SIGN DETECTION IN RESIDUE NUMBER SYSTEMS

by

Dilip K, Banerji, B, Tech,

Submitted in partial fulfillment of
the requirements for the degree

of Master of Science

Department of Electrical Engineering,
Faculty of Pure and Applied Science,
University of Ottawa
Ottawa, Ontario

Canada,

April, 1967

[@ Dilip K. Banerji
e

1969

TO
PIA

(iv)

ABSTRACT

This thesis is concerned with the sign detection problem in residue
(modular) number systems, Residue codes are introduced and their import-
ant properties are discussed. It is shown that under rather general conditions
an explicit, closed formula for the sign function can be obtained. In a special
case, when one of the moduli is 2, the sign function becomes an EXCLUSIVE
OR function, Using the above formula, a general sign detection algorithm is
proposed and methods of implementing the algorithm are presented, For com-
Pleteness of presentation, some system design concepts are presented includ-
ing a simple method of input translation, The thesis concludes with a com-

parison of various sign detection methods.

(v)

ACKNOWLEDGMENTS

To Dr, Janusz A, Brzozowski go my very sincere thanks for his
guidance, many stimulating comments and suggestions which made this
thesis possible,

Thanks are also due to Dr, Wayne A, Davis for introducing the
author to residue arithmetic, and to my colleagues, Vinod Batra, Godfrey
Muehle and Shanker Singh, whose criticism has been very helpful. My
particular thanks to Miss Dodie Kocis who so patiently typed the manu-
script.

The financial support of the National Research Council of Canada,

under Grant No, A - 1617, is gratefully acknowledged.

(vi)

CONTENTS
Page
ABSTRACT memmmm e e e e e mmm e e iv
ACKNOWLEDGMENTS =-v-cccccrcmmccmocccaacccacccnannnnan- v
{, INTRODUCTION =cmeccmcccaccccccccamccmanacanncccnaann {
2, RESIDUE CODES AND THEIR PROPERTIES =mceeecacccccaaaa 2
2.1 Notations and Definitions ===--ccecccmaccmamenaccaac-- 2
2.2 Properties of Congruences ====e=-ccecacamcccanacccan- 2
2.3 Residue Codes ~=mmmmmmmcmcmm e ceccccmmccmmcaee 4
2.4 Residue Arithmetic =~==cecmmmccccccmacecccccccmcnaaa 5
2,5 Conversion from Residue Code to Natural: Numbers ~-=--- 10
3, SIGN DETERMINATION meccccccccmcmcccccccecacmemmm———a- 17
3.1 Coding Theorem =-=-=eccmcmmcccccomccccacacacccccann- 17
3,2 The Two Moduli Case ===m=caccmmmmcccrcccamcacccn- 20
3.3 Sign Determination ; A General Approach-=s==-e-nuaax 25
3.4 Sign as an EXCLUSIVE OR function =~-=-e-ecam-canaca- 35
4, IMPLEMENTATION STUDIES«-seacamaccamaacaaacancaaana- 38
4,1 Adder and Multiplier Design =-===emneccacccnaccnnaca- 38
4,1,1 Direct Implementation==-=em=rccmcacccaaaaciomaaaax 38
4,1,2 Modulus Substitution==-==c=meccaccccncnccacacanaaa- 39
4,2 Complementatione=-m=emeecmcccmmmacccccnarcanaccaaaa- 45
4.3 Input Translation ===-ec-ecamccancnmamcaccccaccannaa. 47
4,4 Output Translation ~==-cmemccccccanmummemcccncemmaaaa 51
4,4,1 Mixed Radix Conversion Process =======n==n==nn=n==aax5
4,4,2 Chinese Remainder Theorem====e-=necccmnacanccana 53
5, COMPARISON OF SIGN DETECTION METHODS--cereceaa-n- 55
5.1.1 Purely Combinational Method -~======accuccccucnaax 55
5.1.2 Mixed Radix Translation Process =---=-==a-caceucax 56
5.1.3 Use of The Remainder Theorem--=-esmcacccaaaacaa- 57

5.1,4 Use of The Two-Moduli Theorem ~=ceemmemacemccaana 57

(vii)

Page
5.2 Limitations of COMPATiSOn--ncnmsmmmcmmommmncanmnm.——- 58
5.3 Conclusions =-=-cmmea-- mmeeemmmeemcccomacescemmeee——aae- 58
5.4 Recommendations for Further Researche===m=emmmcaacooooo 59
REFERENCESaccccmma i ccccaccccca e 61

1. INTRODUCTION

Residue nun.{ber systems have interested mathematicians for a
very long timei. However, the use of the system as a tool for machine
computation has attracted attention quite recently, The first known work
in this direction was done in Czechoslovakia by Valach and Svoboda [1],
Their work has been followed up mainly by Garner [2], Aiken and Se-
mon [3], Cheney, [4], Szabo [5] and Watson and Hastings [8].

The most attractive feature of the residue number system is that
in the operations of addition, subtraction and multiplication, any particular
digit of the result is determined solely by the corresponding digits of the
operands. As we shall see, this results in the elimination of carry prop-
agation from one residue digit to another in all the three operations, Fur-
~ thermore, it removes the need for partial products in multiplication, There-
fore, the execution time is appreciably reduced and can be made approxim-
ately the same for all the three operations, One of the main drawbacks of
the system is the fact that the algebraic sign of any number in an arbitrary
residue code is a function of all the residue digits, As a result the sign
detection process in this system is complicated, slow and expensive, There-
fore, the operations requiring the sign information are relatively slow,
Hence such problems as relative magnitude determination and overflow det-
ection in the system present problems.

It is the purpose of this thesis to investigate th.e sign detection prob-
lem, A solution to this problem will automatically solve the closely related

problems of relative magnitude determination and overflow detection,

1. Sun-Tsu, a Chinese mathematician in first century A.D. stated the
Chinese Remainder Theorem, Gauss, Fermat, Ramaniijanand several

other mathematicians have also studied the system,

(2)

2. RESIDUE CODES AND THEIR PROPERTIES

In this section we introduce residue codes ; the discussion is

based mainly on [2],

2.1 Notations and Definitions

The number theoretical concept of congruences is the basis for

residue codes,

Definition 2.1 : If a, b and m are integers, m >0, then a is con-

gruent to b modulo m, written a =b mod m, if and onlyif, a and b
have the same remainder when divided by m. It is known that a éb mod m
iff m|(a-b)ora-b=km or a=b+km, where k € J, the set of all
integers, b is called a residue of a, with respectto m and m the base
or modulus,
Example 2.1 :
3
5

1 mod 2 since 3=1(2) +1

1 mod 2 since 5=2(2)+1
1, 3, and 5 belong to the same residue class modulo 2.

If, in the relation a=b+km, 0 £b < m, then b is called the

least positive residue of a, modulo m, denoted by [a] o = Do The least
positive residues of a number with respect to different moduli are used to

represent the number in the residue system based on the moduli,

2.2 Properties of Congruences

Some properties of congruences relevant to residue systems are
discussed here,
(1) Congruence mod m is an equivalance relation :

(i) a

(ii) a

a mod m,

b mod m implies b =a mod m,
since both a and b, when divided by m have the same remainder,

(iii) a =b mod m and b = ¢ mod m implies a = ¢ mod m,
since a and b divided by m have the same remainder and b and c div-
ided by m have the same remainder, Hence a and c¢ have the same re-

mainder,

(3)

(2) If ai Ebi mod m for i=1,2,..., n, then

n n
2 a. =2 b mod m
) i i
i=ti i=1
because
n n n n n
Z a = Z (btk m)= £ b +m T k = £ b +mk
. i i) i . i . i
i=1 i=1 i=1 i={ i=t

(3) If aiE bi mod m for i=1,2,...,n, then

n n
LT a. .7, b, mod m.
i=1 1 i=1 71

Consider a1 = b1 +k1 m, az =b2+k2 m.

Then a, a, =b

{ % 1b2+(b k,+b, k +k1k2) m,

172 21

or a1 aZEbin mod m,

Repeating this argument we obtain the desired result,

(4) If a=b mod m and a=b mod n, then a =b mod 1l.c.m. (m,n),
where 1,c.m. is the least common multiple,

This is easily proved, If p is a prime and pc is the highest power
of p which divides l.c.m. (m,n) , then pcl m or pcl n. Therefore
pC (2 -b) . This is true for every prime factor of 1,c.m (m,n) and hence

a =b modl.c.m, (m,n). This generalizes to any number of moduli.

(5) ¥ ‘g.c.d. (k,m) =1, where g, 'c.d. is the greatest common divisor,
then ka = kb mod m iff a = b mod m.
Other properties of congruences can be found in references 6], [7];

for the purpose of this thesis the ones discussed above are sufficient.

(4)

2,3 Residue Codes

Consider an ordered set of moduli mi, My eees m instead of
just one modulus m considered above. The corresponding ordered set
of least positive residues of a natural number, with respect to the mod-
uli, forms the residue representation for that number.

Example 2.2 : Consider moduli 2,3,5 and a natural number 14,
14=7(2) +0
=4(3)+2

=2(5) +4

0, 2and 4 are the least positive residues of 14 with respect to moduli
2, 3and 5 respectively and form its residue representation in this system,
Thus we represent 14 by (0, 2, 4). Residue representations for this

set of moduli, for a few natural numbers are given in Table 2.1.

Number Least Positive Residues
Mod2 | Mod3 | Mod 5

0 0
0
1

Ul W v O

17 1
29 |

[N oC N A e
BV O W

Table 2,1

In order to avoid redundancy (unless redundancy is desirable) the
moduli of a residue number system must be pair-wise relative prime i,e.,
the greatest common divisor of each pair of moduli must be unity. If so,
then the number of integers that can be coded uniquely in a system with
moduli ml, mz, vers mn equals the product m1 . m2 * eseet mn. This
is a direct consequence of the Chinese Remainder Theorem [7]. In the

above example, therefore, a total of 30 integers can be coded uniquely.

These can correspond to the natural numbers 0 through 29,

(51

The effect of redundancy is demonstrated in the following example:

No, | Mod 2 | Mod 4| Mod 2 | Mod 3
0 0 0 0 0

1 1 1 | 1

2 0 2 0 2

3 { 3 1 0

4 0 0 0 1

5 1 | 1 2

6 0 0 0

7 1 3 1 1

Table 2.2

When the moduli are not relatively prime (as in case of 2 and 4)
the total number of unique representations is not equal to the product of
the moduli, This happens because some combinations can not occur. For
example, consider a number X with representation (0,1) in mod 2 and
mod 4. Then ([X]iz_ =0 implies X is even and [X]4 =1 implies X is
odd, which is impossible, For moduli 2 and 4 only 4 integers (0
through 3) can be coded uniquely, whereas with relatively prime mdduli

2 and 3, 6 integers (0 through 5) have a unique residue code.

