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Experience-Driven Procedural Content Generation
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Abstract—Procedural content generation (PCG) is an increasingly important area of technology within modern human-computer
interaction (HCI) design. Personalization of user experience via affective and cognitive modeling, coupled with real-time adjustment
of the content according to user needs and preferences are important steps towards effective and meaningful PCG. Games, Web
2.0, interface and software design are amongst the most popular applications of automated content generation. The paper provides
a taxonomy of PCG algorithms and introduces a framework for PCG driven by computational models of user experience. This
approach, which we call Experience-Driven Procedural Content Generation (EDPCG), is generic and applicable to various sub-
areas of HCI. We employ games as an indicative example of rich HCI and complex affect elicitation, and demonstrate the approach’s
effectiveness via dissimilar successful studies.

Index Terms—procedural content generation, user affect, user experience, personalization, adaptation, computer games.
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1 INTRODUCTION

A S information about users is becoming more readily
available for all kinds of digital services and modern

software development relies upon content creation, opportu-
nity and demand for automatically generated personalized
content increases in domains as diverse as e-commerce,
news reading, web 2.0 services, human-computer interfaces
and computer games. Ideas and technology from com-
puter games, including rich interactivity, three-dimensional
graphical visualization and role playing game-style incentive
structures, are more and more pervading the aforementioned
domains (a phenomenon referred to as “gamification”). By
viewing games as one of the most representative examples
of content creation applications, but also as elicitors of com-
plex user emotion syntheses, we explore ongoing research
on procedural content generation and propose Experience-
Driven Procedural Content Generation (EDPCG) as a generic
and effective approach for the optimization of user (player)
experience. On that basis, we view player experience as the
synthesis of affective patterns elicited and cognitive processes
generated during gameplay.

Recent years have seen both a boost in the size of the
gaming population and a demographic diversification of com-
puter game players [1]. Twenty years ago, game players were
largely young white males with an interest in technology;
nowadays, gamers can be found in every part of society [2].
This means that skills, preferences and emotion elicitation
differ widely among prospective players of the same game.
In order to generate the same gameplay experience, very
different game content will be needed, depending on the
player’s skills, preferences and emotional profile [3]. There-
fore, the need for tailoring the game to individual playing
experience is growing and the tasks of user (affective and/or
cognitive) modeling and affective-based adaptation within
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games becomes increasingly difficult. Game engines [4] that
are able to recognize and model the playing style and detect
the affective state of the user will be necessary milestones
towards the personalization of the playing experience, as will
procedural mechanisms that are able to adjust elements of the
game to optimize for the experience of the player.

1.1 Affective Games

Affective computing [5] research views the successful real-
ization of the affective loop [6], [7], [8] as one of the ultimate
goals behind the study of emotions within HCI. The phases
of emotion elicitation, affective detection and modeling and
affect-driven system adaptation are critical towards a closed-
loop affective-based HCI. For emotion elicitation users are,
in general, either asked to act a particular emotion (e.g. via
guided imaginary [9]) or specific stimuli are provided via the
interaction. Computer games, being generators of immersive
and rich HCI experiences, are able to elicit a great variation
of emotions and complex patterns of affect of the player.
Games offer rich and fast-paced interaction with dynamic
elements coupled with narratives which are hand-crafted to
yield particular patterns of player experience. This form of
interaction elicits complex emotional responses for the player
the detection of which is far from trivial. For some psychol-
ogists and game designers the emotions elicited by games
(and HCI in general) are not genuine emotions but rather
quasi-emotions [10], [11]. It is questionable, for instance,
who would play a game that can cause genuine fear in its
players. Thus, games as affect elicitors challenge the findings
of affective computing derived from simple laboratory-based
experimental designs while their rich interaction opens up
new perspectives for the study of affect detection.

The detection, modeling and synthesis of player expe-
rience is not trivial either since emotions are conceptual
constructs and emotional states are entities with unclear
boundaries [12]. Nevertheless, so far a considerable amount
of different game genres has been investigated varying from
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simple arcade games such as pong [13], [14], tetris [15]
and quiz games [16], to racing games [17], [18], physical
interactive games [19], prey/predator games [20], first-person
shooters [21], [22] and games for education [23]. The above
studies mostly focus on the interaction of the player with
non-player characters (NPCs) and no particular emphasis is
given to the content of the game and its impact to the player’s
affective state. We argue that a holistic approach for affective
synthesis in games requires the integration of game content
to the computational model of affect.

To successfully close the affective loop [8] within games
one needs to fulfill a set of system requirements: the game
should be tailored to individual players’ affective response
patterns; the game adaptation should be fast, yet not nec-
essarily noticeable; and the affect-based interaction should
be rich in terms of game context, adjustable game elements
and player input. The EDPCG approach proposed in this
paper satisfies those conditions via the efficient generation
of game content which is driven by models of player experi-
ence. Those computational models can be built on multiple
modalities of user input.

1.2 Procedural content generation
Procedural content generation (PCG) refers to the creation of
content automatically, through algorithmic means. Procedural
content generation is tied to several research areas such
as computational aesthetics and computational creativity in
general [24], and recommender systems. However, in this
paper we will focus on and discuss PCG for games, and at
the end of the paper we will return to how the ideas expressed
here can be applied to other domains and research areas.
Thus, we will start with defining content in games.

Game content refers to all aspects of a game that affect
gameplay but are not non-player character (NPC) behavior or
the game engine itself. This definition includes such aspects
as terrain, maps, levels, stories, dialogue, quests, characters,
rulesets, camera profiles, dynamics, music and weapons. The
definition explicitly excludes the most common application
of learning and search techniques in academic games re-
search, namely NPC artificial intelligence.

When it comes to the development of a modern computer
game, the effort and time required for the creation of game
content represents a large part of the development cost (and
time). One would expect that with the rapid advancement of
all forms of digital technology, this process would be rather
streamlined and partly automated by now. But while video
game technology has advanced by leaps and bounds from
pixel-based graphics and predictable interaction of Breakout
and Pac-Man to the elaborate realistic 3D environments,
rich dynamics and graphical detail of titles such as Halo
and Call of Duty, content creation is still largely manual.
Usually, a team of people from different departments of game
production is responsible for hand-crafting of all the content
in a game.

The cost of developing a top-tier computer game has
increased by orders of magnitude in the last two decades.

(For example, Rockstar’s Grand Theft Auto IV is the work
of 1000 people over a period of three years.) This “content
creation” bottleneck is a barrier to the artistic and techno-
logical progress of computer games, as few developers can
afford to try out new, risky ideas with this kind of stakes
involved.

