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Jong-Seok Lee, Member, IEEE, Ashkan Yazdani, Touradj Ebrahimi, Member, IEEE,

Thierry Pun, Member, IEEE, Anton Nijholt, Member, IEEE, Ioannis Patras, Member, IEEE

Abstract—We present a multimodal dataset for the analysis of human affective states. The electroencephalogram (EEG) and
peripheral physiological signals of 32 participants were recorded as each watched 40 one-minute long excerpts of music videos.
Participants rated each video in terms of the levels of arousal, valence, like/dislike, dominance and familiarity. For 22 of the 32
participants, frontal face video was also recorded. A novel method for stimuli selection is proposed using retrieval by affective tags
from the last.fm website, video highlight detection and an online assessment tool. An extensive analysis of the participants’ ratings
during the experiment is presented. Correlates between the EEG signal frequencies and the participants’ ratings are investigated.
Methods and results are presented for single-trial classification of arousal, valence and like/dislike ratings using the modalities of EEG,
peripheral physiological signals and multimedia content analysis. Finally, decision fusion of the classification results from the different
modalities is performed. The dataset is made publicly available and we encourage other researchers to use it for testing their own
affective state estimation methods.
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1 INTRODUCTION

EMOTION is a psycho-physiological process triggered
by conscious and/or unconscious perception of an

object or situation and is often associated with mood,
temperament, personality and disposition, and motiva-
tion. Emotions play an important role in human commu-
nication and can be expressed either verbally through
emotional vocabulary, or by expressing non-verbal cues
such as intonation of voice, facial expressions and ges-
tures. Most of the contemporary human-computer inter-
action (HCI) systems are deficient in interpreting this
information and suffer from the lack of emotional intelli-
gence. In other words, they are unable to identify human
emotional states and use this information in deciding
upon proper actions to execute. The goal of affective
computing is to fill this gap by detecting emotional
cues occurring during human-computer interaction and
synthesizing emotional responses.
Characterizing multimedia content with relevant, re-

liable and discriminating tags is vital for multimedia
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information retrieval. Affective characteristics of multi-
media are important features for describing multime-
dia content and can be presented by such emotional
tags. Implicit affective tagging refers to the effortless
generation of subjective and/or emotional tags. Implicit
tagging of videos using affective information can help
recommendation and retrieval systems to improve their
performance [1]–[3]. The current dataset is recorded with
the goal of creating an adaptive music video recommen-
dation system. In our proposed music video recommen-
dation system, a user’s bodily responses will be trans-
lated to emotions. The emotions of a user while watching
music video clips will help the recommender system to
first understand user’s taste and then to recommend a
music clip which matches users current emotion.
The presented database explores the possibility to

classify emotion dimensions induced by showing music
videos to different users. To the best of our knowledge,
the responses to this stimuli (music video clips) have
never been explored before, and the research in this
field was mainly focused on images, music or non-music
video segments [4], [5]. In an adaptive music video
recommender, an emotion recognizer trained by phys-
iological responses to the content from similar nature,
music videos, is better able to fulfill its goal.
Various discrete categorizations of emotions have been

proposed, such as the six basic emotions proposed by
Ekman and Friesen [6] and the tree structure of emotions
proposed by Parrot [7]. Dimensional scales of emotion
have also been proposed, such as Plutchik’s emotion
wheel [8] and the valence-arousal scale by Russell [9].
In this work, we use Russell’s valence-arousal scale,
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widely used in research on affect, to quantitatively
describe emotions. In this scale, each emotional state
can be placed on a two-dimensional plane with arousal
and valence as the horizontal and vertical axes. While
arousal and valence explain most of the variation in
emotional states, a third dimension of dominance can
also be included in the model [9]. Arousal can range from
inactive (e.g. uninterested, bored) to active (e.g. alert,
excited), whereas valence ranges from unpleasant (e.g.
sad, stressed) to pleasant (e.g. happy, elated). Dominance
ranges from a helpless and weak feeling (without con-
trol) to an empowered feeling (in control of everything).
For self-assessment along these scales, we use the well-
known self-assessment manikins (SAM) [10].
Emotion assessment is often carried out through anal-

ysis of users’ emotional expressions and/or physiolog-
ical signals. Emotional expressions refer to any observ-
able verbal and non-verbal behavior that communicates
emotion. So far, most of the studies on emotion as-
sessment have focused on the analysis of facial expres-
sions and speech to determine a person’s emotional
state. Physiological signals are also known to include
emotional information that can be used for emotion
assessment but they have received less attention. They
comprise the signals originating from the central nervous
system (CNS) and the peripheral nervous system (PNS).
Recent advances in emotion recognition have mo-

tivated the creation of novel databases containing
emotional expressions in different modalities. These
databases mostly cover speech, visual, or audiovisual
data (e.g. [11]–[15]). The visual modality includes facial
expressions and/or body gestures. The audio modality
covers posed or genuine emotional speech in different
languages. Many of the existing visual databases include
only posed or deliberately expressed emotions.
Healey [16], [17] recorded one of the first affective

physiological datasets. She recorded 24 participants driv-
ing around the Boston area and annotated the dataset
by the drivers’ stress level. 17 Of the 24 participant
responses are publicly available1. Her recordings include
electrocardiogram (ECG), galvanic skin response (GSR)
recorded from hands and feet, electromyogram (EMG)
from the right trapezius muscle and respiration patterns.
To the best of our knowledge, the only publicly avail-

able multi-modal emotional databases which includes
both physiological responses and facial expressions are
the enterface 2005 emotional database and MAHNOB
HCI [4], [5]. The first one was recorded by Savran
et al [5]. This database includes two sets. The first
set has electroencephalogram (EEG), peripheral physi-
ological signals, functional near infra-red spectroscopy
(fNIRS) and facial videos from 5 male participants. The
second dataset only has fNIRS and facial videos from 16
participants of both genders. Both databases recorded
spontaneous responses to emotional images from the
international affective picture system (IAPS) [18]. An