2.4 Residue Arithmetic

Addition and Multiplication : The operations of addition and multiplication

in a residue number system are valid, provided the resulting sum or pro-
duct has a proper representation, If this is not true then some sum or pro-
duct may overflow the range of representation. In case of overflow, more
than one sum or product of the natural number system can have the same
residue representation, However, if no overflow occurs, there exists an
isomorphic relation with respect to operations of addition and multiplication
in the residue system and a finite real number system. Since each digit of
a residue representation is obtained with respect to a different modulus,

the rules of arithmetic for each digit are different.

(6)

Let (al, 251 0ees an) and (bl’ b2’ cees bn) be two residue num-

bers in a system of relatively prime moduli m 2 My eens m . Addition

2
is defined by

s, = (ai+bi) mod m, , i=1,2,..., n,

Each digit of the sum is obtained by adding the corresponding digits 2, and
bi modulo m,. Addition of digits in different moduli is undefined and in-
valid, The dependence of each sum digit on the corresponding operands only,
effectively implies the absence of any carriesfrom one residue to another. It
also means that addition with respect to different moduli can be performed
simultaneously and the time required is egual to the addition time of the slow-

est unit, A block diagram of the addition mechanism is drawn below,

a
{ 3-2 an
Tﬁgd mod . . ‘ mod
"2 n
bi bZ ‘ : o bn

Fig. 2.1 Block Diagram of Adder
Modulo addition is denoted by @ .

The process of multiplication is also carried out on digit by digit
basis : '

pi-=- (al . bl) mod mi, is= 1,2,...: n,

Again each digit of the product is obtained by multiplying the corresponding
operands 2 and bi modulo m.. Multiplication of two digits in different
moduli is not defined, There is no carry propagation from one residue pos-
ition to another, and multiplication can be performed in time taken by the
slowest unit, A block diagram of the multiplication mechanism is shown be-

low,

Fig. 2.2 Block Diagram of Multiplier

(7)

Modulo multiplication is denoted by O,

Example 2,3 : Consider the residue system with moduli 2,3 and b5, If

we assume an isomorphism between this system and the system of real
positive integers 0 through 29, then an isomorphism exists for the oper-

ations of addition and multiplication, provided there is no overflow,

13 = (1, 1, 3)
"9 94, 0, 4
22 = (0, 1, 2)

The sum (0, 1, 2) is the residue representation for 22, which is the cor-

rect result, Let us see what happens in case of overflow,

23 = (1, 2, 3)
ST 9(1, 2, 1)
34 (0, 1, 4)

The residue representation (0, 1, 4) corresponds to 4. The correct re-
sult should be 34, which has overflowed the range of representation, We
note that 34 =4 mod 30 i.e., the resulting sum is the correct sum mod-
ulo 30.

The process of multiplication in the residue system is shown below,

§§= (1, 2, 0)
0]

5 = (1, 2, 0)

25 = (1, 1, 0)

(1, 1, 0) is the representation for 25 which is the correct result, Of
course, if the product overflows, then the resulting product is the correct

product module 30,

Subtraction :

The process of subtraction in residue systems is performed by
complement addition, The complement of a residue number is obtained by
finding the additive inverse of each residue digit with respect to the cor-

responding modulus. An additive inverse X' of a residue number X is

(8)

defined by the relation

n
X ® X' = 0mod M, where M= 1 m,.
i=1

It follows that for any X there exists a unique least positive inverse, If

X = (xi, X, ...,xn), then

2

Xt = (x'l, x'z, ceusy x'n) where x‘i =m -x for i=1, ..., n,

The additive inverse always exists since the elements of a residue repres-
entation belong to a finite ring of M integers.

The process of subtraction does not present any basic problems,
The real problem, however, is to represent negative numbers., The prob-
lem becomes more clear after we discuss an example,

Example 2,4 : Consider the residue system with moduli 2, 3 and 5 arr-

anged in that order,

Subtraction is defined by
s=X-Y=X0Y'

Case 1 x| > | v|, Let X =10, Y=5

X=10 = (0, 1, 0)
Y=5 = ({4, 2, 0)
Y' = (1,1, 0). Therefore,
s =XO@ 1! é(O, 1, 0)
(1, 1, 0)

The representation (1, 2, 0) corresponds to 5, which is the correct diff-

erence,

Case 2: Consider s=Y-X=Y®X'

X'= (o0, 2, 0
- (19 2: 0)
Y0, 2,0
(1’ 1, 0) b}

which is the additive inverse of Y =(1, 2, 0). The problem now is that

(9)

unless some more information is given, (1, 1, 0) may be interpreted
to correspond to either -5 or 425,

One way to avoid this difficulty is to divide the residue number
range in two parts, One part can correspond to positive integers and
the other to negative integers. The negative integers are then repres-
ented in radix complement form, defined in terms of additive inverse.
Thus, (- X) is represented by X', where X' is as defined before,
Consider the system with moduli 2, 3 and 5 again, The total range of
representation is divided into two parts : the residue repre'séntations
corresponding to natural numbers 0 to 14 are considered positive,
those corresponding to numbers 15 to 29 are considered to be com-
plement representations and are assigned to negative integers from -15
to -1, This type of representation is particularly advantageous in the
subtraction process. In case 2 of the subtraction process discussed be-
fore, we now see that s =(1, 1, 0) is the complement of Y = ({, 2, 0),
which corresponds to +5. Hence ({, 1, 0) must correspond to -5,
Division :

The main factor that makes the division process in residue systems
difficult is the fact that the residue division and the normal division process
for natural numbers are in one to one correspondence only if the resulting
quotient is an integer, In the normal division process

XY =q iff X =Yq
But in residue arithmetic it is sufficient that

X=Yq mod m
holds, In this case, q corresponds to the quotient only when it has an
integral value,

Example 2.5 Consider a mod 7 system, Its elements are 0,1,2,3,4,5
and 6, Let

6/2 =q
Then 2q = 6mod7orq=3.

Now, let g =5/2.

(10)

Then 2q = 5mod7,
or q = 6, since
2.6 = 12 =5 mod 7.

Obviously, 5/2 # 6.

In awsystem consisting of several moduli, the same difficulty is

encountered, Division of a number X = (Xi’ Xyp enes X) by
n
Y= (yi, Vor eoes yn) is expressed by a set of congruence relations;

¢ = (xi/yi) modm,, i=1, ..., n, where Q =(q1, cees qn)

is the result of division, If the divisor Y= (Yl’ cees yn) has any zero
digits, then its multiplicative inverse _Y does not exist, Hence
QY # X mod M,

However, for the special case xi =0, "yi = 0, a valid congruence of the

form
QY _ X M
— = — mod —
m. m. m-
i i i
holds,

2.5 Conversion From Residue Code to Natural Numbers

Whatever the coding scheme used in a computer, it is desirable
to have input and output in decimal, binary or bcd form, We have seen
how the natural numbers are converted into a residue code. It is poss-
ible to mechanize this process. In this section we shall discuss methods
of converting a residue representation to a natural number form.,

Since a residue representation is not a polynomial type of repres-
entation and hence does not contain digit weights, the magnitude of a res-
idue number is not readily available., The magnitude is determined by
using the theorem [7) stated below,

Chinese Remainder Theorem : A system of congruences X = X, mod m ,
1

i=1, ..., n has aunique solution mod M if and only if mi are pairwise

relatively prime., The following equations define the process of getting the

unique solution [2]:

(11)

. M
X —_—
M m +...._.+§_cn Xn ~ X mod M,

1
where X, M = { mod m, and
i mi
n
M= I m.,
. i
i=1

Example 2.6: Consider a residue number system with moduli 6 and 7

and let us obtain the conversion equation :
m, = 6, m, =7
M=6,7-=42

={ modbéb

={ mod 7 or 6X251mod7.

Hence X2 =6, since 36=1 mod 7,

Therefore, the conversion equation is :

7x1-l-36x2 = X mod 42,

Now consider a residue number (4, 3) in this system, We want to

find the natural number corresponding tfosthis,

x1 =4, fxz =3

7.4 +36.3 = X mod 42
or 136 =2 X mod 42
Hence, X = 10,

We can check that the residue code for 10 in this system is indeed (4, 3).
There exists a corollary of the Remainder Theorem, which allows

us to obtain the natural number from a residue code, when the moduli are

composite (not relatively prime),

Corollary : A set of congruences X = X, mod m, , i=1, ..., n, has

a unique solution mod 1l,c.m. of the mi‘s, if the moduli are composite,

(12)

X =%x, mod m
1 1 (1)
X = x2 mod m2 (2)
X =
x mod m (n)

F =
rom (1}, X m, y1+x1

Substituting in (2), we obtain

X, mod m

+
My T =R 2

or m,y, = (x2 - xi) mod m, (1A)

The equation (1A) and consequently the pair of equations (1) and (2)

is solvable iff X, =%, = 0 modd, where d= g,c.d, (mi, m,). Then
if (1A) has more than one solution, the solutions will differ by multiples
m2 m2
of T [71. The solutions of (1A) will then be of the form v +E- t.
Hence
)
= + — +
X m, (y1 3 t) x1
m,m
1772
= bx, b ——° t,
Y TE g
Thus, the values of X which satisfy both (1) and (2) differ by multiples
m, m
of 5 , which is clearly the least common multiple of m { and m,.
Let us suppose X1 is such a value of X, Then congruences (1) and (2)
may be replaced by the single congruence
X =X modl (24)
{ |
where , 11 =m, m2/d .

Now (2A) and (3) may be considered simultanéously and if they have a

solution, we get another congruence,

(13)

X = X, mod 1, (3A)
whose solutions satisfy (2A) and (3) and hence satisfy (1), (2) and (3).

12 is the l,c,m, of 11 and m, and, therefore, of m,, m, and m,.

This process is continued and existing solutions of the set of congruences
are found. Such solutions will differ by multiples of the 1,c.m, of the
moduli and, therefore, the solution modulo l.c.m, will be unique,
Example 2,7 : Consider moduli 2 and 6. This system can represent

6 integers uniquely, as shown in Table 2.3 .

