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Abstract—We introduce the automatic determination of leadership emergence by acoustic and linguistic features in on-line
speeches. Full realism is provided by the varying and challenging acoustic conditions of the presented YouTube corpus of on-line
available speeches labeled by ten raters and by processing that includes Long Short-Term Memory based robust voice activity
detection and automatic speech recognition prior to feature extraction. We discuss cluster-preserving scaling of ten original
dimensions for discrete and continuous task modeling, ground truth establishment and appropriate feature extraction for this
novel speaker trait analysis paradigm. In extensive classification and regression runs different temporal chunkings and optimal
late fusion strategies of feature streams are presented. In the result, achievers, charismatic speakers and teamplayers can be
recognized significantly above chance level reaching up to 72.5% accuracy on unseen test data.

Index Terms—Personality analysis, dimensional analysis, acoustic / linguistic fusion

1 INTRODUCTION

EADERSHIP and followership belong to the foun-

dations of human society, and without doubt
the ability to recognize leaders and followers can
be considered to be a vital aspect of human social
competence. In evolutionary history, leader-follower
structures evolved as a coordinated solution to chal-
lenges which could only be solved through collective
efforts. Nowadays, effective leadership is still con-
sidered essential for professionals and organizations
to foster productivity, financial revenue, customer
satisfaction, development of human resources and
innovations [1], [2].

For the purpose of this study, it is of particular
interest to determine which individuals are perceived
as leaders. It has been found that generally, followers
prefer leaders who are perceived as both competent
(acquiring resources for the group) and benevolent
(sharing resources with the group) [3], [4]. In detail,
prototypical leaders are often described by character-
istics such as decisiveness (making timely and well-
founded decisions), self-confidence (being able to face
adversity), vision (being inspiring and charismatic),
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interest over personal ambition) and diplomacy (solv-
ing conflicts and integrating individuals into a team).

Along with many others, these traifs are facets of the
individual personality. Research on personality has a
long tradition, leading to the now well-established
Five-Factor Model [5]. For analysis of personality
traits in speech, which is the focus of this article,
linguistic information has been used widely because
self-assessment and peer-assessment of personality
have mostly been conducted with the help of lists
of verbal descriptors. Subsequently, these have been
combined and condensed into descriptions of higher-
level dimensions. Meta-language prevailed, and object
language, i.e., the use of linguistic, phonetic, verbal
and non-verbal markers in the speech of subjects, was
less exploited. [6] gives an overview of personality
markers in speech and pertinent literature; a more
recent account of the state-of-the-art, especially on the
automatic recognition of personality with the help of
speech and linguistic information, and experimental
results can be found in [7]. To refer to some related
studies: [8] characterizes participants roles in multi-
party conversations; [9] deals with acoustic/prosodic
and lexical correlates of charismatic speech. [10]
demonstrates that US president election outcomes
can be predicted on the basis of spectral information
beneath .5 kHz. [11] experiments with computer-
synthesized speech expressing personality. In the field
of personality assessment from fext, [12] finds that the
use of appraisal predicts neuroticism, and that function
words are indicative of extraversion; furthermore, [13]
employs textual features for personality classification
of weblogs. In contrast, [14] proposes purely acoustic
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features for personality assessment in radio broadcasts,
and [15] points out the opportunities for automatic
personality analysis in human-machine interaction.

Building on those previous results, we propose a
speech based system which can automatically deter-
mine leadership emergence—i. e., whether speech from
an individual is perceived as leader-like—by means of
linguistic evidence from automatic speech recognition
(ASR) in combination with acoustic analysis. Such
automatic systems could help to avoid cost intensive
observer ratings [16] in the context of human resources,
and enable automatic voice coaching. Furthermore,
we expect that the perceived ‘social competence” of
robots and other technical systems can be further
advanced if we can make them understand which
persons are leaders and which are followers, and adapt
their discourse and interaction strategies accordingly.
Other promising applications of automatically detect-
ing leadership qualities are found in the multimedia
and entertainment sector, e.g., by enhancing archives
of on-line speeches by ‘tags’ indicating traits such as
charisma, self-confidence or integrity, or synthesizing
leader-like voices for avatars in computer games.

In the light of this broad application potential, we
strive to evaluate speech based leadership recognition
in real life settings. To this end, we collected the
YouTube corpus, a large corpus of on-line speeches
from YouTube that were annotated in ten dimensions
of leadership, such as charisma, self-confidence and
diplomacy, by expert annotators (Section 2). We com-
ment on the issues of correlated dimensions and anno-
tation reliability (Sections 2.2, 2.3), then move forward
to concepts for fully automatic analysis: In Section 2.4,
we present our approach for robust segmentation by
Long Short-Term Memory recurrent neural networks
and the classification and regression tasks used for
evaluation (Section 2.5). Methods for acoustic-linguistic
analysis by late fusion are outlined in Section 3,
briefly discussing the measures for their evaluation in
Section 4. Parameterization on the development set
and final evaluation on the test set of the YouTube
corpus are fleshed out in Section 5 before concluding
in Section 6.

2 YOUTUBE CORPUS: A DATABASE OF ON-
LINE SPEECHES

2.1 Data Collection

The YouTube corpus consists of 409 recordings, each
about one minute long, from 143 speeches available
on YouTube (143 male executives within the age range
of about 20-75 vears, mean = 51.1, standard deviation
= 12.1). For those nine speeches where either the exact
date of the speech or the speaker’s age could not
be determined, age was estimated by ten annotators
and the mean value of all annotators was considered
in further analyses. Moreover, the speakers’ age was
not related to any perceived leadership dimension
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and could therefore not be considered as a relevant
confounding factor. While a minority of 22 speeches
(15.4 %) seems to be read from a script, the remaining
speakers presented either without any notes or only
based on presentation slides. In addition, no differences
in perceived leadership characteristics were found
when comparing scripted and non-scripted speech.

As the approach of this study is to assess perceived
leadership dimensions based on voice characteristics,
the samples of the YouTube corpus were collected
to represent persons with significant leadership abil-
ities. The functions of the speakers can be summa-
rized as follows: The vast majority (89.5%, or 128
speeches) is taken from top executives of ‘global
plavers” (mostly derived from the Forbes Global 2000
list in 2010). The remaining 15 speeches are composed
of leaders of non-profit organizations (6), entrepreneurs
(5), university professors (3) and one football team
captain. Most speeches were derived from public
presentations such as introduction of new products
(100 or 69.9 %), outlining future prospects (19 or 13.3 %),
or summarizing recent developments (11 or 7.7 %).
The remaining 13 speeches include interviews and
university lectures. Although in [17], it has been shown
that apart from rather invariant speaker characteristics,
different speech settings and authorships of speeches
affect linguistic features, we did not explicitly control
for such possible confounders, since our study does
not aim at assessing invariant personality traits, but
rather at the subjective—and possibly time variant
impression of leadership, which should not be masked
by these uncontrolled confounders.