1. http://www.physionet.org/pn3/drivedb/

extensive review of affective audiovisual databases can
be found in [13], [19]. The MAHNOB HCI database [4]
consists of two experiments. The responses including,
EEG, physiological signals, eye gaze, audio and facial
expressions of 30 people were recorded. The first exper-
iment was watching 20 emotional video extracted from
movies and online repositories. The second experiment
was tag agreement experiment in which images and
short videos with human actions were shown the partic-
ipants first without a tag and then with a displayed tag.
The tags were either correct or incorrect and participants’
agreement with the displayed tag was assessed.
There has been a large number of published works

in the domain of emotion recognition from physiologi-
cal signals [16], [20]–[24]. Of these studies, only a few
achieved notable results using video stimuli. Lisetti and
Nasoz used physiological responses to recognize emo-
tions in response to movie scenes [23]. The movie scenes
were selected to elicit six emotions, namely sadness,
amusement, fear, anger, frustration and surprise. They
achieved a high recognition rate of 84% for the recog-
nition of these six emotions. However, the classification
was based on the analysis of the signals in response to
pre-selected segments in the shown video known to be
related to highly emotional events.
Some efforts have been made towards implicit affec-

tive tagging of multimedia content. Kierkels et al. [25]
proposed a method for personalized affective tagging
of multimedia using peripheral physiological signals.
Valence and arousal levels of participants’ emotions
when watching videos were computed from physiolog-
ical responses using linear regression [26]. Quantized
arousal and valence levels for a clip were then mapped
to emotion labels. This mapping enabled the retrieval of
video clips based on keyword queries. So far this novel
method achieved low precision.
Yazdani et al. [27] proposed using a brain computer

interface (BCI) based on P300 evoked potentials to emo-
tionally tag videos with one of the six Ekman basic
emotions [28]. Their system was trained with 8 partici-
pants and then tested on 4 others. They achieved a high
accuracy on selecting tags. However, in their proposed
system, a BCI only replaces the interface for explicit
expression of emotional tags, i.e. the method does not
implicitly tag a multimedia item using the participant’s
behavioral and psycho-physiological responses.
In addition to implicit tagging using behavioral

cues, multiple studies used multimedia content analy-
sis (MCA) for automated affective tagging of videos.
Hanjalic et al. [29] introduced ”personalized content
delivery” as a valuable tool in affective indexing and
retrieval systems. In order to represent affect in video,
they first selected video- and audio- content features
based on their relation to the valence-arousal space.
Then, arising emotions were estimated in this space by
combining these features. While valence-arousal could
be used separately for indexing, they combined these
values by following their temporal pattern. This allowed
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for determining an affect curve, shown to be useful for
extracting video highlights in a movie or sports video.
Wang and Cheong [30] used audio and video features

to classify basic emotions elicited by movie scenes. Au-
dio was classified into music, speech and environment
signals and these were treated separately to shape an
aural affective feature vector. The aural affective vector
of each scene was fused with video-based features such
as key lighting and visual excitement to form a scene
feature vector. Finally, using the scene feature vectors,
movie scenes were classified and labeled with emotions.
Soleymani et. al proposed a scene affective character-

ization using a Bayesian framework [31]. Arousal and
valence of each shot were first determined using linear
regression. Then, arousal and valence values in addition
to content features of each scene were used to classify
every scene into three classes, namely calm, excited pos-
itive and excited negative. The Bayesian framework was
able to incorporate the movie genre and the predicted
emotion from the last scene or temporal information to
improve the classification accuracy.
There are also various studies on music affective char-

acterization from acoustic features [32]–[34]. Rhythm,
tempo, Mel-frequency cepstral coefficients (MFCC),
pitch, zero crossing rate are amongst common features
which have been used to characterize affect in music.
A pilot study for the current work was presented in

[35]. In that study, 6 participants’ EEG and physiological
signals were recorded as each watched 20 music videos.
The participants rated arousal and valence levels and
the EEG and physiological signals for each video were
classified into low/high arousal/valence classes.
In the current work, music video clips are used as the

visual stimuli to elicit different emotions. To this end,
a relatively large set of music video clips was gathered
using a novel stimuli selection method. A subjective test
was then performed to select the most appropriate test
material. For each video, a one-minute highlight was
selected automatically. 32 participants took part in the
experiment and their EEG and peripheral physiological
signals were recorded as they watched the 40 selected
music videos. Participants rated each video in terms of
arousal, valence, like/dislike, dominance and familiarity.
For 22 participants, frontal face video was also recorded.
This paper aims at introducing this publicly available2

database. The database contains all recorded signal data,
frontal face video for a subset of the participants and
subjective ratings from the participants. Also included
is the subjective ratings from the initial online subjective
annotation and the list of 120 videos used. Due to
licensing issues, we are not able to include the actual
videos, but YouTube links are included. Table 1 gives an
overview of the database contents.
To the best of our knowledge, this database has the

highest number of participants in publicly available
databases for analysis of spontaneous emotions from

2. http://www.eecs.qmul.ac.uk/mmv/datasets/deap/

TABLE 1
Database content summary

Online subjective annotation

Number of videos 120
Video duration 1 minute affective highlight (section 2.2)

Selection method 60 via last.fm affective tags,
60 manually selected

No. of ratings per video 14 - 16

Rating scales
Arousal
Valence
Dominance

Rating values Discrete scale of 1 - 9

Physiological Experiment

Number of participants 32
Number of videos 40
Selection method Subset of online annotated videos with

clearest responses (see section 2.3)

Rating scales

Arousal
Valence
Dominance
Liking (how much do you like the video?)
Familiarity (how well do you know the video?)

Rating values Familiarity: discrete scale of 1 - 5
Others: continuous scale of 1 - 9

Recorded signals
32-channel 512Hz EEG
Peripheral physiological signals
Face video (for 22 participants)

physiological signals. In addition, it is the only database
that uses music videos as emotional stimuli.
We present an extensive statistical analysis of the

participant’s ratings and of the correlates between the
EEG signals and the ratings. Preliminary single trial
classification results of EEG, peripheral physiological
signals and MCA are presented and compared. Finally,
a fusion algorithm is utilized to combine the results of
each modality and arrive at a more robust decision.
The layout of the paper is as follows. In Section 2

the stimuli selection procedure is described in detail.
The experiment setup is covered in Section 3. Section
4 provides a statistical analysis of the ratings given by
participants during the experiment and a validation of
our stimuli selection method. In Section 5, correlates be-
tween the EEG frequencies and the participants’ ratings
are presented. The method and results of single-trial
classification are given in Section 6. The conclusion of
this work follows in Section 7.

