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ABSTRACT

An algorithm that finds the k nearest neighbors to a point,
from a sample of size N in a d-dimensional space, with an expected
number of distance calculations

= 1

Blng) s g [xar($1° (am' 3

is described, its properties examined and verified with simulated
data. TFor bivariate normal data, an average of 24 distance cal-
culations 1s required to find the nearest neighbor to a point from

1000 prototype samples.
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INTRODUCTION

Nearest neighbors have been shown to be an important nonparametric
technfque for multivariate density estimetion and pattern classifi-

(1-6)

cation. For classification, a sample of prototype feature vectors is
drawn from each éategory, correctly labeled Ey an external source. For each
test point to be classified, the set of k-closest prototype points (feature
vectors) is found snd the test point is assigned to that category having
the largest representation in this set. For density estimstion, the volume,
V(k), containing the closest k-points to each of the N sample points, is
used to estim?te the local sparsity , 8, (inverse density) by & = NV(k)/ k.
The application of these techniques has been severely limited by the
computational resources required for finding the nearest neighbors. The
feature vectors for the complete set of samples must be stored, and the dis-
tances to them calculated for each classification or density estimation.
Several modifications to the k-nearest neighbor rule have been suggested
that are computationally more tractable but whose statistical properties

(7-8) (9)

are unknown. The condensed nearest-neighbor rule mitigates both the

storage and processing requirements by choosing a subset of the proto-
type vectors such that the nearest neighbor rule correctly classifies all
of the prototypes.

(19

Fisher and Patrick suggest a preprocessing scheme for reducing the
computational requirements of nearest neighbor cladsifications when the
test.sample is much l;rger than the prototype set. For this case, it is
worthwhile to use considerable computation preprocessing the prototypes so
that processing can be reduced for each test sample. Their technique orders

the prototypes so that each point tends to be far away from its predecessors

in the ordered list. By examining these prototype points in this order and



having precalculated distances between prototypes, the triangle in-
equality can be applied to eliminate distance calculations from the test
Qectbr to™many of the prototypes. (All of the prototypes must be examined,
however.) The elgorithm is examined only for k=1 in two dimensions where
for bivariate normal data a median number of approximately 58 distance cal-
culations were required for 1000 prototypes, after preprocessing.

This paper describes a strasightforward preprocessing technique for
reducing the computation required for findihg the k-nearest neighbors to
a point from a sample of size N in a d-dimensional space. This procedure
can be profitably applied to both density estimation and classification,
even when the number of test points is considerably smaller than the number
of prototypes. This preprocessing requires no distance calculations. (1t
N comparisons.) The distance function

2

(dissimilarity measure) is not required to satisfy the triangle inequality.

can, however, require up to dNlog

With a Buclidean distance measure(ll%he average number of prototypes that

need be examined is

1
= 1
E[n,) SJ% [k 4 r(%)]d CO (1)

after preprocessing.

For the case of bivariste normal data with d=2, k=1, and N=1000, eqn (1)
predicts an average of 36 distance calculations, whereas 2L are actuslly re-
quired. The performance of the algorithm is compared to egn (1), with simu-
lated data for several values of k, 4, N, and underlying density distributions

of the prototype sample points.



BASIC PROCETURE

The preyroceszing for this algorithm consists basically of ordering the
prototype poiats on the values of one of the coqrdinates. For each test
point, the prototypes are examined in the order of their projected distance
from the test point on the sorted coordinate. When this projected distance
becomes larger than the distance (in the full dimensionality) to the k
closest point of those prototypes already examined, no more prototypes need
be considered; the k-closest prototypes of the examined points are those for
the complete set. Figure 1 illustrates this procedure for the nearest

neighbor (k=1) in two dimensions.

