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Thermal Analysis
of Facial Muscles Contractions

Sophie Jarlier, Didier Grandjean, Sylvain Delplanque, Karim N’Diaye, Isabelle Cayeux,

Maria Inés Velazco, David Sander, Patrik Vuilleumier, and Klaus R. Scherer

Abstract—Facial expressions can be systematically coded using the Facial Action Coding System (FACS) that describes the specific

action unit (AU) or combination of AUs elicited during different kinds of expressions. This study investigated the thermal patterns

concomitant to specific action units performance. As thermal imaging can track dynamic patterns in facial temperature at any distance

(> 0:4 m), with high temporal (< 20 m) and thermal (< 20 mK@300 K) resolutions, this noninvasive technique was tested as a method

to assess fluctuations of facial heat patterns induced by facial muscles contractions. Four FACS-trained coders produced nine different

AUs or combination of AUs at various speeds and intensities. Using a spatial pattern approach based on PCA decomposition of the

thermal signal, we showed that thermal fluctuations are specific to the activated AUs and are sensitive to the kinetics and intensities of

AU production. These results open new avenues for studying patterns of facial muscle activity related to emotion or other cognitively

induced activities, in a noninvasive manner, avoiding potential lighting issues.

Index Terms—Facial expression, FACS, muscle contraction, thermography.
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1 INTRODUCTION

FACIAL expressions are complex muscular patterns that
carry complex social signals. A facial expression results

from one or more motions or positions of the muscles of
the face. In order to study and analyze facial muscles
contractions, researchers use techniques such as Facial
Action Coding System (FACS) coding, video-taped images
recording, and electromyography (EMG).

Ekman et al. [1] have developed the most popular

standard system to classify the physical aspects of facial

expressions: the FACS. This system is based on the anatomy

of the facial muscles and is composed of action units (AUs)

that describe all visible facial movements at different

intensities. Since 1976, when the FACS system was first

developed, 7,000 different combinations of AUs have been

identified in a large number of facial expressions (44 AUs
for changes in facial expression and 12 AUs for changes in
gaze direction and head orientation [2]). Nowadays, a
standardized procedure exists (FACS Final Test) to train
researchers who are interested in becoming FACS coders
not only to decode the precise AUs expressed by others, but
also to produce these AUs on demand. Although very
informative, this process of coding each action unit in a
facial expression is very time-consuming.

Several attempts have been made to automatize the
coding though. For instance, Lien et al. [3] used video-taped
images under visible spectrum lighting to automatically
detect, track, and classify the AUs implied in the expres-
sions. Unfortunately, the influence of lighting on image
quality (contrast fluctuations or low light) limits this visible-
spectrum imagery technique.

To circumvent this problem, researchers can directly
record the electrical activity of muscles that subtend the AUs
by means of facial EMG, which measures muscle contraction
(even the visually imperceptible). This technique is particu-
larly sensitive to measure the kinetics and intensity of that
muscular contraction [4]. However, EMG recording is not
without drawbacks: 1) It can be difficult to record the precise
activity of a specific muscle involved in a given AU because
of the diffusion of electrical activity from one muscle to
another (i.e., cross-talk phenomenon); 2) electrodes must be
fixed on many areas of the face, a constraint that could
hamper natural muscular contraction; and 3) theoretically,
there should be as many electrodes as there are different
muscles related to the AUs. This last point constitutes a
severe limitation for the use of EMG as a noninvasive
method. However, to date no technique has been developed
that would allow the simultaneous recording of all facial
muscle activity, being sensitive to the intensity and the
temporal dynamics of the contractions, and without hinder-
ing natural AU production or facing light problems.
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Thermal imaging, which has recently been used in
domains such as public services (e.g., security, firefighters,
and military) and medical diagnosis, may be a promising
alternative for the investigation of AU production. A facial
AU represents the contraction of a specific muscle or a
combination of muscles, and research has demonstrated
that such muscle contraction induces an increase in skin
temperature (e.g., [5]). For this reason, thermal imaging
analyses might be well suited to detect AU production.
Moreover, in contrast to EMG recordings, this technique is
noninvasive (no electrodes on the face) and can record the
whole face activity at once. Furthermore, as demonstrated
by studies on human breath tracking [6] and on vessel
blood flow [7], thermal imaging techniques provide very
high temporal resolution, given appropriate image sam-
pling rates. This latter characteristic is of particular
relevance where the dynamic of muscle contraction is
concerned. In sum, thermography could be used as a
noninvasive method, and without the visible-spectrum
illumination limitations, to detect the location, the intensity,
and the speed of thermal changes related to muscle
contractions. However, to date, no study has attempted to
systematically validate this technique to reveal facial heat
modulations related to AUs performance.