2 STIMULI SELECTION
The stimuli used in the experiment were selected in
several steps. First, we selected 120 initial stimuli, half
of which were chosen semi-automatically and the rest
manually. Then, a one-minute highlight part was deter-
mined for each stimulus. Finally, through a web-based
subjective assessment experiment, 40 final stimuli were
selected. Each of these steps is explained below.
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2.1 Initial stimuli selection
Eliciting emotional reactions from test participants is a
difficult task and selecting the most effective stimulus
materials is crucial. We propose here a semi-automated
method for stimulus selection, with the goal of minimiz-
ing the bias arising from manual stimuli selection.
60 of the 120 initially selected stimuli were selected

using the Last.fm3 music enthusiast website. Last.fm
allows users to track their music listening habits and
receive recommendations for new music and events.
Additionally, it allows the users to assign tags to individ-
ual songs, thus creating a folksonomy of tags. Many of
the tags carry emotional meanings, such as ’depressing’
or ’aggressive’. Last.fm offers an API, allowing one to
retrieve tags and tagged songs.
A list of emotional keywords was taken from [7] and

expanded to include inflections and synonyms, yielding
304 keywords. Next, for each keyword, corresponding
tags were found in the Last.fm database. For each found
affective tag, the ten songs most often labeled with this
tag were selected. This resulted in a total of 1084 songs.
The valence-arousal space can be subdivided into 4

quadrants, namely low arousal/low valence (LALV), low
arousal/high valence (LAHV), high arousal/low valence
(HALV) and high arousal/high valence (HAHV). In
order to ensure diversity of induced emotions, from the
1084 songs, 15 were selected manually for each quadrant
according to the following criteria:
Does the tag accurately reflect the emotional content?
Examples of songs subjectively rejected according to this
criterium include songs that are tagged merely because
the song title or artist name corresponds to the tag.
Also, in some cases the lyrics may correspond to the tag,
but the actual emotional content of the song is entirely
different (e.g. happy songs about sad topics).
Is a music video available for the song?
Music videos for the songs were automatically retrieved
from YouTube, corrected manually where necessary.
However, many songs do not have a music video.
Is the song appropriate for use in the experiment?
Since our test participants were mostly European stu-
dents, we selected those songs most likely to elicit
emotions for this target demographic. Therefore, mainly
European or North American artists were selected.
In addition to the songs selected using the method

described above, 60 stimulus videos were selected man-
ually, with 15 videos selected for each of the quadrants
in the arousal/valence space. The goal here was to select
those videos expected to induce the most clear emotional
reactions for each of the quadrants. The combination
of manual selection and selection using affective tags
produced a list of 120 candidate stimulus videos.

2.2 Detection of one-minute highlights
For each of the 120 initially selected music videos, a one
minute segment for use in the experiment was extracted.

3. http://www.last.fm

In order to extract a segment with maximum emotional
content, an affective highlighting algorithm is proposed.
Soleymani et al. [31] used a linear regression method

to calculate arousal for each shot of in movies. In their
method, the arousal and valence of shots was computed
using a linear regression on the content-based features.
Informative features for arousal estimation include loud-
ness and energy of the audio signals, motion component,
visual excitement and shot duration. The same approach
was used to compute valence. There are other content
features such as color variance and key lighting that
have been shown to be correlated with valence [30]. The
detailed description of the content features used in this
work is given in Section 6.2.
In order to find the best weights for arousal and

valence estimation using regression, the regressors were
trained on all shots in 21 annotated movies in the dataset
presented in [31]. The linear weights were computed by
means of a relevance vector machine (RVM) from the
RVM toolbox provided by Tipping [36]. The RVM is able
to reject uninformative features during its training hence
no further feature selection was used for arousal and
valence determination.
The music videos were then segmented into one

minute segments with 55 seconds overlap between seg-
ments. Content features were extracted and provided the
input for the regressors. The emotional highlight score
of the i-th segment ei was computed using the following
equation:

ei =
√
a2
i
+ v2

i
(1)

The arousal, ai, and valence, vi, were centered. There-
fore, a smaller emotional highlight score (ei) is closer
to the neutral state. For each video, the one minute
long segment with the highest emotional highlight score
was chosen to be extracted for the experiment. For a
few clips, the automatic affective highlight detection was
manually overridden. This was done only for songs with
segments that are particularly characteristic of the song,
well-known to the public, and most likely to elicit emo-
tional reactions. In these cases, the one-minute highlight
was selected so that these segments were included.
Given the 120 one-minute music video segments, the

final selection of 40 videos used in the experiment was
made on the basis of subjective ratings by volunteers, as
described in the next section.

2.3 Online subjective annotation
From the initial collection of 120 stimulus videos, the
final 40 test video clips were chosen by using a web-
based subjective emotion assessment interface. Partici-
pants watched music videos and rated them on a discrete
9-point scale for valence, arousal and dominance. A
screenshot of the interface is shown in Fig. 1. Each
participant watched as many videos as he/she wanted
and was able to end the rating at any time. The order of
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Fig. 1. Screenshot of the web interface for subjective
emotion assessment.

the clips was randomized, but preference was given to
the clips rated by the least number of participants. This
ensured a similar number of ratings for each video (14-
16 assessments per video were collected). It was ensured
that participants never saw the same video twice.
After all of the 120 videos were rated by at least

14 volunteers each, the final 40 videos for use in the
experiment were selected. To maximize the strength of
elicited emotions, we selected those videos that had the
strongest volunteer ratings and at the same time a small
variation. To this end, for each video x we calculated
a normalized arousal and valence score by taking the
mean rating divided by the standard deviation (μx/σx).
Then, for each quadrant in the normalized valence-

arousal space, we selected the 10 videos that lie closest
to the extreme corner of the quadrant. Fig. 2 shows
the score for the ratings of each video and the selected
videos highlighted in green. The video whose rating
was closest to the extreme corner of each quadrant is
mentioned explicitly. Of the 40 selected videos, 17 were
selected via Last.fm affective tags, indicating that useful
stimuli can be selected via this method.