A simple calculation gives an approximstion to the expected number of
prototypes that need be examined before the sbove stopping criteris is met.-
For simplicity, consider N prototypes uniformly distributed in s d-dimensional
hypercube and 8 Euclidean distance measure. Assume also that N is large
enough so that effects due to the boundaries are not important. For this
case, the volume, v, of a d-dimensional sphere, centered at the test point

containing k-prototypes, is a random varisble distributed according to a

beta distribution

k-1 (
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The radius of this sphere, given by

v , (3)



is aiso a random variable. ILet

i
) 7 Sd =‘E?Jtd/2 / ar (92_)] ‘

Then v = (sdr )d and the distribution for rd becomes

d

N! ds Skl 4Nk
p(rq)dry = (k—l)'.(N?K)'. (s474 [1-(s47q) ]z (%)

The stopping criteria is met when the projected distance from the test point
to a prototype along the sorted coordinate is greater than rs This projected
distance is uniformly distributed. The expected fracticn of prototypes,
then, that must be examined is just twice the expected value of Tq given by
eqn (h).lz)Various other statistics, such as the variance, median, and per-
centiles cen also be calculated from egn (L4). These calculations must be

done numerically since the integrals cannot be evaluated analytically.

A close upper boundus)on E[rd] can be derived from eqn's (2) and (3)
by
1
IR

E[rd] <T3 = Eﬁ“a‘fg' E [v] (5)

where from eqn (2)

k

Elvl= 573 - (6)

The upper bound on the expected fraction of prototypes that must be examined
is then Q?d, and the upper bound on the expected nuuber of prototypes, E[nd],

is 2?dN. Combining these results

1
. gy d = :
E[n] <f; =2 ar(z) |9y, (7)
: opd/2 W1

Simplifying this expression and approximating N+1 by N, cone has the result

shown in eqn (1). The variance of Ny is similarly approximated by

R 'R
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so thsT the voefficient of variaticon becomes (to the same approximation
194

| r 1/(2q)
c(n) < gﬁ_:%)] : (9)
Other statistics of the distribution can be similarly calculated.
These calculations all presuppose a uniform distribution of the proto-

type sample. This is seldom the case in application. For an arbitrary

prototype density p(iﬁ, the gquantity

u (%) = f ;)p(?) ax (10)

N

has the beta distribution of eqn (2), where sk(§3 is the d-dimensional sphere
centered at the test point iz containing k prototypes. Also, the projected

densities on the coordinate axes are no longer uniform.

FULL PROCEDURE

The nonuniformity of the axis projections can be used to advantage to
Increase the efficiency of the algorithm. For a given expected radius E[rdj,
the points that need to be considered are those that lie in the interval
Ax == 2E[rd], centered at the projected test point. That projection axis, for
which the number of such prototypes is least, should be chosen for maximum "
efficlency. If the points are ordered only slong one coordinate in the pre-
processing (basic procedure), then the one with the smsllest average pro-
Jected density (largest spread) should be chosen. In the full procedure the
points are ordered on several or all of the coordinates and the one with the
smallest local projected density in the neighborhood of the test point is
chosen. Thug, the ordering of the prototypes depends on the location of the

test point ir the feature space.



For each test point, the local projected sparsity on each axis is

estimated as

s, = | X

- i i,pi+n/2 - Xi’pi-n/g l ' (ll)

where Xi is the ith coordinate of the jth ordered prototype and Py is the

J
position of the test point in the ith projection.  The ordering of the pro-

- totypes on the particular coordinate for which Sy is maximum, j = max -l{si},
1l<i<g

is chosen separately for each test point.

The number. of prototypes, n, over which the sparsity 1s averaged on
each projectibn should correspond to a distance of about 2E[rd]. For a uni-
form distribution, this is gilven approximately by eqn (5). The number of
prototypes within this interval (again for a uniform distribution) is E[n d],
given by eqn (1). For nonuniform distributions, both E[rd] and the various
projected E[nd]'s will be different. Since the density distribution of the
prototypes is ususlly unknown, a ressonable approximetion is to use the uni-
form distribution results,(lh)that is néE[nd] as given by eqgn (1).