Clearly, any technology that can alleviate the enormous
burden of content creation and make it easier to tailor
content to individual players or groups of players would
be warmly welcomed by game developers, game critics and
the game-playing public in general — especially if this
technology can also automatically adapt the game to the
needs and preferences of individual players. This argument
extends to games with a purpose beyond pure entertainment.
Game-based technologies, and often complete games, are
more and more used for simulation, training, education and
decision support in many sectors of society. And these games
and simulations need content. Militaries need scenarios to
train peace-keeping duties and simulate the consequences
of tactical decisions [25]; rescue services need city layouts
and buildings to train disaster relief workers [26]; companies
in sectors from logistics to customer service to education
use game-based simulations to train their employees, and
need scenarios for this. For training to be effective, desired
affective states of the trainees need to be reliably induced,
reinforcing the need for basing the content generation on a
model of the trainee’s experience profile.

Attempts at generating game content procedurally have a
fairly long history. Back in 1980, the game Rogue pioneered
procedural generation through automatically generating dun-
geons for the player to explore. This game’s endless replaya-
bility was a huge draw and it has been imitated numerous
times, for example by the fairly recent and commercially
successful Diablo (Blizzard).

A few years later, the classic space trading and adventure
game Elite (Acornsoft 1984) managed to keep hundreds of
star systems in the few tens of kilobytes of memory available
on the hardware of the day by representing each planet as
just a few numbers. In expanded form, the planets had names,
populations, prices of commodities etc.

In modern days, procedural content generation is almost
only used in narrowly specialized roles and almost al-
ways during development of the game. The probably most
widespread technique is SpeedTree, which automatically gen-
erates large numbers of similar but not identical trees for
populating terrains.

So why, if PCG has such a long history, is it not more
widely used to generate all forms of game content? The
reasons seem to be that:

1) Far from all types of game content can be satisfacto-
rily generated with desired variability, reliability and
quality by traditional techniques.

2) Traditional PCG techniques are not controllable
enough, meaning that not all important aspects of
the generated content can easily be specified by the
designer or by an algorithm. This is important as
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the content might need to be generated to fit into a
particular section of a game, or even a particular player.

It should also be noted that there has until very recently not
been an academic community devoted to the study of PCG.
This situation is now changing with the recent establishment
of a mailing list1, an IEEE CIS Task Force2, a workshop3

and a wiki4 on the topic as well as an international PCG
competition5. However, there is still no textbook on PCG, and
to our knowledge only a single short overview paper [27].

In the following, we will outline our approach to PCG,
which is in part an attempt to overcome the problems faced
by traditional PCG methods, and in part a vision for new
forms of personalized games and game development.

2 EXPERIENCE-DRIVEN PROCEDURAL CON-
TENT GENERATION

Experience-Driven Procedural Content Generation (EDPCG)
defines a novel approach to PCG. Even though embryos of
EDPCG components can be found in the literature, the ap-
proach proposed here (and in the pilot studies referenced) is
unique in linking player experience with procedural content
generation.

We start by redefining content within the EDPCG frame-
work. We view game content as building blocks of games,
and games as potentiators of player experience. Therefore,
content can be seen as indirect building blocks of player
experience which define a vital control component of the
affective loop in games. Since a game is synthesized by game
content building blocks that, when played by a particular
player, elicit player experience, one needs to assess the
quality of the content generated (linked to the experiences
of the player), search through the available content, and
generate content that optimizes the experience for the player
(see Fig. 1). In particular, the components of EDPCG are:

• Player Experience Modeling: player experience is mod-
eled as a function of game content and player (the player
is characterized by her playing style, and her cognitive
and affective responses to gameplay stimuli).

• Content Quality: the quality of the generated content is
assessed and linked to the modeled experience of the
player.

• Content Representation: content is represented accord-
ingly to maximize efficacy, performance and robustness
of the generator.

• Content Generator: the generator searches through con-
tent space for content that optimizes the experience for
the player according to the acquired model.

1. http://groups.google.com/proceduralcontent
2. http://game.itu.dk/pcg/
3. http://pcgames.fdg2010.org/
4. http://pcg.wikidot.com
5. http://www.marioai.org

Fig. 1. The main components of the experience-driven
procedural content generator.

2.1 An example: personalized level creation in Su-
per Mario Bros

Before delving into the details of these components, we will
give the reader a feel for what EDPCG entails by providing
an example from a recently published paper. We take our
example from Pedersen et al. [28], who modified an open-
source clone of the classic platform game Super Mario Bros
to allow for personalized level generation.

The first step was to represent the levels in a format that
would yield an easily searchable space. A level was repre-
sented as a short parameter vector describing the number, size
and placement of gaps which the player can fall through, and
the presence or absence of a switching mechanic. This vector
was converted to a complete level in a stochastic fashion,
using an algorithm that built up the level from right to left
placing gaps according to the specified parameters.

The next step was to create a model of player experience
based on the level played and the player’s playing style. Data
was collected from hundreds of players, who played pairs of
levels with different parameters and were asked to rate which
of these two levels best induced each of the following affec-
tive states: fun, challenge, frustration, predictability, anxiety,
boredom. While playing, the game also recorded a number of
metrics of the players’ playing styles, such as the frequency
of jumping, running and shooting. This data was then used to
train neural networks to predict the examined affective states
using evolutionary preference learning. Automatic feature
selection decided which subset of player data attributes was
considered by each affective state predictor. The predictor of
fun, for instance, was associated with the time spent moving
left during a level and the number of enemies killed by
stomping on them, whereas the predictor of frustration was
linked to the time spent by the player standing still, the jump
difficulty, the proportion of gameplay time within the last life
and the number of deaths due to falling into gaps [29].

Finally, these models were used to optimize game levels
for particular players [29]. Two examples of such levels can
be seen in Fig. 2. As seen from that figure, the level generated
to maximize predicted fun for the current Super Mario AI



4

(a) Human

(b) World-Champion AI

Fig. 2. Example levels generated for two different Super Mario players. The levels generated maximize the modeled
fun value for each player. The level on top depicts the level generated for one of the subjects that participated in our
experiments while the level below is the level generated for the world champion agent of the Mario AI competition.

champion (Fig. 2(b))6 contains large and challenging gaps
whereas the generated level of maximum fun value for the
human (Fig. 2(a)) contains more gaps placed in a more
unpredictable manner.

Assuming the playing style of a particular player is known,
the level of each of the six affective states can be predicted
for any particular level (expressed as a parameter vector)
by simply feeding the level parameters together with the
player parameters to the neural network. This means that the
neural network can act as an evaluation function for black-
box search or optimization, using for example evolutionary
algorithms or exhaustive search.

While emotional response is only measured via self-
reports (and not bodily reactions, for instance) in this study,
our affective models rely upon the assumption that player
emotions can be inferred via the association of user self-
reports and game context variables [30], [31].

2.2 This paper

Below, we survey the four main components of EDPCG,
and provide a taxonomy of different approaches to each and
outline the main research challenges faced. We also give a
non-exhaustive number of examples that fully or partly adopt
the principles of EDPCG. Each component of EDPCG has
its own dedicated literature and the extensive review of each
would be beyond the scope of this paper. Thus, the survey
attempts to highlight representative work that relates to the
key components of EDPCG and discuss, in part, studies that
cover central or peripheral principles of EDPCG.