This study constitutes a first attempt to investigate the
suitability and the sensitivity of the thermal imaging
technique to detect specific facial muscles’ heat patterns.
The objective of this work was to examine whether specific
AUs are associated with a specific activated heat pattern. To
test the specificity of the heat pattern produced, four trained
FACS coders were recorded while they voluntarily pro-
duced different AUs. Moreover, to test whether thermal
imaging is sensitive to both the intensity and the speed of
muscle contraction, FACS coders were asked to activate the
different AUs at different intensities and speeds. Analyses of
thermal images followed the standard process [8] used in
facial expression recognition: 1) location of the face in the
images and faces normalization, 2) facial features extraction,
and 3) expression classification based on facial features
motion and/or appearance. Here, we used an analytical

procedure to extract the facial features from thermal images,
i.e., the representative heat maps for each requested action
unit. In particular, a spatial pattern detection procedure
(using a principal component analysis) was undertaken,
allowing the detection of coherent heat changes in the face
without any a priori assumption about the particular facial
area that would be activated.

2 METHOD

2.1 Participants (Coders)

Four trained and certified FACS coders (three women, all
right handed, 28-51 years old) participated in our experi-
ment as AUs coders.

2.2 Procedure

The coders were seated on a comfortable chair in a dimly lit
room at a temperature between 20 and 23� C. Their heads
were immobilized with a noninvasive head fixation system
made for this purpose (head frame, Fig. 1). Participants were
asked not to use any makeup or facial products the day of the
experiment. In addition, they were asked not to eat or drink
hot substances and not to smoke during the hour preceding
the experiment. Their facial skin was washed with 70 percent
alcohol to remove any interfering substances. The experiment
was then described and the participants rested for 15 min to
acclimatize with the surrounding temperature.

The participants were requested to perform nine different
AUs or combinations of AUs (i.e., AUs numbers 4, 5, 12, 14,
25, 6 + 12, 12 + 25, 9 + 10, and 1 + 2; see Fig. 2) at two different
speeds (fast and slow) and with three different intensities
(just perceptible, normal, and high).1 Those AUs integrated
muscles from lower (e.g., 12, 25, 9 + 10) and upper (e.g., 4, 5,
1 + 2) parts of the face, but also several closed smiles (12, 14,
6 + 12, 12 + 25). The latter were chosen to study the sensitivity
of the thermal imaging technique to discriminate close
muscles contraction. The coders had to produce each of the
requested AUs in five different intensity-speed combina-
tions: just perceptible and fast, normal and fast, normal and
slow, high and fast, and high and slow. For each given AU,
these five combinations always followed the same order to
ensure better intensity control. This sequence was performed
twice by AU in randomized order. Thus, during the entire
experiment, the coders performed 90 trials (9 AUs � 5
intensity-speed combinations � 2 repetitions). A computer
screen placed in front of the participants indicated the
requested combination of AU(s), speed, and intensity. Before
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Fig. 1. Experimental settings.

1. The AU selection, speed, and intensities, as well as the timing, have
been elaborated in collaboration with the FACS coders.

Fig. 2. Action units produced by FACS coders [9].



each trial, the coders trained as long as necessary (with the
help of a mirror) to maximize the accuracy of producing the
requested muscle contraction during the recording session.
Every trial (see Fig. 3) began with a beeping sound, indicating
to participants that they had to stay calm with a relaxed face
and be ready to produce the AU. One second later, another
beeping sound signaled that they had to start producing the
AU at the requested speed and intensity. To help the coder to
produce the AU, a sound was presented that mimicked the
requested contraction. During the whole expression produc-
tion, the pitch of the sound represented the requested
intensity of the contraction (the stronger the contraction, the
higher the frequency), and the duration of the sound
represented the requested speed of the contraction (long
lasting sounds = 5 s for slow contractions; short lasting
sounds = 1 s for fast contractions). A final series of two more
beeps separated by 1 s were then presented to indicate a
return to baseline, during which time the coders were
requested to stay calm with a relaxed face and to wait for
the next trial.