No, | Mod 2 | Mod 6
0 0 0

1 1 1

2 0 2

3 1 3

4 0 4

5 { 5

Table 2.3

Let us take the residue representation (1, 3) and find the integer corres-

ponding to this using the corollary. Let the integer bg X, Then

X =1 mod2 (1)
X =3 modéb (2)
(1)

From™y | 2y, +1

Putting this in (2) .

2y, +1=3 mod6 (3)
or Zy1 =(3-1) mod 6
d =g.c.d(2,6)=2

and 31 =2=0 mod 2

6
Therefore, solutions of (3) are of the form ¥y + 0 t

B} 2y1 = 2 mod 6 implies vy * |

(14)

Solutions 6f(3) are then in the form (1+3t) and
X =m,y, +x, + Ty M
171 1 B

2.6
= 2.1+1+—2—-t

= 2+1+6t
l.c.m, of 2 and 6 =6
X =23 modéb

We can check from Table 2,3 that this is the correct valye of X for the

given residue representation.

Mixed Radix Conversion Process

A close look at the Chinese Remainder Theorem reveals that it is
not a convenient method of obtaining a natural number from a residue num-
ber. In a residue computer, addition and multiplication will be performed
modulo m, and not modulo M as required by the theorem, This means
additional hardware would be needed for mechanizing this conversion pro-
cess, An alternative method is to use the Mixed Radix Conversion process
which requires operations modulo m, (2], (31, [5].

The mixed radix representation of interest is of the form

X=r m_+...+rmm+rm+r1,05ri<m,,

n, i 37172 T2 i
i=1

where r. are the mixed radix integers which are to be determined, Any
i

integer in the range

n
0 to IF (m)-1" may be represented in this form and hence this
i=t
representation has the same range as a residue system of moduli ml, mz,
LN) mn.
The first digit to be determined is r 1" Clearly
r1 = [X]I*n1

Hence the least significant mixed radix digit is the same as the first res-

idue digit. To determine T,y we note that

|
i
I
1
i
i
|
i

(15)

n-1

X - = II
(ri)/m1 T o mi+.,.+r3m2-i-r2

Hence, T, = (x- 1‘1) / mi,]m
2
The division of X - r { by m { is actually multiplication by the multipli-
cative inverse I1 of m, with respect to m,, where
(1, m i]m2 = 1

By successively subtracting T and dividing by m, all the r. can be

determined,

Examgle 2,8 :

Let m1 =4, mZ =5, m3 =7, and consider a residue number

(3, 2, 5) to be converted.

Moduli 4 5 7 M1xe.d .radlx
digits
Residue
Number 3 2 5 T { =3
Subtract
[3]m. 3 3 3
i
0 o 4 2
by 1
[4]mi
1 4 rz =1
Subtract [ﬂmi {1
1 0 o 3
Multiply by [gam 3
i
2 r3 =2

X is given by

= ‘m, +
X r3m1m2+r2,m1 r1

=2.,20+1.,4+3
=40+4+3 =47,

(16)

We can check that in the given system, residue representation for 47 is
(3, 2’ 5) . .
This chapter has provided the fundamental properties of residue

number systems. In the following chapter we will consider the problem

of sign determination.

(17)

3. SIGN DETERMINATION

The problem of sign determination is one of the major problems
encountered in the désign of a computer based on residue arithmetic,
Attaching a sign bit to a residue number does not help. This is because,
as pointed out in Chapter 2, the magnitude of a residue number is not read-
ily available and, therefore, after adding a positive and a negative number,
the sign of the result is not immediately known. We have seen in Chapter
Z how the whole renge of representation in a residue system is divided
into two parts to represent positive and negative integers, One obvious
way, therefore, is to convert a given residue number to its natural num-
ber form which will fall either in the positive or the negative region of the
representation, This process will definitely establish the sign of the given
residue number, However, this is not an attractive solution for the prob-
lem because it is slow and, therefore, offsets the advantage of speed in a
residue computer. Thus, a faster method is required,

The sign determination problem deserves a thorough study also be-
cause it is closely related to the problems of evérflow detéction and relative
magnitude determination,

We consider a sign function S whichis 0 for positive integers and
1 for negative integers.

In considering the general sign determination problem, it might be
expected that all the residue information is not needed just to determine
sign (one bit of information), We might expect that for a particular set of
moduli, we only need part of the information, such as the parity of each
residue digit. Szabo [5] has proved that such a scheme is impossible, and
in the general case no reduction of information from any residue digit is
possible without loss of sign information, The statement of his theorem fol-
lows,

3.1 Coding Theorem

Let two sectors in the modular ring of M numbers be designated

by two end points L1 and L2 . Call the sector which is traversed when

proceeding from L2 in the sense of increasing numbers, Sector A, and

(18)

the remaining sector, Sector B (see Fig, 3,1)
0

™

Sense of increasing numbers.

L
{

M/2
Fig. 3.1. Range of Selected Number System

Furthermore, let L1 € B and L2 € A, Selecta modulus m and con-
P

struct a function g([x-‘lfn .) such that g([X]r'n) may take on r values,

P p
r < mP . Now consider a function:

f X B oo X . 3 — .) eesy "
(Kl gD, @ (KT) XDy o T)
That is, f is a function of all [X]:m__ , i #p, and furthermore is a fun-

ction of g ([XT.,). ’
P

Then regardless of the choice of f and g, there exist at least two

numbers X1 and XZ’ 0<X, <M, 05X <M, suchthat f(X'i')‘zf(XZ)

2
and X { €A and X.2 €B, provided the following conditions are satisfied:

i r - >
(i) 'Li LZ] M mp
- >
[LZ Ll] M mp
(ii) A >m » Where A - M
P P P mp

Explanation of Terminology : The partitioning of numbers into . positive

and negative sets is accomplished by designating two end points L { and

LZ' Condition (i) imposes very broad limitations on how this partition-
ing is achieved. The two sectors defined by the end points are labeled as
A and B, Designating either one of them as positive does not alter the

validity of the theorem. g ([X]'m) is any arbitrary mapping which maps

mp points (values of [X] o J in& less than mp points, thus reducing
p

(19)

the information of the p th residue digit, f (X) 1is the sign function.

It maps all positive numbers into one set of points and all negative num-
bers into a disjoint set of points, In the proof the author [5] shows that
the restrictions imposed on functions f and g are incompatible,

In other words the theorem proves that all the information from a
residue digit must be used in any sign determination process, provided
the modulus mp of the digit is smaller than VM, This is seen easily
since it is required that
r’r\1 >m_ or -I\—A—>m or m_ </M,

P m p

F P

The following corollary treats the case when I/’.f\lp < mp. It states that
sign detection is impossible if the p th residue digit is coded into less

than r/r\1p states,

Corollary : Let £(X), g(X), L g Ly A and B be defined as in the

previous theorem, Furthermore, let g (X) take on r different values
A

where r is now smaller than mp. Then regardless of the choice of f

and g, there exist at least two numbers X1 and XZ’ 0< X1 <M,
0 SXZ < M such that f(Xi) = f(XZ) and X1 €A and X2 €B pro-

vided the following conditions are satisfied :

A
i - >
(i) [L1 LZ] M mP
A
- >
[L2 Li] M mp
A
(ii) m < m
P P

The corollary yields a positive result, It shows that it is possible
to reduce the information from a residue digit but only within a certain
limit, This limit is fixed by the modulus whose information is to be reduced
and by the other moduli of the system, For example, if we consider a sys-

tem with moduli m, and m_, m, < m_, then m, is the lower limit on

1 2 1 2’ 1
the reduction of information from m, since
m, m
r/r\1 = M = 1 2 =m and the corollary states that we cannot reduce
2 m m {

2 2

(20)
the information from m, to less than :(1\12 =m i states, In the approach

Presented in this thesis, we reduce the information from some residue dig-

its but not beyond the limit imposed by the corollary,

3.2 The Two Moduli Case. We shall now consider the case of two mod-

uli and propose a solution for the sign determination problem, Later we
shall consider the case when the number of moduli is greater than two,

Theorem 3,1 : Given two moduli 2M and N, N odd and N > 2M, let

4= [N]ZM, the least positive residue of N modulo 2M, Then the sign

of a number X, 0SX < 2MN -1, is established by a proposition P such

that M-t

S=0if P: 'V (X =X +il) mod 2M is true.
. i=0 o} m

Explanation of Terminology :

X = [X]ZM, the least positive residue of X modulo 2M.

Xm = [[X]N] . the least positive residue of [X'IN modulo

2M, [X]N “being the least positive residue of X modulo N,

The symbol '"V'' denotes a logical '"OR'", The theorem states

that for a residue number ([X] X1 N) in the above system of moduli,

2M’

if [X]ZM and [[X1 N] ,\ 2Fe same or differ by a multiple of 4, then

the number is positive, The multiplying factor i of { can vary from
0 to M-1, If the proposition P is not true for any value of i i.e,, if

X and X +i{ do not compare for all values of i then the nunber is
0 m

negative,
Proof : The moduli are obviously relatively prime, since one modulus is
even and the other one odd. Hence, they can represent 2 MN integers,
0 to ZMN - {, uniquely. Without any loss of generality, integers in the
range 0 to MN - 1 will be considered to be positive and those in the
range MN to 2MN -1 to be negative.

Consider an integer X =KN+Y, 0 S Y<N-{, 0< K< 2M-1,

(21)
By deéfiniti X = =
y définition []ZM Xo [KN+Y]2M

1= [N]

]

ZM
4 mod 2M
or KN=K1 mod 2m

or KN = ZML1 + K4, L1 =1, 2

or KN+Y=ZML1+KL+Y (1)

th

or N

3 s

Now [KN+Y]N =Y
By definition [[X 1= T KN+v].]. . = X
y ;]N"zM [Iy - -

Therefore, [KN+Y]N =2 ML.2 +Xm , L2 =0,1,2,...

or : Y =2ML_+ X
2 m

Substituting this value of Y in (1)

KN+Y =2ML, +K4+2ML_+X
1 2 m

[Xm + K41 M

or [KN+Y]2N1

or X
o

(Xm +K4) mod 2M, for any value of K,
For X to lie in the positive region, the maximum value K can take is
(M - 1), This is shown as foldows.