Figure 3 provides an overview of the EDPCG framework
and serves as an illustration of the structure followed in
the remaining of this paper. The three approaches to player
experience modeling (subjective, objective and gameplay-
based), illustrated at the top of the figure, are presented in
detail in Section 3. Section 4 presents the different types
of content evaluation functions available (direct, simulation-
based and interactive). A discussion dedicated to content
representation is provided in Section 5.1 and the generation
component of EDPCG is covered in Section 5.2. The paper
concludes with a summary of future visions for the EDPCG
framework in Section 6.

6. The Mario AI competition is about developing the best controller
(agent) for Super Mario Bros — http://www.marioai.org/

Fig. 3. The EDPCG framework in detail. The gradient
grayscale-colored boxes represent a continuum of pos-
sibilities between the two ends of the box while white
boxes represent discrete, exclusive, options within the
box. The blue arrows illustrate the EDPCG approach fol-
lowed for the Super Mario Bros example study described
in Section 2.1 [28], [29]: Content quality is assessed via
a direct, data-driven evaluation function which is based
on a combination of a gameplay-based (model-free),
and a subjective (pairwise preference) player experience
modeling approach; content is represented indirectly
and exhaustive search is applied to generate better
content.
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3 PLAYER EXPERIENCE MODELING
Player experience models can be built on different types of
data collected from the players which in turn define different
approaches to player experience modeling (PEM). We can
identify three main classes of approaches for modeling player
experience in games which rely on 1) data expressed by
players (subjective PEM); 2) player data obtained from
alternative types/modalities of player response (objective
PEM); and 3) data obtained through the interaction between
the player and the game (gameplay-based PEM). While the
subjective and objective approaches emphasize on both the
affective and the cognitive aspects of playing experience,
the gameplay-based approach focuses on the cognitive and
behavioral components of it. The PEM approaches can be
combined to more powerful hybrid methods for capturing
player experience. The overview of the three approaches and
their internal sub-classes can be seen in Fig. 3.

3.1 Subjective PEM
The most direct way to develop a model of experience is to
ask the players themselves about their playing experience
and build a model based on these data. Subjective PEM
considers only first person reports (self-reports) and not
reports expressed indirectly by experts or external observers.
Subjective player experience modeling can be based on either
players’ free-response during play or on forced data retrieved
through questionnaires.

Free-response naturally contains richer information about
the players’ affective state but it is hard to analyze appro-
priately. An experiment designer may decide to annotate
the derived text or verbal response into specific critical
words or phrases which can then be mapped to player
experiences. However, doing so requires strong assumptions
about the validity and the importance of the text/speech
clusters identified.

Forcing players to self-report their experiences, on the
other hand, constrain them into specific questionnaire items
which could vary from simple tick boxes to multiple choice
items. Both the questions and the answers provided could
vary from single words to sentences; even though, generally,
short and clear question-and-answer items are preferred
since lengthy questionnaire items may challenge short-term
memory and cognitive load of the player. Forced self-reports
can be further classified as ranking, in which the players
are asked to answer questionnaire items given in a rank-
ing/scaling form [32], [21], [33], and preferences, in which
players are asked to compare their player experience in two
or more variants/sessions of the game [34], [35], [18].

Subjective player experience modeling may yield very ac-
curate models of self-reported affective states [35]; however,
there are quite a few limitations embedded in this approach.
First, there is usually significant experimental noise in the re-
sponses of players; this may be caused by player learning and
self-deception effects. Second, self-reports can be intrusive if
questionnaire items are injected during the gameplay sessions
[21], [33]; on the other hand, they are sensitive to players’

memory limitations if players are asked to express their
experience after a lengthy game session (post-experience
effect). While efficient methods for minimizing learning
effects and self-deception effects have been proposed [35],
there is no universally accepted time window within which
players should be asked to express their player experience.
Such a time window should result in a self-reporting process
that is both as unobtrusive as possible and suffering from
minimal post-experience effects.

Numerous studies have shown that self-reports can guide
machine learning algorithms for successfully capturing as-
pects of player experience in prey/predator [36], physical
interactive [37], platform [28], [38] and racing [18] games.

3.2 Objective PEM
Player experience can be linked to a stream of emotions,
which may be active simultaneously, usually triggered by
events occurring during gameplay. Games can elicit player
emotional responses which in turn may affect changes in the
player’s physiology, reflect on the player’s facial expression,
posture and speech, and alter the player’s attention and
focus level. Monitoring such bodily alterations may assist in
recognizing and synthesizing the emotional responses of the
player. The objective approach to player experience modeling
incorporates access to multiple modalities of player input
for the purpose of modeling the affective state of the player
during play.

Within objective PEM, a number of real-time recordings
of the player may be investigated for modeling affective
aspects of player experience. There are several studies that
explore the interplay between physiology and gameplay by
investigating the impact of different gameplay stimuli to
a number of dissimilar physiological signals. Such signals
are obtained through electrocardiography (ECG) [21], [20],
photoplethysmography [20], [18], galvanic skin response
(GSR) [32], [17], [14], respiration [18], electroencephalogra-
phy (EEG) [15], [39], electromyography (EMG) and pupil-
lometry [40], [41] (note that the pupillometry studies do not
involve games). Most of the above studies have revealed
relationships between features of physiology and self-reports
of players. Typical examples of these relationships include
the positive correlations between average heart rate [19], skin
conductance [32] and player entertainment.

In addition to physiology one may track the player’s bodily
expressions (motion tracking) at different levels of detail and
infer the real-time affective responses from the gameplay
stimuli. The core assumption of such input modalities is that
particular bodily expressions are linked to basic emotions and
cognitive processes. Motion tracking may include body and
head pose as well as gaze [42] and facial expression [43],
[44].

Speech may also be used for inferring affective responses
of the player [16], [45] but it is not directly applicable for the
vast majority of existing game genres. Nevertheless, speech-
based PEM is promising for future game implementations
since it is completely unobtrusive and real-time efficient. A
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detailed review of speech-based affect recognition can be
found in [46].

The objective PEM approach can be model-based or
model-free. Model-based refers to emotional models derived
from emotion theories (e.g. cognitive appraisal theory [47])
such as the popular emotional dimensions of arousal and
valence [48], [49] in which bodily responses are mapped
to specific emotional responses — e.g. the increased heart
rate of a player corresponds to high arousal and therefore to
player excitement. Model-free PEM refers to the construction
of an unknown mapping (model) between modalities of
player input and an emotional state representation via user
annotated data. This approach is very common, for instance,
for facial expression and head pose recognition since subjects
are asked to annotate facial (or head pose) images of users
with particular affective states (see [50] among others). Clas-
sification and regression techniques derived from machine
learning or statistical approaches are commonly used for the
construction of the computational model 7.