[n order to obtain a nearly equal amount of data per
speaker, not more than three recordings per speech
were extracted. These recordings will be subsequently
referred to as fracks. The speech signal was recorded
with different microphones and qualities, mainly with
a 16 kHz sampling rate. The recordings took place
in lecture-rooms under varying levels of noise and
reverberation (microphone-to-mouth distance > 0.3m).
The corpus was annotated by ten raters (Ph. D. stu-
dents of psychology, five males, five females) aged
between 23 and 58 vears (mean = 36.9). Gender effects
were controlled by Krippendorff's & and significance
testing, but no significant effects could be revealed.
All raters had been formally trained to apply a Likert
scale on a standardized set of judging criteria and are
experienced both in leadership research and in rating
of all the dimensions which were used. First trainings
were conducted with the assistance of unambiguous
samples (negative and positive ones). This is consid-
ered sufficient training since the ratings are supposed
to represent intuitive perception to gain best possible
external validity.

All rating dimensions were derived from the Cul-
turally Endorsed Leadership (CLT) questionnaire [18],
which is a highly validated, commonly applied rating
instrument (e. g., [19], [20]) and widely considered as
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the leading cross-cultural leadership approach [21].
Each rater assigned an integer value from 1 (“not at
all”) to 5 ("very”) to each of ten dimensions, for which
the following associated descriptors were given to the
raters: charismatic (fascinating, captivating, winsome),
visionary (stimulating, future oriented, far-sighted),
inspiring (positive, dynamic, building confidence), up-
right (trustworthy, reliable, being of integrity), feam
integrating (integrative, informing, team building), non-
malicious (benevolent, smart, anticipating), diplomatic
(good negotiating, accomplishing best conditions, ef-
fective), decisive (fast decisions, determined, stringent
argumentation), performing (improvement oriented,
demanding excellence, active), and self-confident (pro-
fessional, not nervous, not submissive). The order of
tracks was randomized. In case the rater was unsure,
he or she assigned a symbol for a missing value (L).
The validity of the applied dimensions and rating
instruments have been proven in several studies [19],
[22]-[24].

All ratings € {1.....

= {-1.-05.0.05.1}

5} were mapped onto

(1)
by means of the linear mapping ¢ — (¢= 3)/2, in order
to ensure compatibility of our results with the standard
representation of continuous dimensions, which mostly
are conceptualized as coordinate systems with an
origin.

We now formally introduce the terms related to
the annotation. fldllm € C shall denote the value for
dimension dim that rater r gave to track i. For each
track i and dimension dim, R9™ c {1, ..., 10} specifies
the raters that assigned a label to it, i.e. fld'rm = 1. Thus,
for a dimension dim and a track i, the mean rating can

be defined as follows:

F_dim - 1_
© IR

dim
Cir

di
reRrgm

e 1+l (2)

Fidim corresponds to the maximum likelihood estimator
of the true label of track i assuming that the l‘ahng of
each rater is corrupted by additive Gaussian noise [25].

Calculating the mean rating from the ordinal ratings
enables a quasi-continuous wcale taking into account
that leadership traits
best represented in continuous dimensions,

similarly to puramlaht\« are

while

observer ratings are typically performed on discrete
valued ordmal scales.

The distributions of the mean ratings Fidim for each
dimension dim shown in Fig. 1 as a box-and-
whisker plot [26]: Boxes range fmm the first to the
third quartile; all instances i with Ffj'm exceeding that
range by more than 1.5 times the width of lhe box

are considered outliers, depicted by circles. While the

are

mean rating distribution shows a somewhat strong
tendency towards the scale center, a more in-depth
analysis of the ratings yields that on average a range
of 3.8 (on the original Likert scale from 1 to 5), or
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Fig. 1. Visualization of the distribution of the mean
rating (for each dimension) across the instances as
box-and-whisker plot, with circles indicating outliers.

TABLE 1
Correlation matrix between inter-rater mean of original
10 dimensions (deci = decisive).
‘t_’:;
: = & g s B
s = - e = = = w2
|5 £ = = B E s = S
] = by = = & = B =
g € § &£ 5 § =2 £ &
T & § § 2 § & & &8
deci [EAEE e -25
self 3 53 -.19
perf 38 -31
feam o .27
upri 22
insp 5
char 01
wisi A1 14
dipl 31

95% of the available rating scale, have been used.
In addition, at least 10% of all ratings are located
at the extrema, and these extreme ratings are evenly
distributed among the r atmgs of all raters. Finally, the
low rate of missing values in the ratings (0.9 % or 36
of 4090 ratings) provides indirect evidence for high
rater confidence. These missing values are not focused
on certain samples or dimensions but appear to be
random.

2.2 Cover Dimensions

Table 1, considering only those tracks that were later

assigned to the tlammo or development set (Section
2.4), shows that the 1] dimensions annotated are
more or less correlated with each other, indicated by
different grey values: the darker, the higher correlated.
Thus it seems reasonable to assume some few, more
basic dimensions. In order to obtain such dimen-
sions in a data-driven and cluster-preserving way, we
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Fig. 2. Configuration of the derived stimulus (Euclidean
distance model) by non-metrical multi-dimensional scal-
ing (NMDS) on the inter-dimension correlation matrix.

computed Non-Metrical Multi-Dimensional Scaling
(NMDS) solutions [27], based on this correlation matrix.
Using all 10 dimensions reveals that non-malicious is
rather isolated from all other dimensions, cf. the low
correlation values in Table 1. We therefore computed
another two-dimensional NMDS solution using all
dimensions but non-malicious yielding the represen-
tation dL‘plLtLd in Figure 2 with a very good quality
(stress = .07, RSQ = .98). The four quadrants can be
interpreted as representing archetypal personalities of
leaders: charismatics (trst quadrant), achicvers (second
quadrant), diplomats (third quadrant), and teamplayers
(fourth quadrant). Clustered dimensions (ACHIEVER,
CHARISMATIC, TEAMPLAYER) were obtained by av-
eraging the ratings for the dimension in each cluster.
The clustered dimensions can be recognized within
the prototypical leadership characteristics mentioned
in the introduction and can be roughly assigned to
the classical dimensions of task- vs. people-oriented
leadership [28]. We will subsequently refer to the
dimensions ACHIEVER, CHARISMATIC, TEAMPLAYER,
NON-MALICIOUS, and DIPLOMATIC as ‘cover dimen-
sions’, denoted by SMALL CAPS.

2.3 Assessment of Annotation Reliability

To measure the reliability of the annotation in the
YouTube corpus, we considered the average agreement
of a single rater with the mean rating.
account the presence of missing \alue
raters, and the ordinal scale of the rating,
cided for (weighted) o statistics [29] and the corre-
lation coefficient o. For reference, we also provide
unw L‘lghted (CUth s) and weighted ». Weighted o
and r (a'.a?, x' and #2) use I_hc absolute value of
disagreement, [¢@™ = ™| or its square, as metrics, to
better reflect or dma] dependencies. Note that all of

Taking into
multiple
we de-

TABLE 2
Average rater agreement with the inter-rater mean,
measured by correlation (o), Kappa, and Alpha
reliability. 1. 52, a1, o? are weighted versions of Kappa
and Alpha (absolute / squared label difference).