Consider X =(M - 1) N + Y. The maximum value Y can take is
N - 1, For this value of Y, X=(M-1) N+N-{=MN - 1, which is

the limit of the positive region. Therefore, the proposition P is true for

all values of K between 0 and M - 1, and S=0 iff P (X6 = Xm)

VX =X #).., V(X =X +(M-1)14) ‘mod 2M is true. Or
0 m 0 m

- . M-
P: V (X =X +i4) mod 2M is true,
. o m
i=0
To complete the proof we have to show that P is false in the neg-

ative region, For values of K between M and (2M -1), X=KN+Y

lies in the negative range. Therefore in this range, S =1 iff proposition

(22)
2M-1
P': V (X =X +j4) mod 2M is true or P is false,
. o m
j=M
This completes the proof,

Corollary 3.1 Given two moduli (2, N) » N>2 and N odd, then for
any X, 0 SX € 2N -1

X
o

X
0

m

Xm mod 2 in the positive region

(Xm +1) mod 2 in the negative region,
where Xo = [X]Z , and Xm = [IX)N1, isleast significant bit of

[X]N if binary coding is employed. This follows directly from Theorem
3.1, This means that in the positive region, X0 and Xm are equal,
Therefore, their mod 2 or WEXCLUSIVE OR'' sum must be zero, In
the negative regioq, they differ by 1 or their mod 2 sum is always {,

Therefore, S = Xo ® Xm’ where @ here denotes the "EXCLUSIVE

OR'' sum, If the above sum is zero, the residue number ([X]Z, [x] N)
is positive and if the sum is 1, the number is negative,

This result is signffjcant in '.the sense thia4t 1f binary coding is emp-
loyed to represent the residues in this system, we only need the jpgst . '
significant bits of-the two. residues to determine the sign.

The following two examples will illustrate the use of the theorem ,

and its corollary for sign determination,

Example 3.1,a: Consider a system with moduli- 4 and 5. Here 2M =4
or M=2 and N =5, 4= [5]4 =1, This system can represent twenty inte-

gers uniquely, as shown in Table 3.1.a. |

In using Theorem 3.1, here i varies from 0 to i. Therefore, a residue

number ([X]4, (:X]5) is iaositive iff,

X -X] =0 or 1.
) m-4
Again, ([X]4, [X]S) represents a negative integer iff [Xo - Xm]4 =2 or 3,

This is confirmed from Table 3.1.a.

(23)

nt)e{gers Xo =[X]4 [X]5 [[X]5]4 (X0 - Xm) Mod ¢ S
m

0 0 0 0 0 0

1 1 1 { 0 0

2 2 2 2 0 0

3 3 3 3 0 0

E:;Zi:e 4 0o |4 0 0 0
5 1 0 0 1 0

6 2 1 1 1 0

7 3 2 2 | 0

8 0 3 3 { 0

9 1 4 0 1 0

-10, 10 2 0 0 2 {

-9, 11 3 1 1 2 1

-8, 12 0 2 2 2 1

-7, 13 g 3 3 2 t
Negative_: , 14 2 4 0 2 {
Region 5 s 3 o0 0 3 t
-4, 16 0 1 f 3 1

-3, 17 1 2 2 3 1

-2, 18 2 3 3 3 1

-1, 19 3 4 0 3 i

Table 3.1.a

(24)

Example 3.1.b: Consider a System with moduli 2 and 5, This can

represent 10 integers, as shown inTable 3.1,b,

.Int;ger x°=[x]2 [x]5 xm=[[x]5]2 [Xoeaxm]2 S
0 0 0 0 0 0
Positive t t ! ! 0 ,0
Region 2 0 2 0 0 0
3 1 3 1 0 ¢
4 0 4 0 0 0
-5,5 1 0 0 1 1
-4,6 0 | 1 | 1
Negative | -3,7 1 2 0 1 i
Region 2,8 0 3 1 g {
-1,9 1 4 0 i 1

Table 3,1.b

' By corollary 3,1,b, a residue number (Ix] 2 [X]S) ‘is positive iff,
[Xo@Xm]2 =0 and negatye iff [Xo 2] Xm]2= 1, Table 3.1,b confirms
this,

If we use binary coding for the residues in this system, we can .

schematically represent the sign determination scheme as shown in F1g 3.2
[x, [x]

5 ¥y— least significant bit
XHZ of [X] 5

mod 2

Fig. 3,2,

e

SRR A ARD RIS RN AR e

giidaat

T N R TR A IR i VAR

(25)

It should be clear that in using Theorem 3.1 we are mapping a set

of N points 0,1,.,,.,, N-1 into a set of ZM points, 2M <N, Thus we are

reducing the residue information for residues modulo N but not beyond the

limit imposed by the corollary of the coding theorem. If we put mp =N,

then
r/r\l & ZMN - ZMN =2M <N or é < m ., Also we
P m N P P
have divided the range of representation in such a way that TL { " LZJ IMN
=L, -0, 1N = MN,

We can show that MN > ép or MN > 2M since N >2M or MN >2M.
Therefore, Theorem 3.1 satisfies the conditions imposed by the corollary

of the coding theorem,

3,3 Sign Determination ; A General Approach

The problem of sign determination becomes more complicated and
time consuming when the number of moduli is large. The basic philosophy
still remains unchanged and we shall make use of Theorem 3.1 andits
corollary for determining sign. A given system of moduli is reduced to the

2-moduli form, and then the sign can be established,

Let us consider a system of n mutually prime moduli ml,mz, veem o,

There is not much loss of generality if we assume one of the moduli to be even.

Let m { =2m, It is obvious that all other moduli must be odd, We shall

partition the set of moduli into two groups (mi, ceves mj) and (mj PR .mn)
j j n ’
where [m =2m (1 mi) <1 m..
i=t 1 i=2 izj+t
and

< <.0. < R
Mirr T My "

‘There can be several such partitions available and some consequences of

the choice will be discussed later,

n

Let 1 m, =2K andletall X, 0 < X< K-1 represent positive int-
i
i={

*
o
]

ARKD AT RN NS AANAN

(26)

gers, andall X', K < X' < 2K-{ represent the corresponding negative
integers such that X @ X' = 0 mod 2K.

Let (xi, xZ, ceny xn) be the residue representation of an integer X,

where x, = rx] s i=1,2,.,., n,

j n
Let 2m (I m) =2Mandl m = N. We shall find [X1 and
i=2 * i=j+1 M

[[X]N] - and represent them in mod m, M, ., mj, since we do not
have any mod 2M arithmetic unit i.e,, we shall find[[[X]N] 1 and
M m,
- —
N A v
In doing so we have to use the following theorem,

Theorem 3.2 : If (xi, xz, coey xJ) represents an integers X ina sys-

tem of mutually prime moduli- m e M such that

xi=[X]mi’ i=1, ...j

then [[X]m.m et .m..] = [X] - x
i 2 i m,
“m, i
i
PrOOf: x,=[X]
i m,
i
_ ey
or X=ymtx, y €7
Let A = [X]
m .m L] lm-
12 j
then X=Ym.m.....m +A, YET,
1 2 j
or ym t+tx =Y¥'m.,.m .., ,m +A
i1 i 1 i
or [A]m_ = %,
i
or [[X]m.m....m.] = x, = [X]
1 2 j m

AL LR T AR T T S 1‘-— ST s e e

(27)

Therefore, [[[X] NJZM] m. 1

m, i

1

To determine [X]N » We can use the mixed radix conversion
process for the set of moduli m, ., ... m .
. jH n

[X]N= rnm. ¢ a0 o m +...+

jH n-1 r

iz Miag i+
0 < T < my k=j+1, ..., n.

The mixed radix digits rk can be determined from the residue digits as

discussed in Chapter 2,

[Ix]y] m = Mipgecee e m O, ®rj+z mj+1®rj+1]m
i i
Since [A@B'lm= [[A]m@[B]m]
m
[[X]N] = [[rnmj+1 Ceee e n-i]m.@”'@ [rjJrz ijJ
mi 1 m1
@[

T m]
i'm,
i
And since [A@B]m =[[A]m° [B]mJ
m

[[X]N] =['[[rn]m.o[mj+1]m ©eee s m)]m-.@""@
m i i

n-1"m.
: i

(r.,.]

1'j+1 m,]
i"m

i
Once the choice of the moduli has been decided, the fixed quantities in the
above relation are known and can be stored, All we have to do is to com<
pute the quantities [rk]m yi=1,...j3 k=j+1, ... n Once we have
i
computed - [[X]N] » We compare this with [[X] ZM] . This can be

m,
ml 1

= [[X]_NA] » since 2M=m -.,.,'m_..,,'m..
’ 1

J

LT

{
1
i
!
i

(28) A
done as each [[X]N] m is computed. If all of [[X] N]m and[[X]ZM]
. . m,

1 1 1

compare, that is they are equal, then the number (Ki’ Xps eees X) is

positive. If they do not compare, we add 4 = [N] - to [[X]N]m,

and again compare with [[X] ZM] m" In the worst case (M - 1) aéditions
i

of 4 will be necessary before we can say the number is not positive, A

schematic flow chart for this method is shown in F ig. 3.3.

Example 3.2 : Consider the set of moduli 2,3,5,7 and 11. Letus par-

tition the set such that 2M =2,3=6 and N =5,7.11 = 385. Let us con-

sider a residue number X = (0,1,0,1,4).

Given xj+1, o }_{n‘

Determine
T T
jtlyeeey

Y

Find

fr.,)
my e]

1

i'—'i,...,j

)
Determine
(XInlm,
i
v
Compare [[X]] m, Add R] m, to
with [X] m, [(XINIm,
i
' L 352
Do they compare? No X the m.lmber of
comparisons
equal to M?
Yes | Yes
P
The given residue num- The number
ber (xlixzs-o-: xn) (xl’XZ""xn) is
is positive negative

Fig. 3.3 A General Flow Chart For Sign Determination

"
5
i
/
d
{

et AR SS Cees

(29)

ivaries from 0 to M-1 or from 0 to 2,
By Theorem 3,2 [X]6 represented in mod 2 and mod 3 is given by

[(x]] =[x, =0
2

2

[[X],]
6 3

(x]

1
—

3
Now, we shall find [(X],..] and[[X]. 1 , whichis nothing but
857, 385°,

(x1...1 represented in mod 2 and mod 3. To find (X] we have
385 6 385

to use the mixed radix conversion process for moduli 5,7 and I{,

Mixed Radix Conversiog_, .. Mixed Radix Digits
Moduli 5 7 o
Residues 0 1 4 o S r3=0
Subtract [r3dmi 0 0 0
0 { 4 ‘
Multiply by [L © 3
Multiply by % Jmi 3 9 «',
i‘f
o T4 T
o)
Subtract [r4]mi 3 3 ’
0 0 '
. 1 0
Multiply by [7]mi 8
0 1'5 =0
= N +
[X]385 r5.m3.m4+r4m3 r,
= r5. 35+r4. 5+r3
Therefore

(X1, =000r.] 6 [351.1 @®I[r.] 1.1 @ [r.].1
[35 “LHsp 0 2, 4,0 2,

(30)

[[091]2@ (16 1] , (Jao]2
= 1

e
sesh, =Llx), ESRICLCR I 1), 01
= [[09213@ [o@z]3@ 0, =0

In mod 2 and mod 3

(X1, = (0,1)

[X] 5= (1,00

They do not compare, So we add 4 to [x1 385 °
4= [385]6 =1 = (1,1) inmod 2, mod 3

[x]385+&_ = (1,0)
(1,1)

————

(0, 1)
This compares with [X], . Hence the number (0,1,0,1,4) is positive,
P 6

Consider another residue number (0,0,0,3,1) .