Note that the space between a completely model-based
and a completely model-free approach is a continuum, and
any objective PEM approach might be placed somewhere
along this axis. While a completely model-based approach
relies solely on a theoretical framework that maps users’
bodily responses to affect, a completely model-free approach
assumes there is an unknown function between modalities of
user input and affect that a machine learner or a statistical
model may discover, but does not assume anything about
the structure of this function. Relative to these extremes,
all objective PEM approaches may be viewed as hybrids
between the two ends of the spectrum, containing elements of
both approaches. As a typical example of a hybrid approach,
Mandryk and Atkins [51] built part of a computational model
of emotion on physiological signal data while relying on a
theoretical model of emotion (the arousal-valence model) for
its structure.

Models built via the objective PEM approach may be very
accurate representations of player experience since player
experience is approached in a holistic manner via the use
of multiple input modalities. While maximizing the amount
of information available about the player through multiple
modalities will most likely improve the model’s accuracy,
the complication of PEM increases. Therefore, a balance
between the generated model’s accuracy and computational
and practical effort has to be kept.

The key limitations of the objective PEM approach include
its high intrusiveness, low practicality (combined with high
complexity) and questionable feasibility. Most modalities are
still nowadays not technically plausible within commercial
computer games. For instance, existing hardware for physi-
ology requires the placement of body parts (e.g. head, chest
or fingertips) to the sensors making physiological signals

7. One might claim that training on annotated data is a combination of
subjective and objective PEM and not a purely objective PEM approach;
however, we view the annotation of data as an indirect subjective PEM
approach since users do not report on their own experience but rather on
the potential experience of other users.

such as EEG, respiration, blood volume pulse and skin
conductance rather impractical and highly intrusive for most
games. Future integrations of physiological sensors within
game controllers — e.g. the upcoming Nintendo Wii 8 heart
rate (vitality) sensor — and more research on wearable
devices could lower the intrusiveness of biofeedback devices.
Another point of concern for the use of physiology-based
EDPCG is the effect of signal habitation — i.e. the level of
physiological response decreases the more a specific stimuli
is presented. Habitation is of particular relation to game-
related research and connected to learnability in games. The
design of a successful EDPCG approach should be able to
provide dissimilar stimuli (via content generation) or control
for habitation.

Pupillometry and gaze tracking are very sensitive to
distance from screen and variations in light and screen
luminance, which makes them rather impractical for use in
a game application. Modalities such as facial expression and
speech could be technically plausible in games even though
the majority of the vision-based affect-detection systems
currently available cannot operate in real-time [46]. Aside the
real-time efficiency, the appropriateness of facial expression
and speech for emotion recognition in games is questionable
since most players tend to stay still and speechless while
playing games [21]. At the positive end of the spectrum,
Microsoft’s XBox 360 Kinect9 sensor device is pointing
towards more natural game interaction and showcases a
promising future of objective PEM.

3.2.1 Example: Affective Camera Control in 3D
Prey/Predator Games
An example of model-free, objective PEM, for procedural
content generation is the work of Yannakakis et al. [20] in
which virtual camera profiles (game content) and physiology
features are linked to expressed affective states such as
challenge, frustration and fun in 3D prey/predator games (see
Fig. 4). The relationship between the player’s heart rate, skin
conductance and blood volume pulse, and game content are
derived via both linear [52] and non-linear [20] models.

3.3 Gameplay-based PEM
The main assumption that drives gameplay-based PEM is
that player actions and real-time preferences are linked
to player experience since games may affect the player’s
cognitive processing patterns and cognitive focus. On the
same basis, cognitive processes may influence emotions;
one may infer the player’s emotional state by analyzing
patterns of the interaction and associating user emotions
with context variables [30], [31]. Any element derived from
the interaction between the player and the game forms the
basis for gameplay-based PEM. This includes parameters
from the player’s behavior derived from responses to system
elements (i.e. non-player characters, game levels or embodied
conversational agent behavior).

8. http://wii.com/
9. http://www.xbox.com/kinect/
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Fig. 4. The 3D prey/predator game MazeBall used for
experiments in affective camera control.

As in objective PEM, a gameplay-based PEM approach
can be classified as model-based, model-free or some hy-
brid between the two. Model-based approaches are typically
inspired by a general theoretical framework of behavioral
analysis and/or cognitive modeling (e.g. usability theory [53],
belief-desire-intention model, the cognitive theory by Ortony,
Clore, & Collins [54], Skinner’s model [55], Scherer’s theory
[56]), but there are also theories about user affect that are
specific to games such as Malone’s design components for
fun games [57], Koster’s theory of fun [58] and game-specific
interpretations of Csikszentmihalyi’s concept of Flow [59].

The inputs to an gameplay-based player experience model
are statistical spatio-temporal features of game interaction.
Those features are usually mapped to levels of cognitive
states such as attention, challenge and engagement [31].
General measures such as performance and time spent on
a task have been used in the literature, but also game-
specific measures such as the weapons selected in a shooter
game [60], the times the player dies and the unpredictability
of deaths [34] in prey/predator games. Moreover, several
dissimilar difficulty and challenge measures [61], [62], [63],
[64], [65], [34], [66] have been proposed for different game
genres. In all of these studies, difficulty adjustment is per-
formed, based on a player experience model that implies a
direct link between challenge and fun.

Sometimes a player model [67], [68] is embedded in
the process of PEM. Attempts to model and predict player
actions and intentions [69], [70], [71] as well as to identify
different playing patterns within a game [72], [73], [74], [75]
belong to the model-free class of gameplay-based PEM.

Gameplay-based PEM is certainly the most computation-
ally efficient and least intrusive PEM approach of all three
but it usually results in a low-resolution model of playing
experience and its affective component. The models are
often based on several strong assumptions that relate player
experience to gameplay actions and preferences.

3.3.1 Example: Galactic Arms Race

Hastings et al. [60] developed a multi-player game built on
model-based, gameplay-based PEM for PCG. In the game,
players guide a spaceship through various parts of space,

engaging in firefights with enemies and collecting weapons
(each weapon is optional, but having a good set of weapons
is necessary for success). A key mechanism in the game is
the generation of new weapons, based on which weapons
are selected by players. Player preferences define the fitness
value of the content. Thus, weapons players would select are
directly linked to a high fitness value for the selected content
and implicitly to a higher entertainment value for the player.
Highly fit weapons are then recombined and the resulting
generated weapons introduced directly into the game, making
the content generation an online evolutionary process.

3.4 Hybrid PEM approaches
The three PEM approaches can be combined to hybrid, and
possibly more effective, solutions for capturing player ex-
perience. The combination between subjective and objective
measures of player experience leads to the research areas of
psychophysiology [76] in games [19], [32], [51], [77], [20]
and affective gaming [4].