2.3 Thermal Image Acquisition

We used a thermal camera (FLIR ThermaCAM SC3000
Quantum Well Infrared Photodetector) that provides a high
thermal sensitivity of less than 0:02� C for temperatures
between �20 and 80� C. The camera was set for human skin
emissivity (e ¼ 0:98). Using this emissivity, temperature
fluctuations brought on by illumination and other ambient
changes will not affect the system. The temperature data
were recorded with FLIR ThermaCAM Researcher Profes-
sional software. The image acquisition rate was fixed to 60 Hz
(one image was recorded every 17 ms). Simultaneously with
the thermal recording, we used a visible-spectrum camera to
control for the accuracy of AU production.

Each trial was time locked to the beginning of the muscles
contraction (determined by visual inspection of the motion),
and it was defined as a 1,700 ms (100 thermal images)
baseline period followed by 5 seconds of thermal signals.

2.4 Data Analysis

2.4.1 Image Preprocessing

All recorded images were reduced to the face area and
rescaled to a particular size (210 pixels high � 150 pixels
wide) by means of a bilinear interpolation algorithm to
optimize speed calculation and disk storage, using Matlab
(Matlab, Release 14, The Mathworks, Inc.). First, a rigid 2D
translation and rotation procedure was applied to each trial

(baseline included) to align the images composing it (Fig. 4a).
Images were realigned with each other using a Matlab’s basic
optimization routine (fminsearch) to find the transformation
that restores the original image shape. The same procedure
was then applied subsequently to align the trials within
individual participants (Fig. 4b). For each participant, the
algorithm determines an affine transformation that matched
12 control points placed on the individual’s face (first image
of participant’s first trial) with those placed on the average
face in the Karolinska Directed Emotional Faces [10]
database (Fig. 4c). All facial images of a given participant
were then spatially normalized to the average face according
to this affine transformation (Fig. 4c).

Examples of the results obtained with this thermal image
transformation technique are presented in Fig. 5. Finally, to
eliminate the temperature changes not related to the AU
production, we subtracted the mean facial temperatures
during baseline from each image and for each trial.

2.4.2 Topography, Latency, and Amplitude of Thermal

Changes

Spatial patterning approach. The rationale for assessing
temperature change patterns in the spatial domain was to
find the areas in the face where temperature values
reliably covary, rather than focusing on a priori deter-
mined facial areas. Thus, we performed a spatial PCA on
each trial, treating the pixels as variables and the
temperature value at each time as observations. Without
any a priori assumption on our part about the shape or
number of pertinent areas in the data set, the PCA
determines the complex relationships between the many
temperature values measured for each pixel. These
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Fig. 3. Experimental protocol.
Fig. 4. Image registration method: (a) Intratrial alignment, (b) intertrials,
and (c) normalization with the facial template.

Fig. 5. Example of the results of image normalization.



relationships are summarized as latent-dependent vari-
ables corresponding to the spatial components. The result of
such a PCA is a set of factor loadings that correspond to the
contribution of the spatial components to the original
temperature values (i.e., how much the spatial component
accounts for the temperatures recorded at each time). The
PCA also provides a set of factor scores that correspond to
the contribution of each observation to each new spatial
component. On average, the first two spatial components
explained 86.28 percent of the variance in the data set
(SD ¼ 5:91) and, for each trial, the variance explained by
the two first components was greater than 66.05 percent.
The factor loadings of the first two components were
retained and averaged, providing the areas in the face
where temperature values reliably covary during AUs
performance.

Apex determination. The temperature peak (apex) is the
moment when the facial temperature is maximal. For each
trial, a distribution is calculated averaging the two first
component loadings convoluted with the trial thermal
values (time points � pixels) in time. We calculated the
apex when the maximum amplitude of this temporal
distribution is reached after the baseline period. For each
trial, the apex was calculated by performing an automatic
baseline-to-peak analysis to find the maximum temperature
variations. The latency of the apex gave us information
about the speed of temperature changes related to AU
production, and the amplitude of the signal at the apex
informed us about the intensity of temperature change
related to the AU(s) (Fig. 6).