We can check that

[[x1,..]
385,

!
——

[[X]385]
3

In mod2 and mod 3

[X]6 = (0,0)

[X]

1]
o

395° (1, 0)

They do not compare, Hence we add 4 to [X] X],..+4 =10, 1),

385; [“385
It still does not compare with [X] 6 Adding 4 again

[x]

385 +24 = (1, 2)

4
4

Pyres
~

R L SRR SN
RN B

T A

RLEE

(31)

This does not compare with [X] 6 We have made M =3 comparisons,
Hence the number (0,0,0,3,1) is negative, Fig, 3.4 shows schematic-

ally how to find [[x]385](2 and [[X]385] ; Boxes labelled C, and

C (q are complement units modulo 7 and i1 respectively. Li’ L2

(5]

[35]2
[s1.1 1

and L3 represent simple logic required to convert r_, r, and T to
[r3] 3 [r4]3 and [r5]3 respectively.
Moduli 2 3 5 7 11
Residues 2% . 21 %4 | %5 Partial Mixed

Radix Translation

['1='] | Stored
5°7 1 | Constants

A NN A O e e i
L AN A 4 L

RN

(32)

] have been determined, théy
3

After [[X] and [[X] 38

]
385 5 5
are compared with x, = [x] , and X, = [X]3 respectively, The compar-

ison logic is straightforward, and is shown in Figs, 3,5. It produces an out-

put of 1 only when its inputs are identical.

[x],

(X1,

|
|
.
|
2
| ™
| :_ ‘
[L
|
- 1
o :

LS -——-———-—-— T ——

(X1

| N
[[X],,,] " %
85, | j>__r

w
- |1 1" r—"
L 2 3 .
:——uy,/ .
¥

Y

T

Fig. 3.5.b Mod 3 Comparator

TRAanRY, | wEaee s

POTEIt boc verli iy

(33) |
When both comparators have an output of 1, the sign of thé residue

number (x x5) is positive. If not, then the quantityi®

1lx2!x3!x4’
(i=0,1,2; ¥=1) mustbe addedto [[X]...] and [[X]...] and this
385 5 385 3
should again be compared with [X] > and [X]3.
= = # =0T

1, +2 [4]2],and |

¥ = £ o

v = LKLl + Ty = (K],
3 3 2]

% = 1] .T . inati £ ‘

£ [[X]385]3 +2(]3]3 able 3.2 shows the combinations o y, and

Y, and the resulting combinations of yi’ﬁ , yé‘ and yi**, yg‘*.

2
0|0 | 1|1] 0f2 g
11 o)z |1
14
0 1o ot)
i

(=]
—_
P
[y]
o
- O N

Table 3.2

It is clear that y;“ = ;1. Yg" = (YZ @ 1) mod 3, Yi** Yy and

YZ** = (YZ @ 2) mod 3. Fig, 3,6 shows the remaining part of the sign

detection process after y { and Y, have been determined. The stored con-
stants { and 2 are addedto Y, in mod 3 adders to find yé"" and yg‘*

respectively.

(34)

Comparators

mod 2

Comparator

i=0

mod 3

ry vy

Comparator

mod 2

Comparator

mod 3

YTIY7Y

@3

Comparator

C e

R SRS S NNV Ry

> mod 3 >
@3 »—| Comparator

rY

Fig. 3.6. Comparison Process for Sign Detection

(35)

The mixed radix translation can be reduced by partitioning the set
of moduli into 30 (2,3 and 5) and 77 (7 and 11) or into 42 (2,3 and 7)
and 55 (5 and 11). This would require one complementation, one addition
and one multiplication, all modulo 11, Thus a reduction in hardware for
translation process is possible, But then more hardware is required in the
remaining sign determination process, after mixed radix digits r 4 and T
are determined. On the other hand, partitioning the set of moduli into 2
and 1155 (3,5, 7 and 11) would require more hardware for mixed radix
translation, The remaining process of sign detection requires only an EX-
E€LUSIVE OR gate, to which [X'IZ and the parity bits of mixed radix digits
are fed [See Sec. 3,4], A compromise between mixed radix translation
and the remaining sign detection process has to be finally made by the designer, ‘
The sign detection scheme discussed so far uses a completely hardware :
approach, Of course, it is not necessary to determine sign by hardware alone, %
Using a combination of software and hardware will result in saving hardware,
At the same time the process would require more time, Referring to Fig, 3,4,
all the modular operations can be performed using the arithmetic unit of the

machine, which will have modulo adders, multipliers and complement units,

Thus no extra hardware would be needed for mixed radix translation. After
the mixed radix digits are obtained, the remaining process requiring mod 2
and mod 3 adders and multipliers can be performed using the arithmetic ‘
unit, Comparators will still be needed but,by suitable programming, additions
of i can be done using the arithmetic unit again. Thus the process allows
the designer a lot of flexibility on the amount of hardware and software to be

used in sign detection,

3.4.1t is interesting to see what happens when in a system of n mutually
prime moduli, the even modulus is 2, Then the following theorem can be

used to establish tue sign of a residue number.

Theorem 3,3 In a system consisting of n mutually prime moduli, m P

m., ...m where one of the moduli is 2, the sign of a number X with
n

2’
. residue representation (xi, coey xn) is given by the EXCLUSIVE OR sum

\30)

of x and the least significant bits of the mixed digits

1
corresponding to the residue representation (X ,....%).
2 n

Proof : The proof follows directly from Corollary 3.1, Let m, = 2 and

n
let N= I m, . If we just had two moduli m, = 2 and the composite
i=2

modulus N, then we could use Corollary 3.1 for sign determination, We
can still use it because N consists of (n - {} ' component moduli'' ,

[X]

N is given by

X = . « see o -
[]N s R mn-1+"' ¥ r3m2+r2, '

ri's being the mixed radix digits corre sponding to the residue represent-
atiop (xz, vees xn) .

Hence X = [[X]], =[flx 1, © (m,, 0..0 [mn_112]) ® ...

Ollxy), 0 myl1 OF,1)] .
2

Since moduli My eees m are all odd by assumption

[m.] =1, foral i=2, ..., 0.
t2

(], ©...@ [5;], @ [5)1,)

!

Hence X
m

Also X x]. = (X1 = x
o 2 m 1

1
Again, from Corollary 3.1, the sign function is given by S= Xo ® Xm'
® here denotes the EXCLUSIVE OR sum. Therefore,
S =x1(+) [r?‘]2 @ [r3]2 @ @ [rn]z.
This completes the proof,

If binary coding is used for all the modular operations, the mixed

radix digits T will be in binary form and [rz'l g1 e [rn'lz will

2, eoe 3

(36)

of x and the least siznificant bits of the mixed digits

1
corresponding to the residue representation (x ,....%).
2 n

Proof : The proof follows directly from Corollary 3.1, Let m, = 2 and

let N =
i

m, . If we just had two moduli m, = 2 and the composite

LI]

2
modulus N, then we could use Corollary 3.1 for sign determination, We
can still use it because N consists of (n - 1) ' component moduli'' ,

[X]

N is given by

X = . ¢« sse o "+-'-+ + ’
I:]N Ta Mt ™ My 3T

ri's being the mixed radix digits corre sponding to the residue represent-
ation (xz; cees xn) .
= = 0] 6..0 oo
Hence Xm [[X]N]Z [[[rn]2 [mZ] , @ [mn_i']z]) @
(0]
oLz, © m)y1 OF,1 1
2

Since moduli m_, ..., m = are all odd by assumption

2
m] =1, forall i=2, ..., 0.
12
Hence Xm= [[rn]Z @...0 [1‘3]Z @ rrz] 2]2
Also X = [X]. = [X] = X
0 2 m 1

i
Again, from Corollary 3,1, the sign function is given by S = Xo @ Xm,

® here denotes the EXCLUSIVE OR sum, Therefore,
S =x1@ [rZ]2 @ [r3]2 ®@...0 [rn]Z.

This completes the proof.

If binary coding is used for all the modular operations, the mixed

radix digits r

) r will be in binary form and [r21 g eees {rnwz will

(38)

4, IMPLEMENTATION STUDIES

In this chapter we shall discuss the modular adder amd multiplier
design, the complementation problem and the input-output translation,."

In most of the available literature on modular arithmetic, there is | !
a general trend to use magnetic core logic for the hardware implementation
of various units, While this implementation scheme is conceptually simple,
it does not take into account hardware considerations, In Ref, [10], it
is pointed out that : ' j
{. A significant amount of hardware is required for decoding binary coded |
residues modulo m to a code for input to the core matrix, and separate
decoding is required for both operands. I
2. A logic network is required for encoding the result to a binary coded res- |
idue for storing in memory,
3. 2 m core drivers and m sense amplifiers are required for a mod m

adder, and similarly for a mod m multiplier,

4, The speed of a core matrix adder or multiplier is limited to approxi-
mately the cycle time of a core memory made from the same cores. A reason-
able upper limit is a {-microsecond cycle time as against 1/10 microsecond

for semiconductors.

SRR T ey

Because of the above limitations and disadvantages of core matrix

mechanizations, we shall use logic gates in our designs;

4,1 Adder and Multiplier Design

In this section we consider the logical design of residue adders and

multipliers. There are two approaches to the design problem.