Dimension K Kt K2 a al a?
charismatic 57117 31 46| 13 28 45
visionary 58 [ 16 31 47 | 11 28 46
inspiring 57 (13 029 44| 08 24 4
upright 51| .16 26 38| .12 22 36
decisive .62 19 34 51| .16 32 .50
performing 59 | 18 32 47 | 15 29 45
teant integrating Ab 12 20 31 (.06 .15 28
nton malicious 41 17 2 29| .14 19 27
diplomatic 47 (11 20 30| .04 14 28
self confident 62 | 18 35 52| .16 33 51
ACHIEVER 64 | 23 37 A3 | 21 36 &2
CHARISMATIC 59 A7 32 48 | 13 30 47
TEAMPLAYER s 17 26 37 .14 23 34

these measures are independent of the scaling of the
ratings.

For the purpose of calculating Kappa and Alpha
statistics of a rater versus the mean 1‘al‘ing, the mean
rating (Egn. 2) is mapped onto the nearest value in C
(Eqn. 1) through a function R — Cgi\'en by

20+

P =

The average agreement of the individual raters with
the inter-rater mean is shown in Table 2. Owverall,
despite the high correlation of the dimensions, their
reliability conude rably differs. Furthermore, for every
single kind of measure, the ACHIEVER cover dimension
dlsp]ays the highest average rater agreement with the
inter-rater mean. On the other side of the scale, there
is low agreement on the non-malicious, diplomatic, and
team-integrating dimensions.

2.4 Automatic Segmentation: From Track to

Chunk Level

In this article, we constrain ourselves to static classi-
fication and regression using segment-wise features,
which we will describe in detail in Sections 3.1 and
3.2. As a result, there is a need for adequate segmen-
tation: Segment-wise analysis can be applied to entire
tracks, thus taking into account long-range context,
but arguably also ]muw information about G,hmt time
variations of the features. Besides, a smaller unit of
analysis, termed chunk level in the following discussion,
can also be motivated from a machine learning point
alouabl\
enables more stable classifier training due to the
increased number of instances and more meaning ful
functionals. Then, a track level prediction
most important considering possible applications
be established by fusing chunk level predictions, as
discussed in Section 3.4.

of view, since using chunk level features

which is
can
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Tracks were split into chunks through automatic
voice activity detection (VAD). Relying on VAD dis-
poses of the need for a ground truth transcription,
which is required for more elaborate schemes based
on syntactic and prosodic criteria [30], but not available
for a real-life system that is applied “in the wild” to
unknown data. We found in a preliminary study on
the training set that due to the challenging acoustic
conditions in the database, particularly varying levels
of reverberation and noise, a simple energy threshold
was not appropriate for segmentation due to inaccurate
recognition of speech pauses. Thus, we implemented a
VAD using the output of a Long Short-Term Memory
recurrent neural network (LSTM-RNN) [31]. LSTM-
RNNs are able to take into account arbitrary amounts
of context from earlier feature and prediction vectors;
as a consequence, they are able to adapt to instationary
background noise, as could be demonstrated, e.g., in
[32].

We trained an LSTM-RNN on a modified version
of the TIMIT database: The recordings of the TIMIT
training set were split speaker-independently into
training (3326 utterances) and wvalidation set (370
utterances) and were overlaid with noise (babble
and street noise from the Aurora database [33]) at
signal-to-noise ratios from 0 to 30dB after adding
silence of random length (0 to 2 seconds) at the
beginning and end. 12 Perceptual Linear Prediction
(PLP) features along with first and second order
regression coefficients were extracted using our open-
source feature extractor openSMILE [34]. The LSTM-
RNN had one input layer of size 36 (input feature
vector size), one hidden layer with 200 LSTM cells,
and one output layer with one output indicating the
posterior voicing probability. From the manually phone
aligned transcripts, we generated a binary voicing
ground truth to be used as the target for network
training, by mapping all phones to 1 and silence to 0.
Training was performed by gradient descent with early
stopping once the error on the validation set had not
decreased for more than 40 iterations. The correlation
coefficient between the voicing ground truth and the
posterior voicing probability output by the LSTM-RNN
is .868, at a mean linear error of .123, on the noisy
data created from the TIMIT test set, indicating robust
segmentation in challenging conditions.

The trained network was applied to the audio
tracks in the YouTube corpus, and tracks were cut
at pauses which were indicated by the output of the
neural network staying below a threshold of 0.2 for
longer than 500 ms. Finally, we divided both tracks
and chunks into a training (TR), development (DE),
and test set (TE). The partitioning was chosen to
strictly enforce speaker independence, as needed in
most real-life applications. For easy reproducibility, the
subdivision was performed by ordering the speaker
[Ds in ascending numeric order and assigning the
first 57 (= 40%) of the 143 speakers to the training,

o

TABLE 3
YouTube corpus: Train, develop(ment), and test set,
and corresponding numbers of instances (#) on track
(tr.) and chunk (ch.) level as well as number (#) of
chunks per track; mean £ standard deviation.

set #tr.  length [s] #ch. length [s] | # ch./tr
Train 167 600+ 16 | 1740 52+ 6.1 WL +52
Develop | 125 607 £04 | 1281 53 + 6.8 102 +49
Test 117 630 +£41 | 1272 54+ 6.8 109 + 6.3
z 409 4293

the next 43 (= 30%) to the development, and the
remaining 43 (= 30 %) to the test set. We found that this
partitionihg also provides for stratification by speaker
age. The resulting number of tracks and chunks is
shown in Table 3. Note that we do not pre-select
“friendly” instances, such as instances with a high rater
agreement, for evaluation. Rather, in line with recent
studies in paralinguistic information retrieval (e.g.,
[35]), our goal is to design a system that robustly
classifies all available data, as needed for a system
operating ‘in the wild".

2.5 Task Definition: Regression versus Classifica-
tion

As mentioned above, the mean rating per track, 7™
provides a natural target for regression in the feature
space. On the other hand, it can be argued that in
practical applications, for example automatic tagging
of audio archives, an exact assessment is not required;
rather, a binary decision such as charismatic/non
charismatic is adequate. Furthermore, the latest series of
INTERSPEECH Challenges dealing with recognition
of speaker states and traits from speech in real-life
conditions have shown that such tasks become robustly
tractable when reduced to a reasonably limited number
of classes [36]-[39].

Thus, we additionally created binary classification
tasks for each dimension to discriminate between
high- and low-rated instances by binarizing the quasi-
continuous mean ratings, in accordance with recent
evaluation campaigns in the field [39], [40]. Each
instance i was assigned a ‘positive’ label (1) for
dimension dim whenever z@™ was below the sample
median of mean ratings 7™ in the union of training
and development set, or a negative’ (0) label in case
that #dm #™ The choice of the sample median
of means as threshold binarizes the quasi-continuous
rating given by the mean ratings in a natural way;,
enforcing balanced training with the union of training
and development set—this disposes of the need for up-
sampling or other techniques that are often applied to
prevent a classifier bias towards the majority class. Itis
left to assign all instances ¢ with 7@
positive or negative label; we simply chose the option
that minimizes class imbalance among the union of

i ~dim .
M= 7" to either a

training and development set. Note that our definition
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TABLE 4
The official 1 582-dimensional acoustic feature set of
the INTERSPEECH 2010 Paralinguistic Challenge: 38
low-level descriptors with regression coefficients, 21
functionals. Abbreviations: DDP: difference of
difference of periods, LSP: line spectral pairs, Q/A:
quadratic, absolute.