Statistics on speed and intensities. To test whether
thermal recordings are sensitive to different speeds of
contraction, we used a permutation procedure performed
on the apex latency values. Specifically, from the two
groups of apex latency values (slow and fast), we calculated
the means observed difference between the two samples
(T(obs)). Then, differences in means samples are calculated
after randomly dividing all the pooled latency values into
two groups, for 1,000 times. From the distribution of these
1,000 differences, we could finally test the significance of
the differences between the two distributions (slow and fast
speeds). Differences are significant (at p < 0:05) when the
observed difference (T(obs)) is not included in the 95 percent
of the distribution of the randomly calculated differences.
The same procedure was applied with the amplitude values

at the apex to test the significance of the differences between
the levels of thermal intensities.

Topography of thermal changes (features extraction).

We characterized the AUs produced by examining the

localization of temperature changes related to muscle

contractions of the face. We calculated the representative

temperature maps (Map) for each trial by subtracting each

temperature value of the image obtained at the apex (Iapex)

from the spatially corresponding temperature image ob-

tained at the end of the baseline (Ionset) (Map ¼ Iapex �
Ionset). This procedure is intended to facilitate the inter-

pretation of the results by avoiding the use of the loadings

and the scores resulting from the PCA decomposition,

parameters that should be interpreted as temperature

variations around the mean temperature of the face. Finally,

we calculated a mean representative topographic map for

each requested AU by averaging (across time/subject) all

individual maps obtained in each condition.

2.4.3 Classification of AUs

In order to quantify the robustness of the thermal imaging
technique to discriminate the muscles contractions, we used
a classifier based on the leave-one-out cross-validation
method [11]. Several classes of classification algorithms
exist, such as Neural Networks and Decision Trees or
Linear Discriminant Analysis [12]; however, the K-nearest
neighbor model (with K ¼ 1) is the simplest algorithm to
implement [13], [14]. This classifier could automatically
split classes of objects (here the AUs) by using a predefined
parameter; in our case, the Pearson’s linear correlations
between a given image (the image at the apex minus the
image at the onset; see above) with the specific AU
representative maps (obtained with the n� 1 participants).
More precisely, for each trial, we recalculated the repre-
sentative maps with the remaining three participants who
had not performed the current trial. And we calculated the
correlations between the image for this trial (Iapex-Ionset)
with the representative map of all requested AUs. The
highest of these correlations should then be an indicator for
the AU that was requested on this trial. This procedure was
then repeated for each trial.

3 RESULTS

3.1 Control of AU Production Accuracy

The visible-spectrum videos were coded by an external

trained and certified FACS coder from another laboratory.

He systematically coded the AUs of each facial expression

produced. By comparing the coding done by the outside

FACS coder with our experimental AUs, we found that the

requested AUs were produced in 74.26 percent of cases (with

a very low performance for AU9+10 at 6.06 percent). This

comparison also led to the finding that 66.48 percent of the

fast trials were judged as fast contractions and 73.04 percent

of the slow trials were judged as slow contractions. Finally,

50.81 percent of the strong contractions, 58.62 percent of the

normal contractions, and 57.14 percent of the just-perceptible

contractions were judged as belonging to the intended

category.
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Fig. 6. Procedure to determine the apex of the trials (highest thermal
amplitude after baseline).



3.2 Sensitivity to Speed

The apex of each facial muscle contraction was reliably
detected. A representative sample of the temperature as it
unfolded for the slow and fast speed conditions is repre-
sented in Fig. 7. On average, the apex (i.e., the temperature
peak) was detected at 1,282 ms (SD ¼ 439) after the end of the
baseline for fast AUs, and at 1,976 ms (SD ¼ 550) for slow
AUs. Interestingly, when the AUs are considered together,
the latency values obtained were significantly different
between the slow and fast conditions (permutation test;
p < 0:001). The same permutation procedure performed for
each AU separately revealed that the two different speeds
were significantly discriminated for all requested AU(s)
(Table 1; at least p < 0:02).

3.3 Sensitivity to Intensity

A representative sample of the temporal unfolding of the
temperature for the three intensities is presented in Fig. 8.
The permutation procedure applied to the apex amplitude
values for all the AUs together revealed a significant
difference between the just perceptible and the high intensity
conditions (permutation test; p < 0:001). More precisely, the
approach led to a significant difference between just
perceptible and high intensity contraction for all AUs except
AUs 1 + 2 and 5. Just perceptible and normal intensities were
hardly dissociated, and normal and high intensities were
differentiated in rare cases (Table 1).