The starting list of the k-nearest prototypes are those whose position
i1s closest to the test point in the jth coordinate. The other prototype
points sre then examined in order of their increasing projected disténce

from the test point until the stopping condition

£ sy, -x )0 G2)
J

is met for some point L. Here di is the distance squared to the kth nearest
prototype of those examined up to that point. The current list of k closest
prototypes is then correct for the entire sample. |

The expected number of prototype points, %mll[ndj’ that need to be con-

sidered when applying this full procedure of choosing the optimum ordering co-

ordinate individuslly for each test point, can be calculated using arguments

-6 -



and assumpticns similar tc those that led to egn (l). The result is

Bpglng) = B 5ln,] (13)

where the si‘s are the local projected sparsities on each of the coordinates near
each iest peint, and E[nd] is the expected number if all projected sparsities
were the same. For uniformly distributed prototypes, E[nd] is given by egn
(1) and the si's are distributed normally stout their average values.

Actual values for Eﬁﬂl[nd] are difficult to calculate, but egn (13)
can be used to gain insight into the strategy's effect. For example, if the
spread of one éf the coordinates is a factor of R larger, on the average,
than the others which all have approximately equal spread, then egn (13)

gives

E L E(n,] - (14)
l..
R

P

O

Bqn (13) clearly shows that the strategy will always incrcase the ofiiclcacy
of the algorithm and te most effective when the variation of the prototype
density is greatest.

GENERAL DISSTMITLARITY MEASURES

Although the above discussion has centered on the Buclidean distance
d 1/2

a(X %) - LX (x, - %)

i=1

X, 1
. (15)
as a measure of dissimilarity between feature vectors, nowhere in the pro-

cedure is it required. In fsct, the triengle inequality is not veguired.

This technique can be applied with any dissimilarity measure



4
'd(fm;fn‘) =g Z fi(xim’x' ) (16)

- i=1 in

as long as the functions f and g satisfy the basic properties of symmetry

£(x,y) = £(y;x) ' (17a)
and monotonicity
g(x) = g(y) 1 x>y
12292 x (170)

2(x,2) 2 £(x,y)
orifzsy<x.
The performance of the algorithm does depend upon the dissimilarity
measure and, in particular, the result contained in egn (1) epplies only to
the Euclidesn metric. The dependence on k and N contained in eqn (1) is the

same for any Minkowski p metric

el T

s
axX X ) = Z %, - % [° (p2 1) (18)
i=1

since for these distance measures the Qolume of a d-dimensional "sphere"

grows with radius, r, 8s v o rd. Because of their camputational advsantage,

the two most often used Minkowski metrics, besides the Fuclidean metric (p = 2),
are the city-block or taxi cab distance (p = 1) and the maximum coordinate
distance, d(i;,f;) = ?ggsﬁ{lxim - Xin,} (p = ®). Upper bounds on the
average number of distance calculations, E[nd], analogous.to eqn (1), can be

derived in a similar manner for these distance measures. The results are

i 1
Eln,] < (kd! d Nl"d (p=1) (1a)
i1 _
B [n] g ® v*7° (p= ) . (1b)



SIMULATION EXPERIMENTS

In order to gain insight into the performance of the algorithm and com-
pare it to that predicted by eqn (1), several simulation experiments were
perfommed. For each simulation N+1 random d-dimensional points were drawn
from the appropriate probability density function. The number of distance
calculations required to find the k-nearest-neighbors to each point using
the full procedure (sorting on all coordinates) was determined and then
averaged over all of the points. This procedure was then repeated ten times
with different random points from the same probebility density function. The
average of these ten trials was then taken as the result of the experiment,
and the statistical uncertainty was taken to be l/fiG times the standard
deviation asbout the mean for the ten trials. These uncertainties were all
less than one percent and for the larger samples were around 0.1 percent.