Functionals

max. / min. (position)

arith. mean, std. deviation
71 skewness, kurtosis

lin. regression slope, offset
lin. regression error Q/A
quartile 1/2/3

quartile range 2 1/3 2/3 1
percentile 1 /99 (&= min. / max.)
percentile range 99 1

up-level time 75/ 90

Descriptors

PCM loudness

MECC [0 14]

log Mel Freq. Band [0
LSP [0 7]

FO by Sub-Harmonic Sum
FO) Envelope

Voicing Probability

Jitter local

Jitter DDP

Shimmer local

of the classification problem does not guarantee a
balanced development or test set: In particular, the
imbalance of the test set—measured as the ratio of
majority class over minority class instances—is highest
for NON-MALICIOUS (1.83), followed by DIPLOMATIC
(1.29); in contrast, it is low (< 1.2) for the three cover
dimensions.

3 METHODS FOR AUTOMATIC ANALYSIS

tasks for automatic analysis
based on the characteristics of the YouTube corpus,

Having defined concrete

we now proceed to describe how these can actually
be solved. To this end, we describe baseline methods
for acoustic and linguistic analysis, and propose an
effective method to combine these modalities by means
of late fusion.

3.1 Acoustic Analysis: Relevant Low-Level De-
scriptors and Functionals

Our approach to acoustic feature extraction includes
features reported in the literature as relevant in
leadership-related contexts, and at the same time relies
on a publicly available feature set for reproducibility.
Thus, for all experiments, the full, 1582-dimensional
feature set given for the INTERSPEECH 2010 Par-
alinguistic C} allenge [37] was extracted. Features are
obtamed by E_‘\(tla(_tll'l‘-‘ low-level descriptors (LLDs)
at 100 frames per scumd using window sizes from
25ms to 60ms, then applying track- or chunk-wise
functionals (cf. Table 4) intended to capture time vari-
ation in a single feature vector that is independent of
the length of thc speech signal. Low-level descriptors
mclude spectral features (w 11(:11 were associated in [10]
with election outcomes); cepstral features (describing
timbre of the voice, which is relevant for likability [41]);
prosodic features including loudness and fundamental
frequency (F0) that are known to be related to extro-
version [6] and charisma [9]; and finally voice quality
features, including jitter and shimmer, to characterize

http://www.xwp.uni-wuppertal .de/fileadmin/xwp/Weninger_Krajewsk...

TABLE 5
Feature relevance: Selected track-wise functionals of
LLDs by correlation coefficient (CC) with the mean
rating and ¢ statistic against the binary labels for
ACHIEVER, CHARISMATIC, and TEAMPLAYER.

LLD Functional CC t
A MECC 4 Quartile range 1 3 389 709
A LSP 3 Quartile range 1 2 388 707
Voicing prob. percentile 99 347 696
PCM loudness Skewness 335 415
PCM loudness Quartile range 1 3 334 6.01
A FO Envelope Quartile range 1 2 323 488
A PCM loudness Kurtosis 322 3.3

log. MFB 2 up-level time 90 % 249 464
FO by SHS Quartile 2 (median) 268 5.59
PCM loudness Std. dew. 236 464
PCM loudness Arith. mean 217 407

(a) ACHIEVER
LLD Functional cC t
Voicing prob. Percentile 99 369 6.96
A LSP 3 Quartile range 1 2 324 5.23
A MFCC 4 Quartile range 1 3 308 5.87
A Fl Envelope Quartile range 1 3 259 497
FO by SHS Quartile 1 251 4.46
log. MFB 2 up-level time 90 % 250 3.22
A PCM loudness Kurtosis 221 2.06
PCM loudness Arith. mean 141 145
(b) CrHARISMATIC

LLD Functional | CC t
F) by SHS Linear regr. oftset 329 4.39
PCM loudness Quartile 2 {median) 232 4.24
Voicing prob. Quartile 1 208 314
Jitter local Linear regr. offset 191 2.64

{c) non malicious

the ‘roughness’” of the voice. The LLDs are smoothed
by moving average low-pass filtering with a window
length of three frames, and their first order regression
coefficients [42] are added.

This ‘brute-force” combination of LLDs and func-
tionals yields 16 zero information features which are
discarded, e.g., minimum F0 (always zero). Finally,
two single feaful es, the number of FO onsets and turn
duration, are added. These indicate the number of
voiced segments and the duration between speech
pauses. For straightforward reproducibility, we use
our open-source feature extractor openSMILE [34] that
also provided the features for the Challenge [37].

We verified the relevance of the extracted acoustic
features on the proposed evaluation database. The
correlation coefficient of selected features (LLDs and
track-wise functionals) with
instances, as well as their t-test score against the binary
labels is shown in Table 5. For achievers (Table 5(a)),
we observe a higher variation in speech in general,

the mean rating across all

as indicated by the importance of quartile range
functionals. More specifically, the change (deltas) in
MFCC and LSP features, somewhat corresp(mdmg to
phonetic content, has wider range, which can be inter-
preted as achievers varying their articulation stronger.
PCM loudness seems to be strongly associated with
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achievers; interestingly, among the functionals of PCM
loudness, skewness shows strong negative correlation
with the mean achiever rating, probably indicating
that achievers make more targeted pauses (negative
skewness of the energy envelope). In contrast, rough
voices (low maximum voicing probability) characterize
non-achievers somewhat, as well as high kurtosis of
loudness changes (i.e., presence of sharp changes).
Further, we observe that ‘standard’ functionals of PCM
loudness such as standard deviation and arithmetic
mean show considerably lower correlation with the
ACHIEVER rating than the quartile range, which can
be due to the increased noise robustness of the latter.
Besides, while achievers generally seem to have higher
median FO as expected, the dynamic range of their FO
(quartile range of deltas) is even stronger associated
with the achiever ratings in our data. Finally, our
findings corroborate [10], since the 90% up level time
of the Mel frequency band 2, ranging from 166 to
341 Hz, is correlated with the notion of achievers.

Second, regarding charismatics (Table 5(b)), we see
on the one hand a considerable overlap of relevant
features with the achievers, but correlations are lower,
except for maximum voicing probability. While the
correlation of FO with charisma is corroborated by [9],
the lower correlations than for ACHIEVER generally
indicate that charismatic speech is a more multi-faceted
phenomenon than ‘achiever’ speech. In particular, we
see that the mean PCM loudness is much weaker
correlated with charismatics than with achievers.

Third, for the non-malicious dimension (Table 5(¢)),
we observe that only a few features are significantly
correlated with the ratings. However, these seem
to well characterize the nature of this dimension:
Apparently, the presence of “shrieking’, i.e., high
FO, PCM loudness, voicing probability and jitter, is
judged by the raters as a sign of maliciousness. Finally,
we see that some features are best suited to coarse
classification of the extremes, exhibiting high f-values
but lower CC values (e.g., median FO for ACHIEVER),
and conversely, others enable fine-grained assessment,
e.g., skewness of PCM loudness for ACHIEVER.