3 EXPERIMENT SETUP
3.1 Materials and Setup
The experiments were performed in two laboratory
environments with controlled illumination. EEG and
peripheral physiological signals were recorded using a
Biosemi ActiveTwo system4 on a dedicated recording PC
(Pentium 4, 3.2 GHz). Stimuli were presented using a
dedicated stimulus PC (Pentium 4, 3.2 GHz) that sent

4. http://www.biosemi.com
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Fig. 2. μx/σx value for the ratings of each video in
the online assessment. Videos selected for use in the
experiment are highlighted in green. For each quadrant,
the most extreme video is detailed with the song title and
a screenshot from the video.

synchronization markers directly to the recording PC.
For presentation of the stimuli and recording the users’
ratings, the ”Presentation” software by Neurobehavioral
systems5 was used. The music videos were presented
on a 17-inch screen (1280 × 1024, 60 Hz) and in order
to minimize eye movements, all video stimuli were
displayed at 800 × 600 resolution, filling approximately
2/3 of the screen. Subjects were seated approximately
1 meter from the screen. Stereo Philips speakers were
used and the music volume was set at a relatively loud
level, however each participant was asked before the
experiment whether the volume was comfortable and it
was adjusted when necessary.
EEG was recorded at a sampling rate of 512 Hz using

32 active AgCl electrodes (placed according to the inter-
national 10-20 system). Thirteen peripheral physiological
signals (which will be further discussed in section 6.1)
were also recorded. Additionally, for the first 22 of the
32 participants, frontal face video was recorded in DV
quality using a Sony DCR-HC27E consumer-grade cam-
corder. The face video was not used in the experiments in
this paper, but is made publicly available along with the
rest of the data. Fig. 3 illustrates the electrode placement
for acquisition of peripheral physiological signals.

3.2 Experiment protocol
32 Healthy participants (50% female), aged between 19
and 37 (mean age 26.9), participated in the experiment.
Prior to the experiment, each participant signed a con-
sent form and filled out a questionnaire. Next, they were
given a set of instructions to read informing them of the
experiment protocol and the meaning of the different
scales used for self-assessment. An experimenter was
also present there to answer any questions. When the

5. http://www.neurobs.com
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Fig. 3. Placement of peripheral physiological sensors.
For Electrodes were used to record EOG and 4 for EMG
(zygomaticus major and trapezius muscles). In addition,
GSR, blood volume pressure (BVP), temperature and
respiration were measured.

instructions were clear to the participant, he/she was led
into the experiment room. After the sensors were placed
and their signals checked, the participants performed a
practice trial to familiarize themselves with the system.
In this unrecorded trial, a short video was shown, fol-
lowed by a self-assessment by the participant. Next, the
experimenter started the physiological signals recording
and left the room, after which the participant started the
experiment by pressing a key on the keyboard.
The experiment started with a 2 minute baseline

recording, during which a fixation cross was displayed
to the participant (who was asked to relax during this
period). Then the 40 videos were presented in 40 trials,
each consisting of the following steps:
1) A 2 second screen displaying the current trial num-

ber to inform the participants of their progress.
2) A 5 second baseline recording (fixation cross).
3) The 1 minute display of the music video.
4) Self-assessment for arousal, valence, liking and

dominance.
After 20 trials, the participants took a short break. Dur-

ing the break, they were offered some cookies and non-
caffeinated, non-alcoholic beverages. The experimenter
then checked the quality of the signals and the electrodes
placement and the participants were asked to continue
the second half of the test. Fig. 4 shows a participant
shortly before the start of the experiment.

3.3 Participant self-assessment
At the end of each trial, participants performed a self-
assessment of their levels of arousal, valence, liking and
dominance. Self-assessment manikins (SAM) [37] were
used to visualize the scales (see Fig. 5). For the liking
scale, thumbs down/thumbs up symbols were used. The
manikins were displayed in the middle of the screen
with the numbers 1-9 printed below. Participants moved
the mouse strictly horizontally just below the num-
bers and clicked to indicate their self-assessment level.

Fig. 4. A participant shortly before the experiment.

Fig. 5. Images used for self-assessment. from top: Va-
lence SAM, Arousal SAM, Dominance SAM, Liking.

Participants were informed they could click anywhere
directly below or in-between the numbers, making the
self-assessment a continuous scale.

The valence scale ranges from unhappy or sad to
happy or joyful. The arousal scale ranges from calm
or bored to stimulated or excited. The dominance scale
ranges from submissive (or ”without control”) to dom-
inant (or ”in control, empowered”). A fourth scale asks
for participants’ personal liking of the video. This last
scale should not be confused with the valence scale. This
measure inquires about the participants’ tastes, not their
feelings. For example, it is possible to like videos that
make one feel sad or angry. Finally, after the experiment,
participants were asked to rate their familiarity with each
of the songs on a scale of 1 (”Never heard it before the
experiment”) to 5 (”Knew the song very well”).
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4 ANALYSIS OF SUBJECTIVE RATINGS

In this section we describe the effect the affective stim-
ulation had on the subjective ratings obtained from the
participants. Firstly, we will provide descriptive statis-
tics for the recorded ratings of liking, valence, arousal,
dominance, and familiarity. Secondly, we will discuss the
covariation of the different ratings with each other.
Stimuli were selected to induce emotions in the four

quadrants of the valence-arousal space (LALV, HALV,
LAHV, HAHV). The stimuli from these four affect elicita-
tion conditions generally resulted in the elicitation of the
target emotion aimed for when the stimuli were selected,
ensuring that large parts of the arousal-valence plane
(AV plane) are covered (see Fig. 6). Wilcoxon signed-rank
tests showed that low and high arousal stimuli induced
different valence ratings (p < .0001 and p < .00001). Sim-
ilarly, low and high valenced stimuli induced different
arousal ratings (p < .001 and p < .0001).

Fig. 6. The mean locations of the stimuli on the arousal-
valence plane for the 4 conditions (LALV, HALV, LAHV,
HAHV). Liking is encoded by color: dark red is low liking
and bright yellow is high liking. Dominance is encoded by
symbol size: small symbols stand for low dominance and
big for high dominance.

The emotion elicitation worked specifically well for
the high arousing conditions, yielding relative extreme
valence ratings for the respective stimuli. The stimuli
in the low arousing conditions were less successful in
the elicitation of strong valence responses. Furthermore,
some stimuli of the LAHV condition induced higher
arousal than expected on the basis of the online study.
Interestingly, this results in a C-shape of the stimuli
on the valence-arousal plane also observed in the well-
validated ratings for the international affective picture
system (IAPS) [18] and the international affective dig-
ital sounds system (IADS) [38], indicating the general
difficulty to induce emotions with strong valence but

low arousal. The distribution of the individual rat-
ings per conditions (see Fig. 7) shows a large variance
within conditions, resulting from between-stimulus and
-participant variations, possibly associated with stimulus
characteristics or inter-individual differences in music
taste, general mood, or scale interpretation. However, the
significant differences between the conditions in terms of
the ratings of valence and arousal reflect the successful
elicitation of the targeted affective states (see Table 2).