The combination between subjective and gameplay-based
PEM results in self-report-driven cognitive modeling. Ex-
amples of this hybrid approach include the generation of
predictors of reported affect grounded on in-game statistics
and expressed affective state preferences of players [28],
[38], [78].

Finally, the study of both gameplay-based and objective
inputs for PEM has lead to basic correlation analysis of the
mapping between physiology and gameplay preferences ([79]
among others) as well as to the investigation of the search
space between affective states (derived from video and/or
speech annotated data) and gameplay characteristics ([45]
among others).

3.5 General modeling principles
A model of player experience predicts some aspect of the
experience of a player in general, a type of player or a
particular player would have in some game situation. As
already mentioned, there are many ways this can be done,
with approaches to player experience modeling varying both
regarding the inputs (from what the experience is predicted,
e.g. physiology, level design parameters, playing style or
game speed), outputs (what sort of experience is predicted,
e.g. fun, frustration, attention or immersion) and the model-
ing methodology.

If data recorded includes a scalar representation of affect,
or classes and annotated labels of affective states, using the
PEM methods discussed above, any of a large number of
machine learning (regression and classification) algorithms
can be used to build affective models. Available methods
include neural networks, Bayesian networks, decision trees,
support vector machines and standard linear regression.

On the other hand, if affect is given in a pairwise pref-
erence format (e.g. game version X is more frustrating than
game version Y — this is often appropriate in subjective
PEM) standard supervised learning techniques are inappli-
cable, as the problem becomes one of preference learning
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[80], [81], [35]. In particular, neuro-evolutionary preference
learning has proven suitable for this task; in this method,
the weights of neural networks are evolved to minimize the
error between reported and predicted preferences [82], [35].
Simpler methods such as linear discriminant analysis [18]
have also proven to yield efficient affective predictors based
on preferences.

4 EVALUATING GAME CONTENT

In EDPCG, the main use of the acquired player models is to
judge the quality (usefulness, fitness) of game content items.
As mentioned above and discussed in more detail in the next
section, assessing the quality of the content is necessary in
the content generation phase, when candidate content items
are evaluated and used to generate new content. However,
just having a good model of some aspect of player experience
does not necessarily allow us to directly judge the quality of
particular items of game content, and the evaluation function
might utilize the model in unexpected ways.

The task of the evaluation function is to evaluate an item
of game content and assign it a scalar (or a vector of real
numbers10) that accurately reflects its suitability for use in the
game, and its capacity for instilling the desired affective state.
Designing the evaluation function is ill-posed; the designer
first needs to decide what, exactly, should be optimized and
then how to formalize it. For example, one might intend to
design an optimization algorithm that creates fun, immersive,
frustrating or exciting game content, and thus an evaluation
function that reflects how much the particular piece of
content contributes to the player’s respective affective states
while playing (recognized via PEM). Or, alternatively, one
might want to consider immersion, frustration, anxiety or
other emotional response representations when designing
such an evaluation function. The type and nature of playing
experience is hand-crafted by the designer and depended
on the game under investigation and the optimization goals
set. For instance, a designer might need to draw a mapping
between player experience and acceleration of the rehabili-
tation process via a Wiihabilitation game [84] and design an
evaluation function that encapsulates that. Or, alternatively,
the designer might want to design an evaluation function
that reflects to the successful training of social skills within
a serious game [85].

Three key classes of evaluation functions can be distin-
guished for assessing the quality of generated content: direct,
simulation-based and interactive functions. The overview of
the relationship between the three different PEM approaches
and the dissimilar classes of evaluation functions can be
found in Table 1. Each cell of Table 1 contains representative
studies surveyed in this paper that correspond to the respec-
tive combination of the PEM approach and the evaluation
function type.

10. In case of multi-dimensional evaluation functions, multi-objective or
multi-criteria optimization methodologies are employed [83].

4.1 Direct Evaluation Functions
In a direct evaluation function, some features are extracted
from the generated content, and these features are mapped
directly to a content quality value. Hypothetical such features
might include the number of paths to the exit in a maze,
the firing rate of a weapon, the spatial concentration of
resources on a strategy map, and the material balance in
randomly selected legal positions for board game rule set.
The mapping between features and content quality might
be linear or non-linear, but typically does not involve large
amounts of computation, and is typically specifically tailored
to the particular game and content type. This mapping can
be contingent on a model of the playing style, preferences
or affective state of the player yielding an element of per-
sonalization for content generation. An important distinction
within direct evaluation functions is between theory-driven
and data-driven functions. In theory-driven functions, the
designer is guided by intuition and/or some qualitative theory
of emotion or player experience to derive a mapping between
an experience model and the quality of content. Examples of
theory-driven direct evaluation functions can be found in the
following studies: [23], [84], [86], [21], [77], [66]. On the
other hand, data-driven functions are based on collecting data
on the effect of various examples of content via e.g. ques-
tionnaires and/or physiological measurements [20], and then
using automated means to tune the mapping from content to
player experience and finally to evaluation functions. More
examples of data-driven direct evaluation functions can be
found, among others, in [73], [79], [74], [20], [18], [51],
[38], [28], [22], [87], [45].

As seen from Table 1 direct evaluation functions have
not yet been utilized within the context of solely subjective
or solely objective PEM. Gameplay-based PEM and the
combination of subjective self-reports with other modalities
of user input are the most popular PEM approaches for the
design of direct evaluation functions.

4.1.1 Example
The automatic level generation for Super Mario Bros [28]
that was discussed in Section 2.1 is a good example of a
data-driven direct evaluation function which is based on a
combination of subjective and gameplay-based PEM. As both
level design and playing style are represented as vectors of
real numbers, ordinary neural networks could be trained to
map from the concatenation of a level design vector and a
playing style vector to a predicted level of affect in each
of the six affective dimensions included in the preference
questionnaire.

4.2 Simulation-based Evaluation Functions
It is not always apparent how to design a meaningful direct
evaluation function for some game content — in some cases,
it seems that the content must be sufficiently experienced and
operated for particular emotional responses to be elicited and
evaluated. A simulation-based evaluation function is based
on an artificial agent playing through some part of the game
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TABLE 1
Overview table for the relationship between PEM approaches and types of evaluation functions. PEM includes the

Subjective (S), Objective (O) and GamePlay-Based (G) approaches and their hybrids: subjective and objective
(SO), objective and gameplay-based (OG), subjective and gameplay-based (SG), and all three combined (SOG).
Representative studies surveyed in this article that follow each approach appear at the corresponding table cell.

References in parentheses denote that the game content is not considered explicitly as part of the evaluation; the
interaction with non-player characters is considered instead. A dash (—) symbolizes an infeasible combination

between a PEM approach and an evaluation function type.