All correlations reported in Table 5 are significant
at the 0.001 level. In summary, we conclude that the
INTERSPEECH 2010 Paralinguistic Challenge feature
set is very well suited to capture the features relevant
for leadership traits.

3.2 Automatic Linguistic Analysis

In addition to the acoustic features, we considered
linguistic features in the shape of bag-of-words (BoW)
vectors. To strictly enforce realism, we obtained these
features by ASR. An ASR engine was built on top of
HDecode [42], using 3 - (12 + 1) PLP features along
with short-time energy and first and second order
regression coefficients in a Hidden Markov Model
(HMM) framework. 39 monophones and silence were

=~

represented in three-state left-to-right HMMs with
16 Gaussian mixtures (32 for silence). The initial
monophone models with a single Gaussian mixture
were trained using four iterations of embedded Baum-
Welch re-estimation. After that, the monophones were
mapped to tied-state cross-word triphone models
with shared state transition probabilities. Two Baum-
Welch iterations were performed for re-estimation of
the triphone models. Finally, the number of mixture
components of the triphone models was increased
in successive rounds of mixture doubling and re-
estimation (four iterations in every round).

Since the investigated speeches unite characteristics
of both, read and spontaneous speech, the training
data for the acoustic models consisted of the union
of the Wall Street Journal (WS]) and Buckeye [43]
corpora, using the segmentation described in [44]
for the latter. Finally, a back-off trigram language
model was built from all the 778 transcripts of public
speeches available at the TED talks website! as of
December 2010 (2.0 million words), in order to ensure
good adaptation of the language model to the target
domain, resulting in a vocabulary size of 30.6 K. To
ensure consistency between chunk and track level
linguistic features, decoding was first performed on
chunk level, and transcriptions were concatenated to
form a transcription on track level.

Since in a fully realistic setting, ground truth tran-
scripts of on-line speeches are generally not available,
we primarily evaluate the performance of the resulting
BoW features rather than measuring ASR performance
directly in terms of word accuracy. In fact, it has
been shown that, e.g., text classification is robust
against ASR errors [45]. Stll, to complement our
task-based evaluation of ASR, we obtained a rough
ASR performance estimate by manually transcribing a
randomly selected subset of 30 speeches (spread across
training, development and test set). The obtained
word accuracy in these speeches ranges from -20
to 52%, reflecting the challenge of the ASR task,
which we attribute mainly to the varying reverberant
and partly noisy acoustic conditions which lead to
a considerable amount of word insertion errors, and
the spontaneous, non-scripted speech. To mitigate the
effect of the erroneous ASR, we replaced all words
whose confidence measure was below a threshold
of 10% of the average confidence on the training
and development set by a marker word (LC for ‘low
confidence’).

Finally, BoW vectors were generated from the words
that occurred in the ASR transcript of training and
development set with a minimum term frequency
of 3, resulting in a BoW size of 859. Note that the
BoW vectors also include the frequencies of the LC
word—this feature could help in determining the
‘intelligibility” of a speech, as good speakers are more

1. www.ted.com/talks
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likely to produce high acoustic (and language model)
likelihoods due to clarity in articulation and syntax,
aside from recording artifacts.

3.3 Training of Low-Level Classifiers

In line with the choice of acoustic and linguistic
features which have been thoroughly explored in
paralinguistics research, we relied on well-proven
classifiers as well: We opted for the setups used for
the baselines of the INTERSPEECH 2009 Emotion
Challenge (2-class task) and INTERSPEECH 2010
Paralinguistic Challenge (Affect Sub-Challenge). A key
part of our study will be to combine the low-level
classifiers by late fusion, as laid out in the next =;cch'0n.

[n particular, the binary low-level classifiers are
Support Vector Machines (S\'M) with a linear kernel,
trained using the Sequential Minimal Optimization
(SMO) algorithm [46] on normalized features. SVMs
have been selected for classification in this study as
they are well suited to the large acoustic and linguistic
feature sets due to their robustness against overfitting
their complexity does not depend on the number of
features; furthermore, linear SVM are known to be well
suited to classification by linguistic features [47]. The
complexity constant for the QMO training algorithm
was set to 1.0. For regression tasks, we used unpruned
REPTrees with 25 cycles in Random-Sub-Space meta-
learning [48] (500 iterations, sub-space size 5%). Since
this regression algorithm builds a large number of
regression trees, each on a small feature sub-space, it
is suitable for high-dimensional feature spaces, and
furthermore outperformed Support Vector Regression
in a preliminary experiment. To enforce transparency
of results, all experiments were based on the classifier
implementations found in the WEKA toolkit [49].

[n the following, the decision of a low-level classifier
trained on acoustic features will be denoted by ¢3! ()
and d3M (i) € {0.1} for chunk and track level, respec-
tively. F()l classifiers trained on linguistic features, the
notations ffd'g cpli) and f%”tr{') will be used.

3.4 Late Asynchronous Acoustic/Linguistic Fu-
sion

Based on the above low-level classifier setup, late
fusion strategies (LFS) were designed taking into
account the following: First, in the targeted application
scenario, a prediction for each track has to be deduced,
which is also the level that annotation was performed
on; thus, it is necessary to combine
decisions onto track level. There is a straightforward
strategy for
mean regressor output, while for
tasks, we perform a majority vote.

Second, and more interestingly, it is desired to

the chunk-level

this: In case of regression, we take the

the classification

integrate acoustic and linguistic information. We opted
for a late (decision-lev LI) fusion, as this allows to
integrate the fusion of chunk level decisions with

the fusion of acoustic and linguistic information. As
it is not clear which unit of analysis provides the
best trade-off between predictive power of features
and providing enough data for the classifier, we can
let both, the acoustic and linguistic information, be
processed each on chunk or track level, independently,
or asynchronously, and derive for each possible combi-
nation a decision function as shown below. Thus, our
fusion methods go beyond merging the outcomes of
two classifiers, each operating on the same data. We
will evaluate each type of strategy on the development
as well as the test set in Section 5.3.

For the sake of clarity, we constrain the following
discussion to classification, as regression on chunk
level delivered unsatisfactory performance in our
first experiments on the development set (Section 5.1,
Table 6); yet, the methodology can be easily extended
to regression, or classi fication with confidences. First,
the decision function for track ¢ when fusing acoustic
information on chunk level and linguistic information
on track level is defined by

1 im 1

d™ (i) = T+ AH’%EU(“) + ICH
jie

erl ch(f)

3)

that track ¢ consists

GH(i)

where CH(7) is the set of chunks
of. The fused class decision is then 1 if and only if
A9M(7) 0.5. Note that the parameter Aq roughly
resembles the weight factor that is commonly used in
ASR to pre- mulhph language model likelihoods when
total acoustic and Imumahc likelihoods are calculated.
Precisely, A4 is the \,-\-E_‘lghf that the linguistic classifier
decision is given with respect to the majority vote
0, the
class decision is equal to decision by majority vote

among acoustic, chunk-level classifiers. If \q =

among chunk level acoustic classifiers. Conversely to
Eqn. 3

linguistic information on

above, acoustic information on track level and
chunk level is fused by

Az

20 = ICH@I

¢ |r|1£]n,cn(.f)
=CH(i)

(4)
where Ay is the weight of the linguistic majority vote
with respect to the acoustic classifier decision on track
level. Finally, considering both types of information
on chunk level results in

dg™ (i) =

L
T+ % [CHQO,

0, A5 (i) +

)

AWM () + Aadil (i)
CH(i)

The decision resulting from ff%'m corresponds to a

weighted majority vote on all chunks, where the
weight of any linguistic decision with respect to any
acoustic decision is given by As.