TABLE 2
The mean values (and standard deviations) of the
different ratings of liking (1-9), valence (1-9), arousal
(1-9), dominance (1-9), familiarity (1-5) for each affect

elicitation condition.

Cond. Liking Valence Arousal Dom. Fam.

LALV 5.7 (1.0) 4.2 (0.9) 4.3 (1.1) 4.5 (1.4) 2.4 (0.4)
HALV 3.6 (1.3) 3.7 (1.0) 5.7 (1.5) 5.0 (1.6) 1.4 (0.6)
LAHV 6.4 (0.9) 6.6 (0.8) 4.7 (1.0) 5.7 (1.3) 2.4 (0.4)
HAHV 6.4 (0.9) 6.6 (0.6) 5.9 (0.9) 6.3 (1.0) 3.1 (0.4)

The distribution of ratings for the different scales and
conditions suggests a complex relationship between rat-
ings. We explored the mean inter-correlation of the dif-
ferent scales over participants (see Table 3), as they might
be indicative of possible confounds or unwanted effects
of habituation or fatigue. We observed high positive
correlations between liking and valence, and between
dominance and valence. Seemingly, without implying
any causality, people liked music which gave them a pos-
itive feeling and/or a feeling of empowerment. Medium
positive correlations were observed between arousal and
dominance, and between arousal and liking. Familiarity
correlated moderately positive with liking and valence.
As already observed above, the scales of valence and
arousal are not independent, but their positive correla-
tion is rather low, suggesting that participants were able
to differentiate between these two important concepts.
Stimulus order had only a small effect on liking and
dominance ratings, and no significant relationship with
the other ratings, suggesting that effects of habituation
and fatigue were kept to an acceptable minimum.
In summary, the affect elicitation was in general suc-

cessful, though the low valence conditions were par-
tially biased by moderate valence responses and higher
arousal. High scale inter-correlations observed are lim-
ited to the scale of valence with those of liking and
dominance, and might be expected in the context of
musical emotions. The rest of the scale inter-correlations
are small or medium in strength, indicating that the scale
concepts were well distinguished by the participants.

5 CORRELATES OF EEG AND RATINGS

For the investigation of the correlates of the subjective
ratings with the EEG signals, the EEG data was common
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Fig. 7. The distribution of the participants’ subjective ratings per scale (L - general rating, V - valence, A - arousal, D -
dominance, F - familiarity) for the 4 affect elicitation conditions (LALV, HALV, LAHV, HAHV).

TABLE 4
The electrodes for which the correlations with the scale were significant (*=p < .01, **=p < .001). Also shown is the

mean of the subject-wise correlations (R̄), the most negative (R−), and the most positive correlation (R+).

Theta Alpha Beta Gamma

Elec. R̄ R− R+ Elec. R̄ R− R+ Elec. R̄ R− R+ Elec. R̄ R− R+

Arousal CP6* -0.06 -0.47 0.25 Cz* -0.07 -0.45 0.23 FC2* -0.06 -0.40 0.28

Valence

Oz** 0.08 -0.23 0.39 PO4* 0.05 -0.26 0.49 CP1** -0.07 -0.49 0.24 T7** 0.07 -0.33 0.51
PO4* 0.05 -0.26 0.49 Oz* 0.05 -0.24 0.48 CP6* 0.06 -0.26 0.43

FC6* 0.06 -0.52 0.49 CP2* 0.08 -0.21 0.49
Cz* -0.04 -0.64 0.30 C4** 0.08 -0.31 0.51

T8** 0.08 -0.26 0.50
FC6** 0.10 -0.29 0.52
F8* 0.06 -0.35 0.52

Liking C3* 0.08 -0.35 0.31 AF3* 0.06 -0.27 0.42 FC6* 0.07 -0.40 0.48 T8* 0.04 -0.33 0.49
F3* 0.06 -0.42 0.45

TABLE 3
The means of the subject-wise inter-correlations between

the scales of valence, arousal, liking, dominance,
familiarity and the order of the presentation (i.e. time) for
all 40 stimuli. Significant correlations (p < .05) according

to Fisher’s method are indicated by stars.

Scale Liking Valence Arousal Dom. Fam. Order

Liking 1 0.62* 0.29* 0.31* 0.30* 0.03*
Valence 1 0.18* 0.51* 0.25* 0.02
Arousal 1 0.28* 0.06* 0.00
Dom. 1 0.09* 0.04*
Fam. 1 -
Order 1

average referenced, down-sampled to 256 Hz, and high-
pass filtered with a 2 Hz cutoff-frequency using the
EEGlab6 toolbox. We removed eye artefacts with a blind
source separation technique7. Then, the signals from
the last 30 seconds of each trial (video) were extracted
for further analysis. To correct for stimulus-unrelated
variations in power over time, the EEG signal from the

6. http://sccn.ucsd.edu/eeglab/
7. http://www.cs.tut.fi/∼gomezher/projects/eeg/aar.htm

five seconds before each video was extracted as baseline.
The frequency power of trials and baselines between

3 and 47 Hz was extracted with Welch’s method with
windows of 256 samples. The baseline power was then
subtracted from the trial power, yielding the change of
power relative to the pre-stimulus period. These changes
of power were averaged over the frequency bands of
theta (3 - 7 Hz), alpha (8 - 13 Hz), beta (14 - 29 Hz),
and gamma (30 - 47 Hz). For the correlation statistic,
we computed the Spearman correlated coefficients be-
tween the power changes and the subjective ratings, and
computed the p-values for the left- (positive) and right-
tailed (negative) correlation tests. This was done for
each participant separately and, assuming independence
[39], the 32 resulting p-values per correlation direction
(positive/negative), frequency band and electrode were
then combined to one p-value via Fisher’s method [40].
Fig. 8 shows the (average) correlations with signifi-

cantly (p < .05) correlating electrodes highlighted. Below
we will report and discuss only those effects that were
significant with p < .01. A comprehensive list of the
effects can be found in Table 4.
For arousal we found negative correlations in the

theta, alpha, and gamma band. The central alpha power
decrease for higher arousal matches the findings from
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Fig. 8. The mean correlations (over all participants) of the valence, arousal, and general ratings with the power in the
broad frequency bands of theta (4-7 Hz), alpha (8-13 Hz), beta (14-29 Hz) and gamma (30-47 Hz). The highlighted
sensors correlate significantly (p < .05) with the ratings.

our earlier pilot study [35] and an inverse relationship
between alpha power and the general level of arousal
has been reported before [41], [42].