4,1.1 Direct Implimentation

This is a straight forward method of design, For example, to mechan-
ize an adder for modulus m, the sum mod m table is formed in binary
code to obtain the Boolean functions for sum digits, Any of the standard mini-
mization techniques are then used to reduce the sum functions, The same
procedure is applied for finding the product digits of a mod m multiplier,

Ref, [10] reports that using this technique a mod 31 adder requires several

(39)
hundred logic gates, a rough estimate being 600 gates using two-level

logic, The reason for such complexity of the mod 31 adder is that the
five sum functions mod 31 are each functions of ten variables, It might
seem likely that the sum functions modulo 32 would also be functions of
ten variables, However, this is not so and it has been shown that a mod

32 adder can be implemented using a total of 68 AND and OR gates

and 10 inverters, Such simplicity arises because instead of five functions
each of ten variables, we have one function of ten, one of eight, one of six,
one of four and one of two Boolean variables, It has been shown [12] that
in general, if modulus m is an integral power of 2, then the Boolean func-
tion for bit Si of the sum is a function of only the summand input variables
Xj and Yj’ i=0, 1, ..., i, For a modulus m = Zn, instead of n Bool-

ean functions of 2n variables each, we get one function Sn of 2n var-

{
iables, one furchion Sn 2 of Zn-2 variables, and so on, to one function
S, of 2 variables, The same result is true for a mod m multiplier, when m

0
is an integral power of 2, Therefore, logic gate implementation for integral -

power-of-2 moduli is considerably simplified, This property can be profit- fg;.

ably exploited for only one modulus in a system of relatively prime moduli,

4,1,2 Modulus Substitution

It is well known that mod k addition can be performed on a mod m

g
i

adder where m > k, This would, however, require detection of ''overflow'

mod k and then the correction of the sum mod m to get the correct sum
mod k, Overflow will occur when the sum exceeds (k - 1) and this would
indicate that a correction is necessary. The same is true for mod k multi-
plication, Table 4,1 shows the addition mod 7 and mod 8, with the over-
flow states mod 7 shown within triangles, It has been shown [10] that the
number of overflow states is independent of the '""parent''modulus (which is

eight here) and that for a modulus k, k odd, the number of overflow states is

equal to
k-1
s = k(kz- 1)

(40)

@l 01234567
01234567 ‘
1/123456/70
2123456/70|1

3/3456/70 1|2

41456/701 2|3 i

515 6/701 2 3|4 |
616 /7 0 3 45

717 0123456

Table 4,1 Addition mod 7 and mod' 8 With Overflow mod 7.

One way to utilize the modulus substitution approachis to design one
parent adder and multiplier and to carry out one mod m, addition or multi~
1

‘plication per machine cycle, For a system of n moduli, an addition or

multiplication would then require n machine cycles, This indicates the

possibility of modular serial computation,

The second way to utilize modulus substitution is to combine it with the ;
properties of integral-power-of-2 moduli and to design several parent adders ﬁ‘
and multipliers for different moduli, For example, in a system with moduli 5
2,3,5,7,11 and 13, a mod 4 adder could add mod 3, two mod 8 addefs ZL

in parallel could add mod 5 and mod 7, andtwo mod 16 adders in parallel
could add mod 1{ and mod 13, This would require only one machine cycle,
A second possibility is to use a serial-parallel combination : A mod 8 adder
to add mod 3, mod 5 and mod 7, and a mod 16 adder to add mod 11 and
mod 13, This would require 3 machine cycles. In the first cycle mod 2,
mod 3, and mod i1 additions can be performed, in the second cycle mod 5
and mod 13 can be performed, and in the third cycle mod 7 addition can be
done, The final choice is obviously governed by speed and hardware require-
ments, Ref, [10] tabulates the results of various imQlementation studies

and the same table is shown here [Ref, Table 4,2].

Table 4,2 Comparison of Different Adder Implementation Schemes

(41)

Modulus Adder Gates

Parallel Adder
Add Time = 1 Clock Time

32 130
13 102
11 100
7 40
5 26
3 10
Hmi ~2) Total Gates = 408

Serial Adder Using Mod Substitution
Add Time = 6 Clock Times

32 130
13 20
11 18
7 12 iﬁn
5 7 %’
3 4 4
Hmiz 219 Total Gates = 191
Serial-Parallel Adder
Add Time = 3 Clock Times
32 130
13 20
11 18
7 40
5 13
3 10
Im, ~2 Total Gates = 231

(42)

" It is mentioned that for the parallel adder, the adders for moduli 32, 17,

5 and 3 are mechanized directly ; those for moduli 11 and 13 are
derived from mod 16 adders using modulus substitution, For the serial
adder using modulus substitution, a mod 32 adder is mechanized directly
and used through modulus substitution to add for the moduli 13, 11, 7, 5
and 3, one modulus per clock time, The serial-parallel adder uses a
mod 32 direct adder for moduli 32, 13 and 11 and a mod 7 direct adder
for moduli 7, 5 and 3. For comparison with the parallel adder, direct
implementation of adders for all these moduli would require about 500 logic
gates,

Another way to mechanize a mod m adder would be to use binary
half and full adders as is done in case of decimal adders. Mechanization
of a mod 32 adder using binary adders is very simple and requires 44
AND and OR gates, In mod 32 addition, whenever the sum of two addends
exceeds 32, we have to subtract 32 from the sum to get the correct sum
mod 32, Subtraction of 32 is done simply by ignoring the carry generated
from the 16-order. For example, addition of 20 and 30 in mod 32 pro-
duces 18,

10100 Twenty
11110 Thirty

Ignore |
the carry 10010 Eighteen

A schematic of this scheme is shown in Fig. 4.1, The use of binary
adders to get addition mod 13 is shown in F ig, 4,2, Additional circuitry
shown is for detecting overflow mod 13 and for correcting the actual sum
obtained to get the correct sum mod 13, Overflow mod 13 occurs only when
in the sum bits, 1's appear in 8, 4 and { orders or in 8, 4 and 2 orders
or when there is a carry generated in the 8-order. When overflow does
occur, the correct sum mod 13 is obtained by subtracting 13 from the indi-
cated sum, This is achieved by adding 3 to the indicated sum and then
subtracting 16 from it, subtraction of 16 being achieved by ignoring the
carry from the 8-order of corrected sum, Table 4.3 shows the number of

gates required for modular adders when binary adders are used to implement

BN R AT Pt L e BT

CSE S R R S S S R S8

SR TR T T e . ,,...1..@WWW.WWW«?V??K»% -
e > 2 > bt~ Kz , “a > —
- i - a : ”
b o b © _ B 2
w
£ _ J 5
3 o
S Q
YZ 0 =Y < ~ “ _Iw ” T z
. 1 = B ¢ . "3
b< O 8 ™ 3 5
g » © g
oy C a
£ |] E
o m
o] (2] » N & «® _11 @ &
V..3 T w ® N T &
& . o P g - = c8
) 9 o > 1 2
L e © I_ 3 >4 ° I_ = |_ 3
<t 0 N = o hv. v] _v' @ -
> T P) o =
<+ - B b o i 3
be © J = . et I = g
] L) ; M
i
: o
V...b w0 - S.b 4“ N o §
- . M : %
o - K g b
& A/m\ B
[=1
=1}
& ,

(44)

them, This scheme does not result in a reduction of logic for the mod 3
adder, and it is implemented directly, It should be mentioned that the

gate count is for AND and OR gates and the maximum number of inputs

to a gate is three,

Modulus Adder Gates

Parallel Adder
Add Time = Time for carry to
propagate by 5 positions

32 44

13 60

1 60

7 38

5 45

3 8
Hmizzig 255

t
i

Table 4,3

The same design primciples hold for modular multipliers, However,
modulus substitution is of limited use for the multipliers due to the multiple

overflow problem encountered in modular multiplication, The reason is as

follows,

In a modm addition process, the direct sum of two operands never
exceeds 2m -2 and then the sum mod m is obtained by subtracting m from
the direct sum, However, in mod m multiplication, the maximum value of
the direct product of two operands can be (m - 1) : and then the product mod
m is obtained by subtracting m or multiples of m from the direct product
depending on how many times the product overflows m. For example, if the
product lies between m and 2m, we have to subtract m from it to get the
correct product mod m ; if it lies between 2m and 3m, we subtract 2m

from it and so on, This multiple overflow presents problems in modular

AR

RUNQERN T

ZAES LR e

R S F e i

L

(45)

multiplier design because we must have a way of detecting how many times
the product overflows m and how many m's must be subtracted from it to
get the correct result, Obviously, the use of modulus substitution would com-
plicate the problem more because of multiple overflow in both the ''parent'!
modulus and the ''substituted'! modulus.

Not much work seems to have been done in this direction except for
using direct implementation, This problem deserves further study, How-

ever, it is outside the scope of this thesis and we shall leave it here.

2.2, Complementation : It has been discussed in Chapter 2, how subtraction

is performed using complement addition, Therefore, we must have a means
- finding the complement X' of a number X in some modulus m, By
definition

X' =m-X,
There are two solutions praposed for this problem,
t. Lctus consider a modulus m = {1 and a number X =4, Code m and

e least positive residucs in ordivary binary code,

U ~=~= 0000
{ ---- 0001
2 ----0010
3 ---- 0011
4 ----0100
5 ----0101
6 ----0110
7 ----0111
8 ---- 1000
9 ---- 1001
10 ---- 1010

and m = {{ ---- 1011
To find X', complement all the bits of X to get X and add to m. This

addition is the ordinary binary addition,

TR s Ry Tt

(46)

4 = 0100
1011

+X =, 1011
1011

0110

X
X
m

End around
Carry |

0111, whichis 7, The complement (or additive in-

verse) of 4 in mod 11 is, of course, 7.

(2) The second method is based on a binary assignment to the least posi-
‘tive residues such that they form a self-complementing code with respect

to m; thatis the assignment for any residue x, is such that
i

0 - 0000

1 - 0001 «

2 - 0011 «

3 - 0010 <

4 - 0110 «

5 - 011 «
0101
0100

9 - 1100

g8 - 1101

- 1111

10 - 1110
1010’
1011

7 - 1001 «—oH

Table 4.4.

