survival model,
evolutionary polynomial regression model, failure rate prog-
nosis and probability prediction will be provided in this
section.

A. Failure model validation

The Barcelona WDN incorporates several kinds of pipes
according to their materials used in the construction process
and period. The representative materials (mainly asbestos
cement, gray cast iron and ductile iron) allow us to develop
the reliable and survival models in terms of RUL over time.
Figure 2 presents the RUL evolutions for the material feature
in Gray cast iron in 118 years using reliable model based on
CDF and the survival model based on CoxMLP, respectively.
For a better interpretation of the figures the vertical axis
contains the RUL probability, that goes from the probability
value ”0” meaning that no failures have been experienced
and that there will be less remaining useful life as the years
go by. Taking a closer look, it is shown that the RUL starts
to decrease sharply from 0 at beginning. From around 50



to around 100 years, the RUL becomes smoothly, and then
increase sharply afterwards tending asymptotically to 1.

Fig. 2. RUL based on Weibull and CoxMLP.

To have a clear comparison for the performance between
the two approaches, Table II is provided showing more de-
tails. Note that this analysis has been performed for a failure
subset within the entire water network. So, the conclusions
will be limited to the previous subset not to the entire set.

RUL analysis for materials (failure probability in %)
Material no

failures Date (years) 1st method 2nd method Difference (%)
Gray cast iron 4258 (63-101) 67.2 % 63.8 % 3.4 %
Ductile iron 2985 (59-102) 71.4 % 67.8 % 3.6 %

Asbestos cement 1844 (56-101) 74.9 % 70.8 % 4.1 %
TABLE II

RUL DIFFERENCE COMPARISON REGARDING FAILURE PROBABILITY.

From this table, it should be clarified that, the materials
which have a higher usage percentage in the whole network
do have more failures after we take into account the age and
material features using CDF method (1st method), as shown
in the column no

failures.

However, the CoxMLP method (2nd method) includes
more parameters that intervene in the failures, hence, the
percentage of RUL is lower, due to the fact that each
intervening factor will have a given weight on the total figure.
Some of the factors that were not considered in method 1,
embracing the maximum and the minimum average pressures
due to the lack of data, will decrease the factual percentage.

As the number of failures decreases for the less used
materials, the second method tells us that the RUL is lower
and, therefore, that a higher percentage of failures has
occurred according to a lower relative weight of material
respect to the other factors that intervene in failures.

The fact of including a greater number of factors in
the second method will allow us to obtain a RUL curve
that represents more precisely the pipes behaviour for each
studied material. In order to characterize this behaviour,
the number of input data incorporated into the model must

be sufficiently representative so that the incidence of each
variable suits better to reality.

B. Failure rate prognosis

In order to apply the results into reality with application
wise to facilitate the labour of the WDN operators, a pipeline
monitoring and maintenance plan has been developed regard-
ing the most important factors (age, material and diameter)
in form of an easy-reading checklist. Four assessment zones
(A, B, C, D) and three operations (continue to work, should
be supervised, should be replaced) are considered following
this procedure:

1) The assessment starts from zones B and C, which
corresponds to the [65 - 70]% and [75 - 80]% of the
age, where the failures in low appearance starts and ends,
respectively.

2) The two zones A and D correspond to the periods
before and after the assessment stages. In zone A, the failure
frequency will be very low. Zone D represents the time when
many failures will happen. So that, it must be ensured that
the asset will be replaced before arriving zone D where the
probability of failure is very high.

3) Zones B and C have been used as thresholds to assess
whether the pipes can continue to work, should be supervised
or should be replaced immediately, taking into account the
parameters which have a greater impact on occurrence of
failures. More details about the usage of Zone B and Zone
C are provided as follows:

Zone B:

• Only one parameter is out of the range (values higher
than the threshold). Active entering the monitoring
phase.

• More than one parameter is out of the range. Asset
replacement is considered.

Zone C:

• Only one parameter is out of the range. Asset replace-
ment is considered.

• More than one parameter is out of the range. The
replacement action of the asset is activated.

C. Failure probability prediction

The failure probability FP (%) will be obtained taking
into account the number of pipe leakages divided by the total
number of pipes. As we are carrying out a prediction, new
leakages will be added to the total number of leakages in a
cumulative manner. The failure probability prediction result
focusing on the three main materials in terms of each 5 future
years for the 3 developed methods is provided in Table III.

For the EPR method, the parameter ak obtained for each
material can be consulted as follows:

• Gray cast iron ak = 0.0858



• Ductile iron ak = 0.0199
• Asbestos cement ak = 0.0560

FAILURE PROBABILITY PROGNOSIS IN THE FUTURE 25 YEARS
EPR Weibull COX

Material Time horizon FP (%) FP (%) FP (%)
Gray cast iron 5 years 0.8589 0.9214 0.7921
Gray cast iron 10 years 1.7789 2.0871 1.9762
Gray cast iron 15 years 2.7601 2.9584 2.9042
Gray cast iron 20 years 3.8023 3.8848 3.5587
Gray cast iron 25 years 4.9057 4.9879 4.9247
Ductile iron 5 years 0.2540 0.3256 0.2696
Ductile iron 10 years 0.5429 0.7393 0.6741
Ductile iron 15 years 0.8668 1.0503 0.9929
Ductile iron 20 years 1.2258 1.3822 1.2193
Ductile iron 25 years 1.6197 1.7781 1.6395

Asbestos cement 5 years 0.8994 0.9537 0.8749
Asbestos cement 10 years 1.8556 2.1618 2.0638
Asbestos cement 15 years 2.8685 3.0661 2.9728
Asbestos cement 20 years 3.9382 4.0284 3.8419
Asbestos cement 25 years 5.0647 5.1749 5.0454

TABLE III
K-YEAR AHEAD FAILURE PROBABILITY PREDICTION.

It can be seen that all predictions given by the 3 methods
are similar among them. The probabilities obtained by EPR
and COX are very similar to each other, while in the Weibull
case the probabilities are slightly higher.

V. CONCLUSIONS

This paper proposes a comparable approach to quan-
tify impact of different factors (mainly age, material and
diameter) on occurrence of pipe failures using statistical
reliability model based on CDF, survival model based on
CoxMLP and an evolutionary polynomial regression (EPR)
model for pipe deterioration. The produced RUL evolution
in 118 years confirm similarities (less than 5% difference)
of both approaches. The CoxMLP survival model has lower
RUL and suits better in reality due to more involvement
of factors. Besides, more conclusions can also be obtained
that the materials with higher percentage usage do have
more failures. For application wise, the prognosis checklist in
terms of different assessment zones (A, B, C, D) with corre-
sponding operations (continue to work, should be supervised,
should be replaced) is also provided. For more clarification,
a 25-year failure probability prediction is also added in an
easy-reading table to evaluate levels of risk (Low risk zone,
Medium risk zone and High risk zone) for each pipe in
the coming years with significance in assets monitoring and
maintenance from both scientific and practical perspectives.
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