S O G SO SG OG SOG

Direct Theory-driven [84], [66] ([23], [86]) ([21], [77])
Data-driven ([73], [79], [74]) [20] ([18], [51], [14]) [38], [28] ([22]) [87], [45]

Simulation-based Static — — [88], [83], [89]([62]) — [90]
Dynamic [91]

Interactive Explicit [92] — — — [85]
Implicit — [60] — — —

that involves the content being evaluated. Such playthrough
might include finding the way out of a maze while not being
killed or playing the board game that results from the newly
generated rule set against another artificial agent. Features,
that map to player experience models, are then extracted from
the observed gameplay (e.g. did the agent win? How fast?
How was the variation in playing styles employed?) and used
to calculate the quality value of the content. The artificial
agent might be completely hand-coded, or might be based
on a learned behavioral model of human players.

A key distinction is between static and dynamic
simulation-based functions. In a static evaluation function,
it is not assumed that the agent changes while playing the
game; in a dynamic evaluation function the agent changes
during the game and the quality value somehow incorporates
this change. For example, the implementation of the agent
can be based on a learning algorithm and the evaluation
function be dependent on learnability, i.e. how well and/or
fast the agent learns to play the content that is being
evaluated. Learning-based dynamic evaluation functions are
especially appropriate when little can be assumed about the
content and how to play it. Other uses for dynamic evaluation
functions is to capture e.g. order effects and user fatigue.

It should be noted that while simulations of the game
environment can typically be executed faster than real-time,
simulation-based evaluation functions are in general more
computationally expensive than direct evaluation functions;
dynamic simulation-based evaluation functions can be time-
consuming, all but ruling out online content generation.
Moreover, the design of simulation-based evaluation func-
tions is based on the assumption that an artificial agent
plays the game similarly to how a human player would,
functionally emulating the experiences of the human. This is
a clear limitation of the approach that could be resolved, in
part, by constructing agents that imitate human playing styles
and backing up the evaluation function with user studies —
e.g. as in [34].

It is obvious that simulation-based functions can only be
coupled with gameplay-based player experience models; this
is clearly reflected in Table 1. Studies in the literature have

(a) (b)

Fig. 5. Two procedurally generated racing tracks, one
evolved for a proficient player (a), and for a not proficient
one (b). Although this method is biased towards “flower-
like tracks”, is clear that the first track is more difficult to
drive, given its very narrow section an its sharp turns. A
less proficient controller instead produced an easy track
with gentle turns and no narrow sections.

already been concerned with the design of both static [88],
[83], [89] and dynamic [91], [90] simulation-based evaluation
functions for content creation.

4.2.1 Example: racing game tracks
Togelius et al. [88] designed a system for generation of tracks
for a simple racing game (see Fig. 5). Tracks were repre-
sented directly as fixed-length parameter vectors, interpreted
as b-splines (sequences of Bezier curves) which defined the
course of the track. The player experience was modeled
based on gameplay statistics (gameplay-based PEM); data
had been collected as human players drove test tracks, and
neural networks had been trained to drive the car in similarly
to how the human players drove. For the static simulation-
based evaluation function, each candidate track was assessed
by letting one of the neural network-based controllers drive
on the track. The actual assessment of the quality of content
was inspired by Malone’s principles for engaging game
design [57] and depended on the driving performance of the
human-like neural network controller on the particular track:
amount of progress, variation in progress and difference
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between maximum and average speed.

4.2.2 Example: predator/prey games
Togelius and Schmidhuber [91] conducted an experiment in
which rulesets were evolved for grid-based games in which
the player moves an agent around, in a manner similar
to a discrete version of Pac-Man. Apart from the agent,
the grid was populated by walls and “things” of different
colors, which could be interpreted as items, allies or enemies
depending on the rules. Rulesets were represented as fixed-
length parameter vectors, interpreted as the effects on various
things when they collided with each other or the agent, and
their behavior. A relatively wide range of games could be
represented using this vocabulary, and genotype generation
was deterministic except for the starting position of things.

The dynamic simulation-based evaluation function, that
assessed the rule sets, was based on gameplay-based PEM
and inspired by Koster’s theory of fun [58] in games and
implemented as follows: an evolutionary reinforcement learn-
ing algorithm was used to learn each ruleset and the ruleset
was scored dependent on how well it was learned. Games
that were impossible or trivial were given low quality value,
whereas those that could be learned after some time scored
well.

4.3 Interactive Evaluation Functions
Interactive evaluation functions score content based on inter-
action with a player in the game, which means that fitness is
evaluated during the actual gameplay. Data can be collected
from the player either explicitly, using questionnaires or
verbal input data, or implicitly by measuring e.g. how often
or long a player chooses to interact with a particular piece of
content [60], when the player quits the game, or expressions
of affect such as intensity of button-presses, shaking the con-
troller, physiological response, gaze fixation, speech quality,
facial expressions and postures. Data are used to tailor the
player experience models to the specific player, which in
turn affects the evaluation function of the content presented
to the player. If an interactive evaluation function is coupled
with a subjective PEM component (e.g. self-reports shape the
quality of content interactively) the function is classified as
explicit; otherwise the function is classified as implicit (see
Table 1).

As mentioned earlier, the problem with explicit data col-
lection is that it can interrupt the game play, whereas the
problem with implicit data collection is that data may often
be noisy, inaccurate, delayed and of low-resolution.

4.3.1 Examples
Interactive evaluation functions have not been explored as
much as the other two types of evaluation functions. The
Galactic Arms Race game [60], discussed in Section 3.3.1,
is the most prominent example of an implicit interactive
evaluation function we are aware of; the utility of any
particular weapon is directly proportional to how much it
is used by the various players of the game. This example

demonstrates out that successful use of interactive evaluation
is as much a question of game design as of computational
intelligence.

A good example of an explicit interactive evaluation func-
tion can be found in Martin et al.’s system for interactively
evolving building for the game Subversion (Introversion,
In development) [92]. The work of Yannakakis et al. [85]
contains elements of both explicit and implicit interactive
evaluation functions for personalized quest generation in
serious games. It should be pointed out that while there are
so far rather few examples of interactive evaluation functions
in EDPCG for games, there is much research on this topic
in the neighboring field of evolutionary art [93].

5 OPTIMIZING GAME CONTENT FOR EXPERI-
ENCE

Once a player experience model has been created based
on acquired player data, and a content evaluation function
created based on the model, content can be optimized to
maximize this evaluation function.

It is common to use some form of evolutionary algorithm
(EA) as the main search mechanism. In an EA, a population
of candidate content instances are held in memory. Each
generation, these candidates are evaluated by the evaluation
(fitness) function and ranked. The worst candidates are
discarded and replaced with copies of the good candidates,
except that the copies have been randomly modified (i.e.
mutated) and/or recombined. However, EDPCG does not
need to be married to evolutionary computation (EC); other
search mechanisms are viable as well. The same considera-
tions about representation and the search space largely apply
regardless of the approach to search.