These simulation results sre presented in Figures 2-5 where the vari-
ation of the average number of distance calculations with N, k, d, under-
lying distribution, and distance measure is compared to the upper bound
predicted by eqn (1) (solid lines).. Figure 2 shows the dependence on
N (d=2, k=1) for several underlying distributions. These distributions
are uniform on the unit square, bivariate normal with unit dispersion matrix,

and bivariate Cauchy

1
(14x2)(143°)

p(x,y) = (19)

Figure 3 shows the dependence on k.(d=2, n=100 and.lOOO) for’uniform and nor-
mal data. Figure 4 shows the dependence on d (k=1, N=100 and 1000) again,
for both uniformly and normally distributed data. PFigure 5 shows the de-
pendence on 4 (k=1, N=1000, uniform distribution) for several different
Minkowskl p metrics, namely p=1 (city block distance), p=2 (Euclidean dis-

tance), and p=co (maximum coordinate distance).

_9_



DISCUSSION
These simulation experiments show that egns (1, la, 1b) do, indeed, provide
a close upper bound on the average number of distance calculations required
by the algorithm to find nesrest neighbors. Although these formulase always
slightly overestimate the actusl number, they quite accurately reflect the
veriation with N, k, d and p. As predicted by egn (13), the number of dis-
tance calculations tends to diminish for increasing density variation of

the sample points.(lS)

It is interesting to note that for d=2 and k=1,
this algorithm requires o smaller average number of distance calculetions
for 10,000 prototypes than does the brute force method (calculating all of
the distances)‘for 100 prototypes.

The relative efficiency of this slgorithm (as compared with the brute
force method) decreases slightly with increasing k ‘and more rapidly
with increasing dimensionality 4. In elght dimensions for 1000 prototypes
(k=1) the average number of distance evaluations is reduced by approximately

ho%. Although not dramatic, this is still quite profitable. in terms of
the preprocessing requirements.

Ae indiceted by eqne. (1, ls, 1b) and verified in Figure 5, the growth
of E[nd] with dimensidnality depends strongly on the choice of the distance
measure. For Minkowski p metrics, it is easy to show that Ep[nd] gZIrows
more glowly with d for increasing p. The results of eqn (lc) and Figure 5
indicate that if a distance measure is chosen on the basis of rapid calcu-
lation, the maximum coordinate distance (p=co) is the natursl choice since
it alsoc minimizes the rnumber of distance calculationms, especiaily for high
dimensionality.

A crude calculation gives a rough ides of how many test points, Nt,are
required (in terms of the numter of prototypes, NP, k; and d) for the prepro-

cessing procedure to be profitable. The preprocessing requires approximately

- 10 -



delogng compares, memory fetches and stores. Each distance calculstion
requirés around @ multiplies, subtractions, additions, and memory fetches.
Assuming all of these operations require equal computation, then the pre-
processing requires about Bdelong operations, while it saves approxi-

métely tht(Np~E[nd]) operations. Thus, for the procedure to be profit-

able .

udNt(Np-E[nd]) > 3de10ng

(16)

or crudely

N logeN

Np—E nd] (20)

N
Nt > NO "

E[nd] is given approximately by eqn (1) (Euclidean metric). For d=2, k=1,
and 1000 prototypes, NO is around 10, whereas for d=8, k=1, and 1000 pro-
totypes, one has NO ~a5.

Although these results are quite crude, it is clear that the number
of test points need not be large, compared to the number of prototypes,
before the algorithm can be profitably applied. For density estimation,
where Nt=Np=N, the procedure 1s profitable so long as NO/N is small
compared to one. |

The only adjustable parameter in this algorithm is the number of pro-
Jjection coordinates, m, on which the data are sorted. This parameter can
range in value from one (basic procedure) to d (full procedure). If less
than the full procedure is employed, then those axes with the largest
spread should be chosen. Arguments similar to those that lead to eqn (14)
can be used to estimate the efficiency for this case. For the case where
all coordinates have approximately equal spread, egn (13) can be used to
show that the increase in efficiency, as additional sorted coordinates are
added, is proprotional to l/m. Results of simulations (not shown) verify

this dependence.
- 11 -



The tendency toward decreasing relative efficiency with increasing
dimensionality cannot be mitigated by requiring the distance measure to

~satisfy the triangle inequality

%) = | a(x,%p) - a(Xp,X) | - (21)