Note that if one assumes hard class decisions (0 or 1)

for ffd 'tr» A1 should be chosen = 1, since otherwise the
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outcome d$™ (i) (Eqn. 3) will be equal to the decision
of the linguistic classifier; conversely, for LES2 (Egn. 4),
A2z 1if ddM is a hard class decision.

4 EVALUATION MEASURES AND SIGNIFI-
CANCES

4.1

Before discussing the performance of automatic analy-

Performance of Classification and Regression

sis in detail, let us first clarify employed performance
measures. Our primary evaluation measure for clas-
sification is unweighted average recall (UAR) which
is tailored to imbalanced problems—remember that
the test set is imbalanced for some dimensions and
optimizing on accuracy may introduce a bias towards
picking the majority class. For the two-class problems
considered in this study, this measure simply reads

Recall of Class ‘0" + Recall of Class ‘1’
5 .

UAR has been the competition measure of the INTER-
SPEECH 2009-2012 Challenges dealing with paralin-
guistic phenomena [36]-[39]. We additionally consider
conventional accuracy for reference.

For evaluation of regression tasks, we rely on corre-
lation coefficient (CC) between the outputs of the re-
gression function and the corresponding target values,
and mean linear error (MLE), which is the expected
absolute difference. The CC is a scale-independent
measure that quantifies whether a high rating results
in high prediction and vice versa, while the MLE
is the expected absolute deviation of the prediction
from the mean rating, thus being scale-dependent, and
penalizing overshooting as well as underestimation.
These are standard evaluation measures in recognition
of paralinguistic information from speech (cf. the
INTERSPEECH 2010 Paralinguistic Challenge’s Affect
Sub-Challenge [37]) and machine learning in general
[50].

While our goal is to recognize how well automatic
predictions reflect the best possible consensus of
annotators derived from their ratings, the evaluation
by CC with the mean rating can also be interpreted
from a different perspective: The CC of the prediction
and the mean rating is equivalent to the expected CC
of the prediction and any individual rater, assuming
that the mean rating has the same standard deviation
as any individual rating—the latter could be trivially
established by scaling,.

UAR =

4.2 Significance Testing for Classification

Statistical significance testing is especially desirable
in our case: It is necessary to evaluate whether auto-
matic classification of leadership traits from speech,
arguably a challenging task, performs significantly
better than chance. Thus, we evaluate significance
of performance differences for binary classification

in terms of weighted accuracy using a correlated
proportions test [51]. It is based on the assumption
that the accuracy difference between a classifier A and
a baseline B with accuracies py and pp is a normally
distributed random variable with mean pas — pp and
variance 2p(1- p)/S, where p = (pa + pp)/2 and S is
the number of instances of the test set. We use a one-
tailed test, i.e., the null hypothesis (Hg) is that pa = pp,
or informally, A is not better than the baseline B. To
model comparison with chance level accuracy, pp is set
to 0.5. In Figure 3, we show how large the accuracy
improvement of A with respect to B must be on the test
set on track level (117 instances) or chunk level (1272
instances) to reject Hg at either the 0.05, 0.01, or 0.001
level: The required accuracy improvement is given by
the intersection of the vertical line corresponding to
the baseline accuracy and the curve corresponding to
the level of significance.

This test allows to easily assess the significance of
any difference in accuracy encountered throughout
analysis; vet, results of this test should only be in-
terpreted as a heuristic measure, since the estimates
of pa and pp on the test set are not independent [51].
Furthermore, it is not straightforward to measure sig-
nificance of differences in uniweighted accuracy. Caution
must be exercised when applying the above-mentioned
significance tests to results on chunk level, as the
required assumption of statistical independence among
samples is not necessarily given; while in ASR, one
often assumes that results of a recognition algorithm
on parts separated by speech pauses are independent
of each other [52], it is not clear that this is also the case
for recognition of speech traits that arguably evolve
slowly over time.

Note that we do not correct for repeated measure-
ments: It is slightly controversial where and when this
had to be applied [53], and there is a risk that any
(significant) difference would be invalidated. Moreover,
already in [54], [55] and more recently again in [56], it
was suggested to use significance not in the inferential
meaning but as a sort of descriptive device—a more
objective measure of differences worthwhile to be
discussed.

4.3 Significance-based Evaluation Measure for
Regression

In our case, significance testing is an arguably less
complex issue for regression tasks: There is evidence
that one can actually assume approximate normal dis-

tribution of the mean ratings f_'id

M for each dimension;
we propose to measure significance of performance
differences through comparison of the MLE by paired
t-tests.

Particularly, given the distribution of the regression
targets (mean rating Fidim) as shown in Figure 1, it must
be taken into account that the MLE itself is insufficient
when comparing the results achieved for different
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dimensions, as the range of possible target values

for the test data varies considerably. Furthermore,
given the cumulation of annotated targets around the
mean, it can be assumed that a regression function
will be biased towards predicting the mean across
the training data. Thus, we decided to use the above-
mentioned paired t-test for comparing the trained
regression function to a ‘dummy’ reference, that is,
a constant function that always predicts the arithmetic
mean of the dimension computed from training and

development data, denoted by

~dim .- 1

=dim e
# S TRUDE| Qs ()

1eTRuDE

In that case, a one-tailed t-test is used, with the alter-
native hypothesis assuming that the mean difference
between the linear errors of the regression function and
the dummy is greater or equal to zero. Denoting the
MLE of the dummy by MLES™, the error pmbabllity
for rejecting

Ho : MLE™™ = MLEJ (7)
can be regarded as a performance measure for the
classifier: It is a judgment whether its achieved MLE is
significantly lower than the one resulting from “always
predicting the mean’.
Note finally that in addition to the MLE, the CC
can also be tested for significance by a t-test with Hp
assuming that both, Cla_‘s.‘:lflt‘l output and target value
are independent normally distributed random vari-
ables; yet, this technique cannot be straightforwardly
extended to a meaningful performance comparison of

different regressors.

5 EXPERIMENTAL RESULTS

5.1 Acoustic and Linguistic Analysis: Degrees of
Freedom and Performances

In order to design the system for automatic analysis
of speeches that serves for the final evaluation on the
test set, we first performed an extensive evaluation on
the development set: The degrees of freedom comprise
the kind of target variable (continuous or nominal),
the features (acoustic or linguistic), and the unit of
analysis (track level, chunk level, aggregation of chunk
level results).