5.1 Representing the Game Content
A central question in EDPCG concerns how to represent
whatever is generated. Content may be represented symbol-
ically within a tree or a graph data structure. That is usually
the practice within interactive storytelling studies (see [94],
[95] among others). While symbolic representation allows
for content generation in a designer controlled-fashion, sub-
symbolic representations such as artificial genotypes allow
for greater content variation and innovative content creation.
Hybrid symbolic and sub-symbolic approaches can also be
very powerful alternatives. EDPCG primarily focuses on
bottom-up, search-based [27] approaches for generating con-
tent, which are driven by computational heuristics of player
experience, but also allows for human (e.g. game designer)
top-down intervention.

Viewing the generation of content as an artificial evolution
process, an important question is how genotypes (i.e. the
data structures that are internally represented by the content
generator) are mapped to phenotypes (i.e. the data structure
or process that is assessed by the evaluation function). An
important distinction among representations is between direct
encodings, wherein the size of the genotype is linearly
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proportional to the size of phenotype and each part of the
genome maps to a specific part of the phenotype, and indirect
encodings, wherein the genotype maps nonlinearly to the
genotype and the former need not be proportional to the latter
([96], [97], [98]; see [99] for a review).

The study of representations in evolutionary computation
is a broad field in its own right, where several concepts
have originated that bear on PCG [100]. A particularly well-
studied case is where candidates are represented as vectors
of real numbers. These can more easily be analyzed, and
standard algorithms can easier be brought to work on such
representations compared to more unusual representations.
The problem representation should have the right dimension-
ality to allow for precise searching while avoiding the “curse
of dimensionality” associated with representation vectors
that are too large (or the algorithm should find the right
dimensionality for the vector). Another principle is that the
representation should have a high locality, meaning that a
small change to the genotype should on average result in a
small change to the phenotype and a small change to the
utility value.

Apart from these concerns, of course it is important that
the chosen representation is capable of representing all the
interesting solutions; this ideal can be a problem in practice
for indirect encodings, for which there might be areas of
phenotype space to which no genotypes map.

These considerations are important for EDPCG as the
representation and search space must be well-matched to the
domain if it is to perform optimally. There is a continuum
between EDPCG that works with direct and indirect repre-
sentation.

As a concrete example, a level for a 2D platform game
(such as Super Mario Bros or Sonic the Hedgehog) might be
represented:

1) directly as a two-dimensional grid where the contents
of each cell (e.g. ground, coin, wall, enemy, free space)
is specified separately, and mutation works by changing
directly on the cells,

2) more indirectly as a list of positions and shapes of walls
and pieces of ground that each occupy more than a
single cell in the underlying grid, and another list of
positions of enemies and items,

3) even more indirectly as a repository of different
reusable patterns of walls and free space (e.g. a long
jump followed by a particular type of enemy), and a
list of how they are distributed across the level,

4) very indirectly as a list of desirable properties (e.g.
number of gaps, distribution of gaps, number of ene-
mies, average height of coins over ground), or

5) most indirectly as a random number seed.
These representations yield very different search spaces.

In the first case, all parts of phenotype space are reachable,
as the one-to-one mapping ensures that there is always a
genotype for each phenotype. Locality is likely to be high
because each mutation can only affect a single cell (e.g.
turn it from wall into free space), which in most cases

(a) Map 1 (b) Map 2

Fig. 6. Example maps evolved for the StarCraft game.

changes fitness only slightly. However, because the length
of the genotype would be the number of cells in the grid,
levels of any interesting size quickly encounter the curse of
dimensionality. For example, a level based on a 100 × 100
grid (corresponding to a few screens in Super Mario Bros)
would need to be encoded as a vector of length 10000,
which is more than many search algorithms can effectively
approach.

At the other end of the spectrum, option number 5 does not
suffer from search space dimensionality because it searches a
one-dimensional space. The question of whether all interest-
ing points of phenotype space can be reached depends on the
genotype-to-phenotype mapping, but it is possible to envision
one where they can (e.g. iterating through all cells and
deciding their content based on the next random number).
However, the reason this representation is unsuitable for
EDPCG is that there is no locality; one of the main features
of a good random number generator is that there is no
correlation between the numbers generated by different seed
values. All search performs as badly (or as well) as random
search.

Options 2 to 4 might all be suitable representations for
searching for good platform levels. In options 2 and 3 the
genotype length would grow with the desired phenotype
(level) size, but sub-linearly, so that reasonably large levels
could be represented with tractably short genotypes. In option
4 genotype size is independent of phenotype size, and can be
made relatively small. On the other hand, the locality of these
intermediate representations depends on the care and domain
knowledge with which each genotype-to-phenotype mapping
is designed; both high- and low-locality mechanisms are
conceivable.

5.1.1 Example: strategy game maps
In [83] and [101] methods for generating playable and enjoy-
able strategy game maps using multiobjective evolution are
introduced. Representations for two types of game terrains
are investigated: a heightmap-based terrain for games for
strategy games taking place in smooth landscapes, where
each location has an associated elevation; and a binary map
representation where each map cell is either passable or
impassable. The latter representation was designed so that
maps could automatically be translated to the StarCraft map
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format, for use with the popular real-time strategy game (see
Fig. 6).

The representation of terrain features was semi-direct, akin
to alternative 2 in the enumeration of approaches to repre-
senting levels above. The position and shape of terrain fea-
tures such as mountains and rock formations were compactly
encoded in the genotype, together with the locations of bases
and resources. Candidate maps are evaluated through a set
of direct and simple simulation-based evaluation functions;
the multiobjective evolutionary algorithm then automatically
identifies the tradeoffs between these evaluation functions,
allowing a human designer to choose amongst generated
maps that are each Pareto-optimal in utility space.

The PCG described above can be linked to affective
models of playing behavior via any of the three PEM
approaches so that the multi-objective evolution of maps is
guided by predicted affective states of individual players.
While a particular map generates frustration for most players
it may very well elicit excitement for a few particular players.
A successful affective model should be able to identify those
across-subject differences and an efficient content generator
should be able to accommodate to the emotional response of
all players.

5.1.2 Example: game rules
Game rules can also be seen as a form of game content,
and represented in many different ways depending on the
type of game and the associated generation mechanism.
In Section 4.2.2 we discussed the evolution of rules in a
quite restricted domain with a relatively direct representation,
allowing fine-grained search in rule space.

As an example of a less restricted domain and somewhat
less direct representation, Browne [90] developed a system
for offline design of rules or two-player perfect-information
board games using a form of genetic programming. Game
rules were represented as expression trees, formulated in
a custom-designed game description language. The fitness
function was mostly simulation-based, and derived from a
combination of subjective and gameplay-based PEM: stan-
dard game-tree search algorithms were used to play the gen-
erated game, and features such as material balance fluctuation
and average playthrough length were extracted and fed to a
model constructed from preference questionnaires.