Valence showed the strongest correlations with EEG
signals and correlates were found in all analysed fre-
quency bands. In the low frequencies, theta and alpha,
an increase of valence led to an increase of power. This
is consistent with the findings in the pilot study. The
location of these effects over occipital regions, thus over
visual cortices, might indicate a relative deactivation,
or top-down inhibition, of these due to participants
focusing on the pleasurable sound [43]. For the beta
frequency band we found a central decrease, also ob-
served in the pilot, and an occipital and right temporal
increase of power. Increased beta power over right tem-
poral sites was associated with positive emotional self-
induction and external stimulation by [44]. Similarly, [45]
has reported a positive correlation of valence and high-
frequency power, including beta and gamma bands, em-
anating from anterior temporal cerebral sources. Corre-
spondingly, we observed a highly significant increase of
left and especially right temporal gamma power. How-
ever, it should be mentioned that EMG (muscle) activity
is also prominent in the high frequencies, especially over
anterior and temporal electrodes [46].

The liking correlates were found in all analysed fre-

quency bands. For theta and alpha power we observed
increases over left fronto-central cortices. Liking might
be associated with an approach motivation. However,
the observation of an increase of left alpha power for
a higher liking conflicts with findings of a left frontal
activation, leading to lower alpha over this region, often
reported for emotions associated with approach motiva-
tions [47]. This contradiction might be reconciled when
taking into account that it is well possible that some
disliked pieces induced an angry feeling (due to having
to listen to them, or simply due to the content of the
lyrics), which is also related to an approach motivation,
and might hence result in a left-ward decrease of alpha.
The right temporal increases found in the beta and
gamma bands are similar to those observed for valence,
and the same caution should be applied. In general the
distribution of valence and liking correlations shown in
Fig. 8 seem very similar, which might be a result of the
high inter-correlations of the scales discussed above.

Summarising, we can state that the correlations ob-
served partially concur with observations made in the
pilot study and in other studies exploring the neuro-
physiological correlates of affective states. They might
therefore be taken as valid indicators of emotional states
in the context of multi-modal musical stimulation. How-
ever, the mean correlations are seldom bigger than ±0.1,
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which might be due to high inter-participant variability
in terms of brain activations, as individual correlations
between ±0.5 were observed for a given scale correla-
tion at the same electrode/frequency combination. The
presence of this high inter-participant variability justifies
a participant-specific classification approach, as we em-
ploy it, rather than a single classifier for all participants.

6 SINGLE TRIAL CLASSIFICATION
In this section we present the methodology and re-
sults of single-trial classification of the videos. Three
different modalities were used for classification, namely
EEG signals, peripheral physiological signals and MCA.
Conditions for all modalities were kept equal and only
the feature extraction step varies.
Three different binary classification problems were

posed: the classification of low/high arousal, low/high
valence and low/high liking. To this end, the partici-
pants’ ratings during the experiment are used as the
ground truth. The ratings for each of these scales are
thresholded into two classes (low and high). On the 9-
point rating scales, the threshold was simply placed in
the middle. Note that for some subjects and scales, this
leads to unbalanced classes. To give an indication of
how unbalanced the classes are, the mean and standard
deviation (over participants) of the percentage of videos
belonging to the high class per rating scale are: arousal
59%(15%), valence 57%(9%) and liking 67%(12%).
In light of this issue, in order to reliably report results,

we report the F1-score, which is commonly employed
in information retrieval and takes the class balance
into account, contrary to the mere classification rate.
In addition, we use a naı̈ve Bayes classifier, a simple
and generalizable classifier which is able to deal with
unbalanced classes in small training sets.
First, the features for the given modality are extracted

for each trial (video). Then, for each participant, the
F1 measure was used to evaluate the performance of
emotion classification in a leave-one-out cross validation
scheme. At each step of the cross validation, one video
was used as the test-set and the rest were used as
training-set. We use Fisher’s linear discriminant J for
feature selection:

J(f) =
|μ1 − μ2|

σ2
1 + σ2

2

(2)

where μ and σ are the mean and standard deviation
for feature f . We calculate this criterion for each feature
and then apply a threshold to select the maximally
discriminating ones. This threshold was empirically de-
termined at 0.3.
A Gaussian naı̈ve Bayes classifier was used to classify

the test-set as low/high arousal, valence or liking.
The naı̈ve Bayes classifier G assumes independence of

the features and is given by:

G(f1, .., fn) = argmax
c

p(C = c)

n∏
i=1

p(Fi = fi|C = c) (3)

where F is the set of features and C the classes.
p(Fi = fi|C = c) is estimated by assuming Gaussian
distributions of the features and modeling these from
the training set.
The following section explains the feature extraction

steps for the EEG and peripheral physiological signals.
Section 6.2 presents the features used in MCA classifi-
cation. In section 6.3 we explain the method used for
decision fusion of the results. Finally, section 6.4 presents
the classification results.

6.1 EEG and peripheral physiological features
Most of the current theories of emotion [48], [49] agree
that physiological activity is an important component of
an emotion. For instance several studies have demon-
strated the existence of specific physiological patterns
associated with basic emotions [6].
The following peripheral nervous system signals were

recorded: GSR, respiration amplitude, skin temperature,
electrocardiogram, blood volume by plethysmograph,
electromyograms of Zygomaticus and Trapezius mus-
cles, and electrooculogram (EOG). GSR provides a mea-
sure of the resistance of the skin by positioning two elec-
trodes on the distal phalanges of the middle and index
fingers. This resistance decreases due to an increase of
perspiration, which usually occurs when one is experi-
encing emotions such as stress or surprise. Moreover,
Lang et al. discovered that the mean value of the GSR
is related to the level of arousal [20].
A plethysmograph measures blood volume in the

participant’s thumb. This measurement can also be used
to compute the heart rate (HR) by identification of local
maxima (i.e. heart beats), inter-beat periods, and heart
rate variability (HRV). Blood pressure and HRV correlate
with emotions, since stress can increase blood pressure.
Pleasantness of stimuli can increase peak heart rate
response [20]. In addition to the HR and HRV features,
spectral features derived from HRV were shown to be a
useful feature in emotion assessment [50].
Skin temperature and respiration were recorded since

they varies with different emotional states. Slow respira-
tion is linked to relaxation while irregular rhythm, quick
variations, and cessation of respiration correspond to
more aroused emotions like anger or fear.
Regarding the EMG signals, the Trapezius muscle

(neck) activity was recorded to investigate possible head
movements during music listening. The activity of the
Zygomaticus major was also monitored, since this mus-
cle is activated when the participant laughs or smiles.
Most of the power in the spectrum of an EMG during
muscle contraction is in the frequency range between 4 to
40 Hz. Thus, the muscle activity features were obtained
from the energy of EMG signals in this frequency range
for the different muscles. The rate of eye blinking is
another feature, which is correlated with anxiety. Eye-
blinking affects the EOG signal and results in easily
detectable peaks in that signal. For further reading on
psychophysiology of emotion, we refer the reader to [51].
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TABLE 5
Features extracted from EEG and physiological signals.