W

SRS L

ST RETHTERRT

(47)

The mutually complementary numbers are shown paired together [Ref. Table
4,4]. Now if, X =4, which is assigned 0110, X' = X = 1001, This
corresponds to 7, which is the additive inverse of 4 mod 11, Therefore,
using such an assignment scheme the additive inverse of a number X can

be found by complementing the bits of the assignment for X,

As far as modular complementation (finding additive inverse) is
concerned,, the second solution is the most desirable one when using binary
coding for residues, This, however, may result in more complex hard-
ware for adders and multipliers and may not, therefore, be worthwhile,
Hence, its effect on hardware deserves attention, However, this problem

is outside of the scope of this thesis,

4,3 Input Translation

In this section we consider the problem of converting the input data
into modular form. The input will be in a fixed radix form, with radix r,

Any number X can be expressed by a polynomial

n n-1
= < <r,
X Cnr + Cn_ir Ut et Cir-l'GogO Ci r |
Then n a=1i ‘}
X1 =[lcr 1 . +IC 1 +...040c1] '
hm, n m n-1 m; om
i i 1 im,

1

S NIRRT

If the quantities [Cil‘l] m; ©a® be evaluated without the actual multiplication

in 2 mod m, multiplier, then [X]m can be determined using a mod m,
! i

adder,

‘ Let us consider binary inputs for a system with moduli 2, 3, 5 and 7.
This system is capable of uniquely representing a total of 210 integers. The
number of bits required for coding is equal to <log.2 210>, where {1 de-
notes the least integer greater than or equal to I, Here <log2 210>= 8.
Therefore, this syétem r'eqﬁifes 8 bits to code all the 210 integers. Any

X within the range of representation can be expre ssed as a polynomial.

7 6 5 4 3 2 1
= +C2°+C2 +C_ .
X C72 +662 +C52 +C42 +C32 C.2 { 0

(48)
“Any Ci can now take only two values— 0 or {,
X]. = =
Then []2 [CO]2

X1, = 2C, +C, +
[_, [; 205+c4+zc3+c2+zc1+01

r_x1 = [3C +4C6+2C5+C +3c3+4c2+zc +c]

+4C_+2C +C_+4C_+2C +c0]7

(x], =[2C7+Cé 5 Cvg T3 T 1

In the worst case, determination of [X]3 would require 4 multiplications

and 7 additions ; determination of [X'!5 would require 6 multiplications
and 7 additions and [X]7 would require 5 multiplications and 7 addi%
tions. All these multiplications and additions in different moduli occur simul-
. taneously. The maximum tiime taken for input translation is then the time
required in the worst of the three above cases. We notice that the worst

case is the determination of [X]s. The translation process can be speeded

up, at the expense of no extra hardware, by not using the modular multipliers.
Then the process will need at most 7 additions. To discuss this in a little
more detail let us focus our attention to the translation equations, The in-
puts to the mod 3 adder must all be 2-bit numbers. Therefore, CO’ CZ’
C 4 and C 6 (all 1-bit numbers) must be converted into 2-bit numbers by
adding a 0 at the leit. 2C1, 2C3, ZC5 and ZC7 can only take the values

0 and 2, which in binary code are 00 and 10. Therefore, we can take

It
‘e
i
W
i
*
it
i

LSRN VT

Cl’ C3, C5 and C7 and place a 0 on the zight before feeding into the mod
3 adder. In other words depending upon whether the coefficient of a Ci

is 1 or 2, we havetoadda 0 to the left or right of Ci’ as the case may
be, before feeding it to the mod 3 adder. Similar additions of 0's to the
left or right of C would be necessary before feeding them to the mod 5

and mod 7 adders If Yy Yy ¥3 V4 Vs and Y Vo Vg 2T€ the binary inputs

to mod 3, mod 5 and mod 7 adders respectively, then the conversion of

the C.'s to v,'s is schematically shown in Fig, 4.1. Tables 4.4 show the
i i

effect of coefficients of Ci's on the addition of 0's and 1's to the left or

right of Cix s,

To mod 3 adder

1
)

~ e

-
E————
——
—
) E——— To mod 5 adder
—
o crmea i
R
———
———>
>

— To mod 7 adder

Fig, 4.1 Conversion of Input bits to Proper Form for Adder Inputs.

(50)

Ci Coefficient of Ci Operation
0 1 Add 0 Left
{ 2 Add 0 Right

Table 4,4.2, Conversion of Ci ‘for Proper Input

to Mod 3 Adder

Ci Coefficient of Ci Operation
| Add 00 Left
0 2 {Add 0 Lett,
Add 0 Right
1 3 Add 0C, Lett .
4 Add 00 Right

Table 4,4,b Conversion of Ci for- Proper Input
to Mod 5 Adder

Ci Coefficient of Ci Operation j
{
1 Add 00 Left
0 2 Add 0 Left,
Add 0 Right
1 4 Add 00 Right

Table 4.4.c. Conversion of Ci for Proper Input

to Mod 7 Adder.

(51) |
|

4,4 Output Translation

The problem of output translation is a little more complicated than
that of input translation, In Sec. 2.5, we discussed the mathematical equa- }
tions describing this process, In this section we will discuss the mechaniz-

ation of the conversion process from a residue number to its corresponding

natural numbes-in binary form. The system of moduli considered for input
translation, will again be used here, Let m, = 2, m, = 3, m, = 5 and

m4=7,'.

4,4,1 Mixed Radix Conversion Process : In this section we discuss the use

of mixed radix conversion for output translation. In the above system of modu- '.'i
i, any X inthe range 0< X < 210 can be represented in the mixed radix
form as 3

m .m. +r. .m m+r.m+r1,05r.<m., |
i i ;

X=.. .
R R T ey e B A |

r. being the mixed radix digits. Binary representation for any X in the

3

-

above range requires 8 bits. Addition of all the quantities in the mixed

radix equation can be done using an 8-cell binary adder., The least signi-
ficant bits are sdded in a half-adder, Full adders are needed for other bit

positions, The sum never exceeds 210 and, therefore, there is no need

r
for detecting overflow mod 210, We must convert all the quantities to be ,L
H
2dded into 8-bit form. To find the product of the mixed radix digits with ;§
B

the moduli, we would require binary multipliers. To save hardware, the
muliiplication can be replaced by a table look-up procedure : m My

M.y m1 . mz and m 1' “are all fixed quantities, It is also known that any

r. can have only one of the values from 0 to m, - {, for a particular res-
1
idue number. Therefore, all the possible values of T, m, . m,. My, r3

emy. m, and T, m, can be stored and depending upon a particular value

of each Ty T, and T,

read from the table, Tables 4.,5. show the pos sible values of these quan-

the corresponding products with the moduli can be

tities and their binary representations. Conversion of Tpe M. m,, T, . m,

and r 1 to 8-bit representation can be achieved in the same way as outlined

in Sec, 4.3.

(52)
Ty T mpem,em, Binary Code
0 0 0000000O
1 30 0o00t1110
2 60 00111100
3 90 oto0t11010 |
4 120 01111000 l
5 150 100101120
6 180 10110100
Table 4,5.2 Possible Values of r4-m1-m2-m.’3 ,§
r3 TeTR,em Binary Code ;
3 2 i
0 0 00000
i & 00110
i 12 01100
3 ‘ 18 10010 »
3 2% 11000 -
Table 4.5.b Possible Values of remem, '
i] . 1‘
L T, ’ rem, Binary Code lg
e 000 :
' 1 2 010 %
2 4 100 ,;é
i

Table 4,5.c Possible Values of rz-m

i,

i
By

1

i e 202G
SR G

(53)
An example will clearly illustrate the output translation process,
Consider a number X with residue representation (1, 2, 1, 6) where
[x]{2 =1, [x]3 = 2, [x]5‘= { and [X]7 = 6. The mixed radix digits

for these residue digits are r, =1, r_=2 r_=1, r =1, For these

1 2,3 4

values of Ty Ty and r 4 the table look up gives the corresponding val-

" ues of rz.mi, 1'3am1-m2 and T omem,em, 28 (in binary code) 100,00110

and 00011110 respectively, After conversion of all the quantities to 8-bit
representation, and adding in:thé binary adder,; weget: X=00101001, which
is the correct answer,

If desired, table look-up can be replaced by combinational logic.

4,4,2,Chinese Remainder Theorem : If for some special high output rate

purposes, the method of Sec. 4.4.1 is too slow, then the Remainder Theorem
can be used for faster conversion, For a system of n moduli, the conversion
process desecribed in Sec, 4.4.1 requires 3{n-1) addition, multiplication
ané. complementation cycles, (n-1) table look-ups plus the time required

for binary addition of n, <logZ M> - bit numbers,

Referring to Sec 2.5, we find that in a general system

X = (x, X, M .. +xX 2} mod M,
iimi nnm

where X, % are constants which can be calculated in advance and stored
1 . .
1
tc be retricved when needed. If fixed radix multiplication is used to obtain

x, X, '}-l" and fixed radix addition to sum these products and further, to
i i m,
i
obtain rapid solutions, if parallel addition and multiplication are used, then an
enormous amount of hardware would be required. In this case, the hard-
ware for conversion would be comparable to that of an entire arithmetic unit

of a fixed radix parallel machine and this would offset much of the advantage

of modular arithmetic.

(54)

It is noted that multiplication is not necessary to obtain x, X,
ii

Each such quantity has only m, values, 0 through . :(m,-{) Xi
i

n—uB Ig .--g lg

Therefore, for each m, X Xi —I\H% can be stored in a read-only memory
i

and the conversion problem is reduced to a series of fnemory retrievals and
additions. For fast output a parallel adder is still required, but the hardware
requirement is much smaller than that when parallel multiplication is required.
This solution would require n table look ups and addition of =, log, M) -bit
numbers.

The total requirements of this process are a read-only memory, a par-

allel adder, the necessary control logic and the detection of ''overflow'
mod M and the correction necessary to get the correct value of X. This

conversion process would require n table look-ups and (n - 1) additions.

Co:xming back to the example considered in Sec, 4.4.1, the conversion
equation for this system is H

X =(105 x, =70 %, + 126 X, +120 x4) mod 210,
considering the residuc number (1, 2, 1, 6) again, table look-up will yield
the right hand side quantities as 01101001, 10001100, 01111110 and
1011010000, These are addedina parallel adder, overflow mod 210 is de-

tected by procedures ouilined in Sec. 4.1.2 and the indicated sum is corrected

to give the correct value of X =00101001,

(55)

5, COMPARISON OF SIGN DETECTION METHODS

5.1 In this chapter we shall consider the sign detection problem again
and attempt to present a comparison between the various pos sible schemes
that. can be used to establish the sign of a residue number. The evaluation

and comparison is made difficult because of the following three factors :

(1) The evaluation methods vary widely and depend upon the availability of

the type of hardware to be used and upon the entire system, For example,

it is not very meaningful to make a comparison based on diode or transistor

count when logic gates with a fixed number of inputs are to be used for imple- [
mentation. In this case, a gate count will be the meaningful comparison.