Results for acoustic features and regression on the
mean rating are shown in Table 6(a). It can be seen
that on track level, a notable CC of 0.435 and 0.463
is achieved for the ACHIEVER and CHARISMATIC
dimensions, respectively; this is in the order of magni-
tude of the best results obtained for interest dL‘thh(m
from speech in the INTERSPEECH 2010 Paralinguistic
Challenge [37]. Yet, the CC for the other dimensions
(NON-MALICIOUS, DIPLOMATIC, and TEAMPLAYER)
is considerably lower; for DIPLOMATIC, there is no
significant correlation (0.097, p 0.05). Regarding

the MLE, it is again only for the ACHIEVER and
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Fig. 3. Lines of significant absolute accuracy improve-
ments for different levels of significance (0.001, 0.01, or
0.05), for experiments on the test set of the YouTube
corpus, on track level (sample size S = 117) or chunk
level (S = 1272). Vertical line: chance level accuracy
(0.5).

CHARISMATIC dimensions that the regressor signif-
icantly (p < 0.01.p < 0.05) outperforms the dummy
prLdlctmn Cnmparinﬂ the MLE between dimensions,
it is interesting that the MLE assumes the two of its
absolute highest values (0.225, 0.217) for the ACHIEVER
and CHARISMATIC dimensions; however, the results
of the significance test suggest that this phenomenon
can be entirely attributed to the high variability of
the ratings on those dimensions, opposed to the low
variability for the other dimensions (see also Figure 1).

In comparison, regression on chunk level wc_cmmgl\
delivers lower CC and higher MLE; still, for the
ACHIEVER dimension, the MLE is significantly better
than the one of the dummy. Furthermore, it seems
that the mean of chunk level results does not deliver
better predictions than the track level regression in
terms of CC and MLE, for all dimensions, which can
probably be attributed to the generally unsatisfactory
performance on chunk level.

Next, binary classification on acoustic features is
evaluated in Table 6(c). The results mirror the ones
for regression to some extent: For instance, better-
than-chance accuracy is achieved on the ACHIEVER
dimension on track level, and performance is lower
(vet not significantly) on chunk level. Interestingly, for
the NON-MALICIOUS dimension, results are now signif-
icantly above chance level (61.6 % accuracy, p < U 05)
when performing a majority vote among chunk level
classification results.

For linguistic features, we shortly summarize the
Regression (Tablc 6(b)) overall
delivers lower CC than for acoustic features on track
still, the MLE is significantly better than the

results as follows:

level;
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TABLE 6
Results on development set by regression/ classification using either acoustic or linguistic features. Significance

of MLE w. r.t. dummy prediction (Egn. 7); significance of

accuracy (Acc.) w.r.t. chance (=: p < 0.05, *: p < 0.01,

++:p < 0.001).
TRACKS CHUNKS CHUNK MEAN TRrRACKS CHUNKS CHUNK MEAN
Dimension CC MLE CC MLE CC MLE CC MLE [€ MLE CC MLE
Non-maLicious | 183 151 31 152 004 Rt 41 5 015 IR2 o A0 152 e
DIPLOMATIC 097 188 25 197 031 190 d64 185 | 084 195 ee | 119 87
ACHIEVER 435 225 e | 232 255 ee | 253 240 o 234 250 e | 208 26] ee | 195 26 e
_ SMA 463 217 o | 239 255 305 231 298 236 204 254 ee | 240 236
TEAMPLAY 218 181 069 189 087 84 219 1806 | 126 183 e 152 82
{a) Regression, acoustic features (b} Regression, linguistic features
%] TRACKS CHUNKS MaJ.VOTE TrACKS CHUNKS MaJ.VOTE
Dimension UAR  Acc | UAR Acc. [ UAR  Ace. UAR  Ace [ UAR  Acc. | UAR  Acc
NON-MALICIOUS | 55.7 57.6 54.8 55.0 me | 58.0 6le o 48.3 46 | 497 540 e 49.0 56.8
TATIC 57.2 57.6 54.6 RN 57.5 57.6 52.9 52.8 | 485 48.6 51.2 52.0
I 62.4 Al o | 590 7.0 ee | 57.7 56.0 53.5 536 | Hdb 56.5 ee | 591 24 o
59.7 59.2 53.5 52.1 | 55.7 544 53.5 524 | 545 57.1 me | 519 55.2
54.4 52.8 57.2 55.7 | 599 58.4 58.2 57.6 | 529 3o 51.1 52.8
{c) Binary classification, acoustic features {d) Binary classification, linguistic features
TABLE 7

Evaluation of track level analysis on development and test set by late acoustic + linguistic fusion. LFS1: Chunk
level acoustic, track level linguistic features. LFS2: Track level acoustic, chunk level linguistic features. LFS3:
Chunk level acoustic, chunk level linguistic features. Aq. A2, As: Linguistic weights according to Egns. 3 through 5
optimized on the development set. Significance of accuracy (Acc.) w.r.t. chance (=: p < 0.05, «: p < 0.01,

s+ p < 0.001).
%] LF51 LF52 LF53 LF51 LF52 LF53
A1 UAR  Acc. Az UAR  Acc As UAR  Acc UAR  Acc UAR  Acc. UAR  Acc
0.3 613 fhird w 1.0 557 57.6 05 590 SN 567 547 554 f3.2 596 By
0.6 585 8.4 1.0 572 576 0.1 56.7 565 50.5 504 56.3 59.0 560 54
05 646 h24 o 25 n2e fdle | 1.7 638 TESIN] 725 72.60 e | O18 624 0 | 644 (o0 o
04 BR2 560 50 a#l2 320 | 1.3 632 d e 67.3 .7 - 2.7 51.3 ()3 59.0
0.2 640 h24 o 20 &5 5615 1.0 622 tl.6 o 62.5 h24d o 59.7 59.0 59.0 551

{a) on development set

dummy for three of five dimensions (DIPLOMATIC,
ACHIEVER, TEAMPLAYER). On chunk level the MLE
even passes the significance test for all five dimensions;
still, for the reasons mentioned in Section 4.2, it is
disputable whether this cannot simply be attributed
to artifacts of statistical dependence: Indeed, the track
level MLE of averaged chunk level results remains
insignificant for three of five dimensions. Concerning
classification by linguistic features (Table 6(d)), the only
dimension where performance significantly exceeds
chance level is—again—ACHIEVER.

Owverall, it is hard to derive a concise conclusion
from the results on the development set, as they are
very mixed: In particular, it is not possible to rule
out a certain choice of features (acoustic or linguistic),
or unit of analysis (track or chunk level). If any, a
noticeable tendency is that the recognition of achievers
is promising,
correlation in eight of the twelve scenarios considered

delivering better-than-chance accuracy or

so far.
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(b) on test set

Since we aim at a general strategy for combined
acoustic and linguistic analysis that is largely inde-
pendent of the type of (low-level) classifier and its
parameters, and because the optimal choice of unit
of analysis remains unclear, we now move on to
discussing late fusion of acoustic and linguistic features
using all three strategies presented in Section 3.4 and
their optimization on the development set.

5.2 Development of Late Fusion Strategies

In particular, we optimize the linguistic stream weight
for binary classification on track level by LFS 1-3
on the unweighted accuracy on the development set.
The range of possible parameters was determined
by the considerations in Section 3.4: For LFS1, A4
was chosen from {11—0.1—2[J 1—%.‘1}; since LFS2 is
the ‘inverse’ of LFS1, A for LFS2 was chosen from
{1, %. % 1—20. 10}; finally, the union of these param-
eter sets was the set of possible values for As.