Signal Extracted features

GSR average skin resistance, average of derivative, average
of derivative for negative values only (average decrease
rate during decay time), proportion of negative samples
in the derivative vs. all samples, number of local minima
in the GSR signal, average rising time of the GSR
signal, 10 spectral power in the [0-2.4]Hz bands, zero
crossing rate of Skin conductance slow response (SCSR)
[0-0.2]Hz, zero crossing rate of Skin conductance very
slow response (SCVSR) [0-0.08]Hz, SCSR and SCVSR
mean of peaks magnitude

Blood
volume
pressure

Average and standard deviation of HR, HRV, and inter
beat intervals, energy ratio between the frequency bands
[0.04-0.15]Hz and [0.15-0.5]Hz, spectral power in the
bands ([0.1-0.2]Hz, [0.2-0.3]Hz, [0.3-0.4]Hz), low fre-
quency [0.01-0.08]Hz, medium frequency [0.08-0.15]Hz
and high frequency [0.15-0.5]Hz components of HRV
power spectrum.

Respiration
pattern

band energy ratio (difference between the logarithm of
energy between the lower (0.05-0.25Hz) and the higher
(0.25-5Hz) bands), average respiration signal, mean of
derivative (variation of the respiration signal), standard
deviation, range or greatest breath, breathing rhythm
(spectral centroid), breathing rate, 10 spectral power in
the bands from 0 to 2.4Hz, average peak to peak time,
median peak to peak time

Skin tem-
perature

average, average of its derivative, spectral power in the
bands ([0-0.1]Hz, [0.1-0.2]Hz)

EMG and
EOG

eye blinking rate, energy of the signal, mean and vari-
ance of the signal

EEG theta, slow alpha, alpha, beta, and gamma Spectral
power for each electrode. The spectral power asymme-
try between 14 pairs of electrodes in the four bands of
alpha, beta, theta and gamma.

All the physiological responses were recorded at a
512Hz sampling rate and later down-sampled to 256Hz
to reduce prcoessing time. The trend of the ECG and GSR
signals was removed by subtracting the temporal low
frequency drift. The low frequency drift was computed
by smoothing the signals on each ECG and GSR channels
with a 256 points moving average.
In total 106 features were extracted from peripheral

physiological responses based on the proposed features
in the literature [22], [26], [52]–[54] (see also Table 5).
From the EEG signals, power spectral features were

extracted. The logarithms of the spectral power from
theta (4-8 Hz), slow alpha (8-10 Hz), alpha (8-12 Hz), beta
(12-30Hz) and gamma (30+ Hz) bands were extracted
from all 32 electrodes as features. In addition to power
spectral features the difference between the spectral
power of all the symmetrical pairs of electrodes on
the right and left hemisphere was extracted to measure
the possible asymmetry in the brain activities due to
emotional stimuli. The total number of EEG features of
a trial for 32 electrodes is 216. Table 5 summarizes the
list of features extracted from the physiological signals.

6.2 MCA Features
Music videos were encoded into the MPEG-1 format to
extract motion vectors and I-frames for further feature
extraction. The video stream has been segmented at the
shot level using the method proposed in [55].
From a movie director’s point of view, lighting key

[30], [56] and color variance [30] are important tools
to evoke emotions. We therefore extracted lighting key
from frames in the HSV space by multiplying the aver-
age value V (in HSV) by the standard deviation of the
values V (in HSV). Color variance was obtained in the
CIE LUV color space by computing the determinant of
the covariance matrix of L, U, and V.
Hanjalic and Xu [29] showed the relationship between

video rhythm and affect. The average shot change rate,
and shot length variance were extracted to characterize
video rhythm. Fast moving scenes or objects’ movements
in consecutive frames are also an effective factor for
evoking excitement. To measure this factor, the motion
component was defined as the amount of motion in con-
secutive frames computed by accumulating magnitudes
of motion vectors for all B- and P-frames.
Colors and their proportions are important parameters

to elicit emotions [57]. A 20 bin color histogram of hue
and lightness values in the HSV space was computed for
each I-frame and subsequently averaged over all frames.
The resulting bin averages were used as video content-
based features. The median of the L value in HSL space
was computed to obtain the median lightness of a frame.
Finally, visual cues representing shadow proportion,

visual excitement, grayness and details were also deter-
mined according to the definition given in [30].
Sound also has an important impact on affect. For ex-

ample, loudness of speech (energy) is related to evoked
arousal, while rhythm and average pitch in speech sig-
nals are related to valence [58]. The audio channels of the
videos were extracted and encoded into mono MPEG-3
format at a sampling rate of 44.1 kHz. All audio signals
were normalized to the same amplitude range before
further processing. A total of 53 low-level audio features
were determined for each of the audio signals. These
features, listed in Table 6, are commonly used in audio
and speech processing and audio classification [59], [60].
MFCC, formants and the pitch of audio signals were
extracted using the PRAAT software package [61].

6.3 Fusion of single-modality results
Fusion of the multiple modalities explained above aims
at improving classification results by exploiting the com-
plementary nature of the different modalities. In general,
approaches for modality fusion can be classified into
two broad categories, namely, feature fusion (or early
integration) and decision fusion (or late integration) [63].
In feature fusion, the features extracted from signals of
different modalities are concatenated to form a com-
posite feature vector and then inputted to a recognizer.
In decision fusion, on the other hand, each modality
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TABLE 6
Low-level features extracted from audio signals.