3.4 Specificity of the Facial Heat Patterns

Using a spatial patterning approach, we obtain, for each
requested AU, a coherent representative thermal map (Fig. 9).
Globally, in these map differences, we detected important
temperature variations in the facial areas that corresponded
to the location of the contracted muscle(s). For instance, we
observed an increase in temperature in the zygomaticus
region during a smile (i.e., when AU12 was requested), or a
decrease in temperature in the frontalis region during the
raising of the brows (AU1+2 requested).

3.5 Classification of AUs

The classification rates of AUs prodution are displayed in

Table 2. The highest classification rate found was 83.9 percent

for the detection of the corrugator contraction (AU4, brow

lower), the lowest being for the detection of the Duchenne

smile (AU6+12, 15.2 percent). Whereas low classification

rates were found for AU5 (30.3 percent), we obtained better

results for AUs 9 + 10 (75 percent), 12 + 25 (72.4 percent),

14 (69.7 percent), 1 + 2 (67.7 percent), and 25 (60 percent). The
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TABLE 1
Results of the Permutation Tests Performed
on Apex Amplitudes and Latencies Derived

The permutation tests compared for each requested AU, the two speeds
(SLOW and FAST in ms after the end of the baseline with the standard
deviation in parentheses) and the three intensities (JP, N, and H in
Kelvins with the standard deviation in parentheses). Slow-Fast ¼
permutations between slow and fast contractions; JP -H ¼
permutations between just perceptible and high intensity contractions;
JP -N ¼ permutations between just perceptible and normal intensity
contractions; N-H ¼ permutations between normal and high intensity
contractions.

Fig. 7. Investigation of kinetics: For each AU, temperature mean
distribution over all participants at normal intensity in the corresponding
area at slow and fast speed.

Fig. 8. Investigation of intensities: For each AU, mean temperature
distribution over all participants at fast speed in the corresponding area
at just perceptible, normal, and high intensities.



close smiles seemed difficult to differentiate with this
classifier. For instance, only 33.3 percent of AU12 were
recognized; most of the time, they were confounded with
close smiles such as AUs 6 + 12 (27.3 percent) and
14 (27.3 percent).

4 DISCUSSION

The main objective of this study was to test whether thermal
imaging can be used as a tool to investigate specific facial
heat patterns associated with the production of facial AUs.
We tested whether the analyses based on the thermal images
could specifically discriminate not only the contraction of a
particular muscle related to the production of AUs or
combinations of AUs, but also their intensities and speeds of
contraction. We used a spatial patterning approach by using
PCA on temperature values to extract specific facial heat
maps associated with the requested AUs. The power of the
approach for discriminating the speed and the intensity of
contraction was tested with a permutation procedure and
the capacity of thermal imaging to discriminate the different
AUs was tested with a classification procedure.

Globally, this spatial patterning approach led to good
results. One objective of the study was to assess whether we
could provide reliable information on the strength and the
speed of AU production. The permutation procedures
performed on the amplitudes and latencies of the thermal
responses measured at the apex led to a significant speed
discrimination for all AUs, and to a significant discrimination
between weak and strong contractions for all AUs except
AUs 1 + 2 and 5 (Table 1). A second objective of this study was