In some other case, the number of interconnections may be a more realistic

way of comparison,

(2) The costs of component units are not known, In Chapter 4, some definite

figures for the number of gates required to implement modular adders were

obtained, but we have no such figure on modular multipliers, We could argue
that we can always find the number of gates required for direct implementation
of modular multipliers, but we cannot be sure that this would be the most econ-
omic implementation, Also, we do not have complete information about the
complement units., Complementation can be done by using the methods of

Sec, 4.2 or by combinational logic which directly transforms a binary coded
residue to its éomplement form. Since we are not able to decide how comple-

mentation is to be done we cannot state definite costs.

(3) The methods of sign determination which are to be compared vary widely,
For example, it is extremely difficult to compare a software solution with a
hardware solution, unless the entire system is known, We shall, however,

try to present some insight to this problem,

5.1.1 Purely Combinational Method

This is the brute force method of sign detection. The sign function
S is assigned. -a 0 inthe positive region of the residue representation

and 1 in the negative region, The residues are coded in binary form, Using

(56)

any of the standard minimization techniques, S is expressed as a Boolean
function of the binary coded residues, This method, though straightforward,
is not practical because of hardware considerations, The expression for S
contains a large number of prime implicants and as a result a large number
of logic gates are required to detect the sign, For example a system with
moduli 2,3,5 and 7, which is too small for any practical-sized computer,
requires about 70 AND and OR gates, with the maximum number of inputs
to a gate being 7. It, therefore, appears that for any practical-sized com-

puter, this method will be too expensive to use,

5,1.2 Mixed Radix Translation Process

In this method, a given residue number is converted to its correspond-

ing binary or decimal form which will indicate whether it lies in the positive

or the negative region. In a system of n mutually prime moduli where binary

coding is used for all the quantities the sign detection by mixed radix trans-
lation involves 3(n-1) modular operation cycie s, (n-1) table look-ups,
addition of n, <log2 M> -bit numbers and comparison of this sum with
M/2, which draws the line between the positive and the negative regions, It
is difficult to assess at this point, how much time is involved in this process
because it can be implemented either completely by hardware or by a com-
bination of hardware and software, in which case only one modular operation
(addition, multiplication or complementation) is performed per cycle time,
The cycle time can vary depending upon the type of components being used.
In a system with moduli 2,3,5,7 and 11, we require 10 complement
units, 10 modular adders and 10 modular multipliers to determine the mixed
radix digits by hardware alone. The remaining process of sign detection
would require 4 table look-ups, addition of 5, 12-bit numbers and compar-

ison of the sum wit %1— = 1155, It is not economic or practical to use s0

much hardware for finding the mixed radix digits alone, Itis much more

economical to perform one modular operation per cycle, though the sign

detection would then require more time,

(57)

5.1.3 Use of The Remainder Theorem

The theorem is used for converting a given residue number to a
fixed radix form, and the comparison of this with a fixed number will yield
the sign information, For an n-moduli system, this process involves n
table look-ups, addition of n, <log ZM“> -bit numbers, detection of over-
flow mod M, the correction to get the actual sum mod M and comparison
of the sum with M/2. In the example under consideration, therefore, this
process requires 5 table look-ups, addition of 5, 12-bit numbers, detection
of overflow mod 2310, correction of the sum and finally comparison of this
with 1155,

It should be clear that from the poiﬁt of view of hardware, this pro-
cess is better than the mixed-radix translation, when fhe latter is implemented
by hardware alone. The use of the Remainder Theorem does require addition-
al logic for overflow detection and correction of the sum but this is less than
the logic requirements for mixed-radix translation,

From the consideration of speed also, the Remainder Theorem is

‘.\‘

faster. For the mixed-radix process, the signal has to go through 3(n-1)
stages of logic to yield all the mixed-radix digits and it is reasonable to ex-
pect that the time required for this is greater than that required for detection
of overflow and correction of the sum.

If only one modular operation is performed per cycle time, then the
mixed-radix process can be implemented using the modular adders, multipliers
and the complement units of the arithmetic unit,

In this case it would require less hardware than the Remainder Theorem,

But, then it would be considerably slower than the Remainder Theorem method.

5.1.4 Here we consider the approach of Sec. 3.3, Consider the same example

again, with moduli 2,3, 5,7 and 11, If we partition the set into two composite
moduli 6 and 385, the sign detection (as outlined in Sec. 3,3) requires six
stages of logic to determine the three required mixed radix digits and then
another four stages for the remaining process of sign detection, Both from
hardware and speed considerations, this method is better than the mixed-radix

“translation, The four stages of logic through which the signal has to go,,

(58)

represent a simpler realization than the complete mixed radix translation,
Also, the latter requires twelve stages of logic, just to determine the mixed
radix digits whereas this method requires ten stages to determine the sign
and is, therefore, faster, It is difficult to compare this method with the
Remainder Theorem,

Now let the set of moduli be partitioned into 30 (2,3 and 5) and
77 (7 and 11). In the worst case, sign detection requires three stages of
logic to determine two mixed radix digits, one stage of combinational logic
to convert these to mod 2,3 and 5 representation and then fifteen compar-
isons. Such a large number of comparisons makes the comparison logic
large, if hardware is used, or makes it time consuming if software is used,
A detailed analysis to determine which partition scheme for the moduli is
best is postponed for future studies, However, it can be stated for certain
that if Theorem 3.3 is used, the sign information is obtained faster than the
mixed-radix -translation, In the former case, the signal has to go through
nine stages of logic (in the example under consideration) to determine the
four mixed radix digits and then through an EXCLUSIVE OR gate to give the
sign information.
5,2 The discussion of Sec. 5.1 was not very quantitative, in nature because
of the limitations pointed out in the beginning. To establish which of the meth-
ods is fastest or most economical requires a thorough systems study which

is outside of the scope of this thesis.

5.3 Conclusions

The work carried out for the purpose of this thesis has led to the follow-
ing conclusions.

The sign detection problem in residue number systems should not be
treated as an isolated problem, There is no unique ''best'' solution, but rather
a variety of solutions, and each solution has to be evaluated with respect to the
overall system design.

The contributions to the residue arithmetic computing techniques are

summarized below,

In the Two-Moduli Theorem (Sec. 3,2) we have extended Szabo's Coding

(59
Theorem by finding an explicit formula for the sign function S. In the special

case when one of the two moduli is 2, S is the EXCLUSIVE - OR sum of two

»bits. The Theorem has been extended to the general case of n moduli, and it

has been shown that in the special case when one of the moduli is 2, S isthe
EXCLUSIVE OR sum of n bits,

It should be pointed out that the use of the mixed-radix translation pro-

cess has been previously suggested for sign detection, In the suggested method -

[5], the mixed-radix notation is used as an intermediate step in translating.
from the residue code to a binary or decimal code, However, as a result of
the Two-Moduli Theorem, we have been able to use partial mixed-radix con-
version and additional combinational circuitry to obtain the sign function with-
out translating to decimal or binary. The use of the theorem with its extension
to the general case provides a degree of flexibility in implementing the method.
It has been shown that varying amounts of hardware and software can be used,
depending on the system requirements and design.

An¢ extremely simple solution to the input translation problem has
been found. It has been shown (Sec. 4.3) that translation from binary to res-
idue representation can be achieved by using modular adders only, There is
no need for modular multiplication for this process, for it can be replaced by
simple wire-splitting (Fig. 4.1). As pointed out in Chapter 4, modular multi-
plier design is a difficult problem and replacing it by wire-splitting certainly

reduces the complexity and the time required for input translation.

5,4 Recommendations for Further Research

One of the areas that deserves investigation is fast output translation.
The existing methods are too slow compared to the speed of the arithmetic
unit and hence not desirable for use in the sign detection problem, A fast
translation method will not only solve this problem but also the related prob-
lems of magnitude comparison and overflow detection,

The multiple overflow problem in modular multiplier design poses
serious problems, An investigéﬁon in this area should lead to some interest-

ing results.

Another area of investigation is to find an optimum coding scheme for

(60)
the overall system, We have seen how self-cbmplementing codes simplify
the complementation problem, but its effect on other processes has not been

studied. Itis strongly felt that this aspect of residue arithmetic will prove
to be quite challenging, :

(61)
REFERENCES

1. Antonin Svoboda, ''"The Numerical System of Residual Classes

(SRC)'', Computer Progress in Czechoslovakia, Prague, Czechoslovakia,

2, H,L, Garner, ''"The Residue Number System'!, IRE Transactions

on Electronic Computers , Vol, EC-8, June, 1959, pp. 140-147,

3. H, Aiken, W, Semon, Advanced Digital Computer Logic, Report
No, WADC TR-59-472, Computing Labs, Harvard University, July 1959,

4, ° P.,W, Cheney, "A Digital.'Co'ﬁ'elator Based on the Residue Number
System, '' IRE Transactions on Electronic Computers, Vol, EC-10, March

1961, pp. 63 - 70,

5, N, Szabo, ''Sign Detection in Nonredundant Residue Systems'',
IRE Transactions on Electronic Computers, Vol, EC-11, August, 1962,
PP. 494-500.

6. W.E, Deskins, ''Abstract Algebra'' Collier-Macmillan, 1964,

7. G.H. Hardy, E.M, Wright, ''An Introduction to the Theory of
Numbers'!, Oxford Press, 1954.

8. R.W. Watson and C. W, Hastings, ''Self-Checked Computation Using
Residue Arithmetic,'" Proceedings of the IEEE, Vol, 54, No, 12, December _ "
1966, pp. 1920-1931.

9. "Research on Residue Number Serial Computation Techniques'',

Technical Documentary Report No. RTD-TDR-634034, Systems Research

Laboratories, Wright-Patterson Air Force Base, Ohio, November 1963,

10. ""Modular Arithmetic Computing Techniques,'' Technical Document-

ary Report No, ASD-TDR-63-280, Electronic Technology Division, Aero-

nautical Systems Division, Wright-Patterson Air Force Base, Ohio, May 1963,

i1, Ivan Flores, '"The Logic of Computer Arithmetic'', Prentice-Hall,

1963,

12, H.L, Garner, et al, ''Residue Number Systems for Computers'’,

1
!
i
)
I
I

ASD Technical Report No, 61-483, University of Michigan, October 1961. _/)/ _

(62)

VITA

Name : Dilip K. Banerji

Born : November 3, 1943, India

Educated :
Primary:
Secondary :

University :

Kanpur, India
Kanpur, India

The Indian Institute of Technology,
Kanpur, India,

1965 Bachelor of Technology in
Electrical Engineering

(B, Tech.)