Feature category Extracted features

MFCC MFCC coefficients (13 features) [59], Deriva-
tive of MFCC (13 features), Autocorrelation of
MFCC (13 features)

Energy Average energy of audio signal [59]
Formants Formants up to 5500Hz (female voice) (five

features)
Time frequency MSpectrum flux, Spectral centroid, Delta spec-

trum magnitude, Band energy ratio [59], [60]
Pitch First pitch frequency
Zero crossing rate Average, Standard deviation [59]
Silence ratio Proportion of silence in a time window [62]

is processed independently by the corresponding clas-
sifier and the outputs of the classifiers are combined
to yield the final result. Each approach has its own
advantages. For example, implementing a feature fusion-
based system is straightforward, while a decision fusion-
based system can be constructed by using existing uni-
modal classification systems. Moreover, feature fusion
can consider synchronous characteristics of the involved
modalities, whereas decision fusion allows us to model
asynchronous characteristics of the modalities flexibly.
An important advantage of decision fusion over fea-

ture fusion is that, since each of the signals are processed
and classified independently in decision fusion, it is
relatively easy to employ an optimal weighting scheme
to adjust the relative amount of the contribution of each
modality to the final decision according to the reliability
of the modality. The weighting scheme used in our work
can be formalized as follows: For a given test datum X ,
the classification result of the fusion system is

c∗ = argmax
i

{
M∏

m=1

Pi(X |λm)αm

}
(4)

where M is the number of modalities considered for
fusion, λm is the classifier for the m-th modality, and
Pi(X |λm) is its output for the i-th class. The weighting
factors αm, which satisfy 0 ≤ αm ≤ 1 and

∑M

m=1
αm = 1,

determine how much each modality contributes to the
final decision and represent the modality’s reliability.
We adopt a simple method where the weighting fac-

tors are fixed once their optimal values are determined
from the training data. The optimal weight values are
estimated by exhaustively searching the regular grid
space, where each weight is incremented from 0 to 1
by 0.01 and the weighting values producing the best
classification results for the training data are selected.

6.4 Results and Discussion
Table 7 shows the average accuracies and F1-scores
(average F1-score for both classes) over participants for

TABLE 7
Average accuracies (ACC) and F1-scores (F1, average
of score for each class) over participants. Stars indicate
whether the F1-score distribution over subjects is

significantly higher than 0.5 according to an independent
one-sample t-test (∗∗ = p < .01, ∗ = p < .05). For

comparison, expected results are given for classification
based on random voting, voting according to the majority

class and voting with the ratio of the classes.

Arousal Valence Liking

Modality ACC F1 ACC F1 ACC F1

EEG 0.620 0.583** 0.576 0.563** 0.554 0.502
Peripheral 0.570 0.533* 0.627 0.608** 0.591 0.538**
MCA 0.651 0.618** 0.618 0.605** 0.677 0.634**

Random 0.500 0.483 0.500 0.494 0.500 0.476
Majority class 0.644 0.389 0.586 0.368 0.670 0.398
Class ratio 0.562 0.500 0.525 0.500 0.586 0.500

each modality and each rating scale. We compare the
results to the expected values (analytically determined)
of voting randomly, voting according to the majority
class in the training data, and voting for each class
with the probability of its occurrence in the training
data. For determining the expected values of majority
voting and class ratio voting, we used the class ratio of
each participant’s feedback during the experiment. These
results are slightly too high, as in reality the class ratio
would have to be estimated from the training set in each
fold of the leave-one-out cross-validation.
Voting according to the class ratio gives an expected

F1-score of 0.5 for each participant. To test for signifi-
cance, an independent one-sample t-test was performed,
comparing the F1-distribution over participants to the
0.5 baseline. As can be seen from the table, 8 out of
the 9 obtained F1-scores are significantly better than the
class ratio baseline. The exception is the classification
of liking using EEG signals (p = 0.068). When voting
according to the majority class, relatively high accuracies
are achieved, due to the imbalanced classes. However,
this voting scheme also has the lowest F1-scores.
Overall, classification using the MCA features fares

significantly better than EEG and peripheral (p < 0.0001
for both), while EEG and peripheral scores are not sig-
nificantly different (p = 0.41) (tested using a two-sided
repeated samples t-test over the concatenated results
from each rating scale and participant).
The modalities can be seen to perform moderately

complementary, where EEG scores best for arousal, pe-
ripheral for valence and MCA for liking. Of the different
rating scales, valence classification performed best, fol-
lowed by liking and lastly arousal.
Table 8 gives the results of multi-modal fusion. Two

fusion methods were employed; the method described in
section 6.3 and the basic method where each modality
is weighed equally. The best results were obtained when
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TABLE 8
F1-scores for fusion of the best two modalities and all three modalities using the equal weights and optimal weights

scheme. For comparison, the F1-score for the best single modality is also given.

Arousal Valence Liking

Modality Optimal w. Equal w. Modality Optimal w. Equal w. Modality Optimal w. Equal w.

Best single modality MCA 0.618 —– PER 0.608 —– MCA 0.634 —–

Best two modalities EEG,MCA 0.631 0.629 MCA,PER 0.638 0.652 MCA,PER 0.622 0.642
All three modalities All 0.616 0.618 All 0.647 0.640 All 0.618 0.607

only the two best-performing modalities were consid-
ered. Though fusion generally outperforms the single
modalities, it is only significant for the case of MCA,PER
weighted equally in the valence scale (p = 0.025).
While the presented results are significantly higher

than random classification, there remains much room
for improvement. Signal noise, individual physiological
differences and limited quality of self-assessments make
single-trial classification challenging.

7 CONCLUSION
In this work, we have presented a database for the
analysis of spontaneous emotions. The database con-
tains physiological signals of 32 participants (and frontal
face video of 22 participants), where each participant
watched and rated their emotional response to 40 mu-
sic videos along the scales of arousal, valence, and
dominance, as well as their liking of and familiarity
with the videos. We presented a novel semi-automatic
stimuli selection method using affective tags, which was
validated by an analysis of the ratings participants gave
during the experiment. Significant correlates were found
between the participant ratings and EEG frequencies.
Single-trial classification was performed for the scales of
arousal, valence and liking using features extracted from
the EEG, peripheral and MCA modalities. The results
were shown to be significantly better than random clas-
sification. Finally, decision fusion of these results yielded
a modest increase in the performance, indicating at least
some complementarity to the modalities.
The database is made publicly available and it is our

hope that other researchers will try their methods and
algorithms on this highly challenging database.
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