The most noticeable improvement over the acoustic
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and linguistic baselines is achieved when considering
late fusion of chunk level decisions (LFS3): In case
of the charismatic dimension, all parameter values
improve the UAR over the baselines (54.5 and 53.5%
UAR, respectively), with a maximum of 62.9% UAR
(64.0% accuracy) obtained at A3 = %. Thus, in that
case, the fused result is observed significantly above
chance level accuracy (p < 0.05).

The overall performance of the late fusion binary
classifiers on the development set is shown in Ta-
ble 7(a); all in all, it is very motivating: In short, for
four of the five dimensions considered for evaluation,
i.e., all except DIPLOMATIC, the line of significant
accuracy (60.3 % accuracy) is crossed by at least one
of the fusion strategies. In terms of average UAR
across the five dimensions, LFS2 (58.9 %) falls slightly
behind LFS1 (61.3 %) and LFS3 (61.0%); still, neither of
the corresponding accuracy differences is statistically
significant, which is why we proceed to evaluate each
LFS on the test set.

5.3 Evaluation on Test Set

For the final evaluation of our fusion strategies on the
test set, we retrained the low-level classfiers on the
union of training and development set, and used the
fusion weights determined on the development set for
fusing the predictions on the test set. Our results are
shown in Table 7(b): It is striking that especially LF51
performs very well on the test set, boosting the accu-
racy to over 72 % UAR and accuracy for the ACHIEVER
dimension, exhibiting remarkable performance also for
CHARISMATIC (67.3% UAR / 66.7 % accuracy), and
above-chance accuracy for TEAMPLAYER (62.4% UAR
/ 62.5% accuracy). On the other hand, LFS2 and LFS3
fall considerably behind LFS1 on the test set—for LFS2,
even significantly in some cases —, which deserves
some further investigation.

An important difference of LFS1 with respect to
LFS2 and LFS3 is that the linguistic stream weight
is smaller than one for LFS1, while it is greater or
equal one for LFS2 and LFS3. Thus, an explanation
could be that linguistic features perform worse on the
test set: This hypothesis, however, can be rejected by
comparing the performance of the majority vote among
linguistic, chunk-level classifiers on the development
as opposed to the test set. There, only statistically
insignificant differences in the order of 1% UAR could
be found. Thus, we hypothesize that the reason for
the high performance of LFS1 is based on increased
predictive ability of the acoustic features; indeed, we
can provide evidence for this by the results of binary
classification on purely acoustic features, which are
shown in Table 8. The majority vote among chunk
level acoustic classifiers is comparable in performance
to LFS1
linguistic information seems to be smaller.

The remarkable performance of acoustic features on

thus, on the test set, the benefit of adding

the test set led us to another experiment, to investigate
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TABLE 8
Binary classification on test set by acoustic features:
Track and chunk level, and track level by maj(ority) vote.
Significance of accuracy (Acc.) w.r.t. chance
(e:p <005 *:p<001,+:p < 0.0071).

%] TRACKS CHUNKS Maj.voTe
UAR  Acc UAR  Acc. UAR  Acc.
56.1 641 @ | 56.1 559 61.0 58.1
54.1 57.3 53.8 543 e 56.5 56.4
68.2 654 @ | 65.6 4 e | 717 71.6 me
59.3 59.8 61.8 61.9 ee | 630 624
55.5 55.6 62.0 62.1 e | B52 65.0

whether the test set is easier to classify by acoustic
features, or the benefit stems from the additional
training instances of the development set. To this end,
we evaluated the performance of the very same low-
level acoustic classifiers that were used for dassifying
the development set on the test set. It turned out
that their performance was clearly below the one of
classifiers trained on training and development set
(Table 8): For majority vote among chunks, and on
average across the five dimensions, the UAR was
60.1%, as opposed to 63.5% when training with both,
training and development set. For the ACHIEVER
dimension, the difference in accuracy (61.5 % vs. 71.8 %)
is even significant with p 0.05. This provides
evidence that the acoustic features in development
and test set are ‘more compatible” than in the training
and test set.

5.4 Discussion and Outlook

[n summary, we have demonstrated that fused acoustic
and linguistic information delivers remarkable ac-
curacy in recognizing different facets of leadership
in a real-life audio archive. Particularly promising
results have been accomplished for the ACHIEVER
dimension: Here, the binary decision by late fusion
achieved over 72 % unweighted accuracy on the test
set, and was always significantly above chance level
for both the development and test set and all late
fusion strategies. Still, it is notable that the performance
on the test set does not always increase by taking
into account linguistic features—while this can be
attributed to challenging conditions for ASR, it is
somewhat surprising, as previous findings suggest that
text classification based on ASR is robust even against
high word error rates [45]. Finally, it is important to
point out that since we deal with signal level speech
analysis, not text classification, the performance of our
linguistic features does not allow definite conclusions
as to whether linguistics are an important factor in
determination of leadership emergence. On a related
note, we believe that the proposed YouTube corpus will
be an interesting testbed for evaluation of adaptive,
robust ASR technologies in future research, as the
speech is corrupted by essentially unknown noise and
reverberation.
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A strong focus has been laid in this study on fusion
strategies that are independent from the architecture
of the low-level classifier: We even proposed a high-
level classification paradigm that allows asynchronous
decisions to be fused, to be able to take into account
classifier decisions from different units of analysis
(track or chunk level). In fact, it has been exactly a
strategy for late fusion of track level linguistic and
chunk level acoustic classifiers that prevailed on both,
the development and the test set. Naturally, this still
leaves room for improvement on the classifier level:
In fact, it would be a natural extension to investigate
other classifiers besides SVM, especially those that
provide a meaningful confidence measure for late
decision fusion. Finally, directions of future research
can also be accounted for on the feature level: For
instance, detection of non-linguistic vocalizations (such
as filled pauses) could be integrated into the BoW
vectors, or considered as a separate chunk or track level
stream. The same holds for the voice activity curve as
output by the LSTM-VAD, whose shape could be an
interesting track level feature that indicates speaking
style.

6 CONCLUSIONS

We have introduced the challenging task of automatic
determination of leadership emergence in on-line
speeches. Furthermore, we have proposed a system
that allows robust automatic recognition of achievers,
charismatic speakers and h_‘ampld_\_-'ers in full realism,
that is, using automatic voice activity detection and
speech recognition prior to feature extraction. By
using the real-life YouTube corpus for evaluation,
we have demonstrated that our approach generalizes
over a large variety of acoustic conditions. Among
the dimensions of leadership that were considered,
highest accuracy on unseen test data (V2.5 %) is reached
in recognizing achievers. This result is somehow
expected, since ACHIEVERIs (a) among the dimensions
that are best correlated with the acoustic features
considered, and (b) the leadership trait with the highest
agreement among professional human assessors, which
naturally creates more reliable training and test labels

for machine learning, but also indicates that this
leadership trait is particularly evident in speech.

[n future work, we will integrate strategies for unsu-
pervised learning on unlabeled speech data collected
from on-line sources, in order to iteratively improve
automatic speech recognition as well as acoustic-
linguistic recognition of leadership traits.
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