5.2 Generating the Game Content
Once player experience is captured, content is appropriately
represented and content evaluation functions are designed,
the content generator needs to search within the resulting
search space for content that maximizes particular aspects of
player experience.

If content is represented via a small number of dimensions
(indirectly) exhaustive search should be able to provide
robust solutions for online PCG [29]. In general, the more di-
rect the representation becomes the larger the content search
space becomes. Where exhaustive search is infeasible, other
techniques could be used varying from simple heuristic and

gradient-search (if gradient is computable) [37] to stochastic
global optimization techniques such as evolutionary algo-
rithms and particle swarm optimization.

Ideally, the content generator should be able to identify
if, how much and how often content should be generated for
a particular player. There are players that dislike adaptation
and emergence, and others that embrace it and instead loathe
the idea of having to repeat any section of a game, raising
questions about the significance and appropriateness of the
affective loop within games. We believe that a successful
EDPCG mechanism should be able to recognize if a player
dislikes the notion of adaptation. This adds to and further
emphasizes the importance of suitable methods for modeling
the experience of the player during play.

Optimizing content creation during play could be viewed
as a closed-loop control problem in which player experience
defines the feedback for the controller. Closed-loop control
is traditionally tied to certain limitations. The main concern
for EDPCG is the lack of a priori knowledge of the effect of
content generation. In other words, how would a mechanism
be able to accurately assess the effect of a particular piece
of content to player experience before it is generated in
the game. Imitating and predicting player behavior could
eliminate part of the problem.

It should be mentioned that there are many PCG tech-
niques that are not search-based as the term is defined in [27];
these are variously classified as constructive or generate-and-
test. Common techniques include L-systems [102], [103],
which are used to generate trees and other vegetation in
many games, and the diamond-square algorithm [104] which
is commonly used to generate fractal landscapes. Other
examples include the various dungeon generation algorithms
used in rogue-like games (discussed in Section 1.2), which
are rarely if ever published in academic venues.

A common feature for most constructive PCG techniques
is the emphasis on randomness, or conversely, the lack of
controllability. For example, it is hard to know anything at all
about how a particular landscape generated by the diamond-
square algorithm will look before generating it, and there
is no way to tell the algorithm to e.g. include two plateaus
connected by a ridge. In contrast, the search-based approach
allows the designer and/or player experience model to explic-
itly specify desirable properties of the content in gameplay
terms; this is why we couple EDPCG with search-based
algorithms. Note that many constructive PCG algorithms
can be used as components in search-based algorithms, for
example L-systems can be used as genotype-to-phenotype
mappings for landscape evolution [105]. Also note that there
are attempts to make constructive PCG more controllable
through declarative modeling [106].

6 VISIONS

As we have discussed in this paper, a number of successful
experiments are already beginning to show the promise of
experience-driven procedural content generation. By classi-
fying these experiments according to the taxonomies pre-
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sented in this paper, it can be seen both that (1) though
all are examples of EDPCG, they differ from each other
in several important dimensions, and (2) there is room for
approaches other than those that have already been tried.
There are several hard and interesting research challenges.
These include the appropriate representation of game content
and the design of relevant, reliable, and computationally
efficient evaluation functions based on reliable computational
models of player experience. The potential gains from pro-
viding good solutions to these challenges are significant: the
invention of new game genres built on PCG, streamlining of
the game development process, and further understanding of
the mechanisms of human entertainment and player emotion
are all possible.

The quantification of player experience and the assessment
of content quality based on a computational model of player
experience constitute one of the main challenges of EDPCG.
While there are numerous different approaches to capturing
user affect there is no universally accepted approach for
games and player experience. Games, being highly interac-
tive and immersive environments, are capable of eliciting
complex patterns of player affective states which have only
been explored via small-scale experiments. Most possible
combinations of evaluation function types and different PEM
(subjective, objective and gameplay-based) approaches for
PCG have not been explored yet and there is much room
for exploration of new combinations. Direct functions built
solely on subjective or objective player experience models
as well as interactive evaluation functions across all PEM
approaches define some of the future research challenges of
EDPCG. A combination of all three PEM approaches in a
multimodal and unobtrusive fashion is most likely to provide
the most reliable and accurate measures of player affective
and cognitive responses.

The selection of a suitable emotional response representa-
tion within games and the EDPCG framework is also yet to
be explored. While there is no globally accepted representa-
tion of emotional responses, discrete emotional states appear
to be more relevant and appropriate for game design purposes
than continuous multi dimensional approaches (e.g. arousal,
valance, dominance). Nevertheless, the EDPCG framework
is able to generate content for any emotional representation
chosen as long as the representation is linked appropriately
to the quality of the content.

An open research question concerns the optimization part
of the EDPCG algorithm. As previously mentioned, gen-
eration of content online can be viewed as a closed-loop
control problem that incorporates a noisy approximation of
a feedback signal. Player-game interaction, which in this case
forms the basis of the feedback signal, is stochastic by nature.
Also, emotions as constructs have stochastic boundaries
by nature which further augment the noise of the signal.
Therefore, it could be interesting to apply other techniques
from adaptive control (apart from global optimization) to
this problem. In particular, stochastic control is suitable for
problems with substantial noise and disturbances within the

system. One could therefore use such techniques not only to
redesign the content generation policy (controller) but also
to tailor the player experience model (system model) per se
during play.

As discussed in Section 5.1, the representation of content
could be anything from bit strings and real-valued represen-
tations to trees and graphs. The same type of content can
always be represented in different ways, having impact on the
granularity, dimensionality and locality the search space, and
human-readability of the produced content items. Finding the
most appropriate representation for different types of content
and adaptation needs is a key research challenge. While,
for instance, aspects of narrative have been represented as
trees (see [95], [94], [86] among others) and real-value
parameters have been used for platform game levels [28],
other representations might be more suitable. The appropriate
representation for game mechanics and game rules [91], [90],
[89], [107], for instance, is still largely an open research
question.

The need of automatic personalized content generation
expands beyond games. The EDPCG approach is inspired by
and built for games; its applicability, however, to other HCI
domains is rather obvious. Recommender systems, web 2.0
applications, interface design and computational creativity
and art are some of the diverse HCI sub-domains EDPCG is
suitable for. We can imagine such “content” as personalized
exercise plans, furniture assembly instructions, decorative
elements (for use as Windows backgrounds or printed on 3D
printers and placed on the window porch), schedules, menu
systems and shopping lists to be generated via non-game
EDPCG.

In EDPCG, the user drives the generation of new (person-
alized) content; the designer’s role becomes that of making
high-level decisions about the type of content to be gener-
ated and the type of experience to be optimized, arguing
moving the designer role up the value chain while saving
labor extending the limits of what technology can do. Thus,
EDPCG constitutes an innovative mixture of both user-driven
(through PEM) and design-driven (through parameter design)
content creation.
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