to define the specific facial heat patterns of AUs production,
which was accomplished using PCA (Fig. 9). Our analyses
strongly suggest that AU production induces a temperature
increase in certain areas of the face and a decrease in others. For
instance, the zygomaticus region seemed to increase in
temperature when contracting, whereas the temperature of
the frontalis region tended to decrease when activated. Our
main interpretation is that cold skin structures such as
eyebrows were sliding over the examined muscle region (e.g.,
frontalis) and thus decreasing in temperature, whereas such a
skin structure dislocation does not exist for other muscle
locations (e.g., zygomaticus). Another possible explanation
for a decrease in temperature could be the crumpling of the
skin in the muscle region during the contraction. Indeed, the
temperature at the skin surface also depends on the under-
lying blood flows, which could be modified and/or more
difficult to track during the crumpling of the skin. However,
on the basis of this study, we are not able to dissociate the
potential origins of the observed thermal variations; actually,
these fluctuations of temperature might be related to the
changes in blood flow occurring within the muscles during
the contractions, or they might be more related to the
movement of the skin. It could also be possible that both
occur simultaneously, with a skin displacement more or less
intense according to the position of the contracted muscle.
Finally, a third objective of this study was to quantify the
robustness of this thermal imaging technique to classify the
AU productions. The results of the classifier showed that
thermal imaging can differentiate the wrinkling of the nose
(AU9+10, 75.0 percent) from the brow lowerer (AU4,
83.9 percent) and from the brow raiser (AU1+2, 67.7 percent).
However, the approach led to weak classification rates in the
discrimination of the upper lid raiser expression (AU5,
30.3 percent) from all other requested AUs. A plausible
interpretation could be the small size of the muscle that
underlies the production of AU5 (levator palpebrae super-
ioris muscle), which is a muscle deeply hidden behind the
eye. In addition, the limitation of this classifier arose in
discriminating different closed smiles, such as a simple smile
(AU12) and the Duchenne smile (AU6+12). Indeed, the
classifier predicted AU12 in 33.3 percent of the cases but also
AUs 6 + 12 or 14 both in 27.3 percent of the cases when the
requested AU was AU12. The low classification rates for AUs
12 or 6 + 12 can be explained by the fact that the method
included the production of both AU12 and AU6+12 in the
same category. Another problem in discriminating AU6+12 is
the quality of the stimuli: The FACS coders reported that this
combination was difficult to perform. Indeed, from the
external FACS coder report, AU6 was sometimes coded
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TABLE 2
Confusion Matrix

The results of correct classifications are expressed as percentages.

Fig. 9. Representative heat patterns changes (Iapex-Ibaseline) for each
requested AU (averaged across FACS coders).



when AU12 was requested, and AU6 was not always coded in
AU6+12 trials. Even when the classifier did not allow for the
precise disentanglement of the different kinds of smiles, we
could correctly indicate whether the temperature related to
muscle contraction changed in the lower or upper part of the
face. For example, the production of AU12+25 was well
recognized at 72.4 percent but was confounded with AU12 in
20.7 percent of the cases, which corresponds to contraction of
muscles from the lower part of the face, whereas it was not
confounded with AUs corresponding to contraction of
muscles from the upper part of the face (0 percent for AU4,
0 percent for AU1+2, and 0 percent for AU5).

In sum, the thermal imaging technique seems to con-
stitute a promising approach to detecting and evaluating
changes in facial muscles contraction in relation with the
production of AUs. Indeed, we demonstrated that it led to
reasonable results in terms of detection of contraction
locations, their kinetics, and their strength. Moreover, it
avoids the problems of lighting encountered when using
traditional cameras and the use of hampering electrodes on
the face when using electromyography. An experimental
limitation of the procedure mentioned here was that we
used a system to immobilize the head of the participants.
Further head tracking techniques would be necessary to
allow the characterization of facial muscles contractions in
more natural scenarios, for example in response to emo-
tionally relevant situations. In addition, in this study, the
participants were requested to voluntarily produce specific
facial muscles contractions. In the future, it would be
interesting to differentiate among the various spontaneous
muscular activities relative to AU productions, as well as
among temperature changes related to other physiological
activity like vasoconstriction and vasodilatation. Indeed,
thermal imaging was recently used to investigate stress and
bodily temperature responses in emotional reactions in rats
[15], monkeys [16], and humans ([17], [18]). Tanaka et al. [19]
showed that the temperature of the nose increases with
anger, joy, and sadness, but decreases with fear. These
studies constitute the first valuable attempts to reveal
emotional reactions by thermal imaging of the face. Future
research should continue investigating facial temperature
changes during laboratory induced emotions.

5 CONCLUSION

To our knowledge, this study is the first to use thermal
imaging to discriminate specific facial temperature patterns
related to muscle contractions corresponding to facial action
units. Given the promising results, we suggest that
thermography is an advantageous method for the investi-
gation of AU discrimination. We used a spatial pattern
approach to classify nine different AUs or combinations of
AUs and to differentiate their speed and strength of
contraction. Using this technique, we also found specific
facial heat patterns associated to the different muscle
contractions. Finally, thermography may prove to be a
useful tool to unobtrusively analyze fine-grained elements
of facial expressions. It remains to be determined whether it
can be used to detect and characterize more spontaneous
expressions in other situations.
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