. . ) -
In this case distance calculations can be avoided for those prototypes, X1

for which

a(¥%,,%, ) < |a(X,%p) - a(x5p,%) | (22)

where il is the test point, E; ig the k~th nesrest prototype of those al-
ready examined and x£ is a prototype for which d(x, :Kﬁ) and d(xQ/x ) have
already been evaluated (and saved). The use of eqn (22) will be most
effective when the dispersion of interpoint distances in the prototype

sample is greatest. 1In this case, d(§1,§;) will tend to be small whereas
d(il,i%) and d(i},il) will quite often be dissimilar, making the right hand
side on egn (22) large. Since distance varies as the d-th root of the volume,
the distance variation will decrease with increasing dimensionality for a

given density variation.

For a uniform density distribution in a d-dimensional space, the co-

efficient of varistion of the interpoint distence is
1/2

(rg) _ 1

(r >2 [d(d+25
d : ,

which decreases as 1/d for increasing d. Thus, the usefulness of the tri-
angle inequality is affected by the "curse of dimensionality” in the same

manner as the algorithm discussed above.

- 12 -



The performence of this algorithm has been discussed in terms of the
number of prototypes that need to be examined and distances calculated.
Aithouéa this is closely related to the actual éomputing requirements, it
should be kept in mind that the true performance also depends on the de-
tails of implemenfation‘and the hardware capébilities of a specific com-

puter.

CONCLUSION

A simple algorithm has been presented for finding nearest neighbors

i 1
with computation proportional to kd Nl-E and preprocessing proportional

to dNlogN. The algorithm can be used with a general class of dissimilarity
measures, not just those that satisfy the triangle inequality. The algo-
rithm takes advantage of local varistions in the structure of the data to
increase efficiency. Formulas that enable one to calculate a close upper
bound on the expected performsnce for common metrics have been derived.
Simulation experiments have been presented that illustrate the degree to

which these formulss bound the actual performance.
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12. Prototypes must be examined for & projected distance rd both above
and below the test point position.

713.“ TakIng the dth root of the average rather than the average of the
dth root will cause a slight overestimation that decreases with
increasing d. .For d=2, this overestimation is around 10%, while
for d=8 it is &%.

14. Simulation results indicate that the performance of the algorithm is
very insensitive to the choice of n.

15. The actual improvement, using the full proceduré, is somewhat under-
represented. Simulations using the baslc procedure (sorting on
one coordinete only) gave considerably higher values of E[nd]
(204 to 30%4) for the nonuniform densities than for the uniform
density. The full procedure results presented in Figures 2-L
show the nonuniform densities with smaller values for E[nd] than
the uniform cases (again 20% to 30%). Thus, the improvement over
the basic procedure for these nonuniform densities 1is around twice
that indicated. The full procedure also reduces the coefficient
of wariation of nd to about half that for the basic procedure and
that predicted by egn (9). |

16. This calculation is extremely dependent on the specific couputer upon
which the algorithm is implemented, and the results of eqn (20)

should be regarded as only a crude estimate.



FIGURE L.

FIGURE 2.

FIGURE 3.

FIGURE k4.

FIGURE 5.

FIGURE CAPTIONS

Tllustration of the basic procedure for the nearest

neighbor (k=1) in two dimensions.

Avefage number of distance calculations required to
find the nearest neighbor (k=1) for bivariate uniform
(0), normal (O), and Cauchy (¢ ) density distributions

as a function of prototype sample size, N.

Average number of distance calculations required to find
the k nearest neighbors with bivariate uniform ( O0) and

normal (O ) density for 100 and 1000 prototypes.

Average number of dlstance calculations required to find
the nearest neighbor for uniform (O) and normal (O)
density distributions with 100 and 1000 prototypes as a

function of dimensionality, d.

Variation with dimensionality, d, of the average number
of distance calculations required to find the nearest
neighbor (k=1, N=1000, uniform distribution) for several

Minkowski p metries, p=1 (¢ ), p=2 (0O), p=c0 (01).
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