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Abstract

A multiple antenna downlink channel where limited channel feedback is available to the transmitter is considered.
In a vector downlink channel (single antenna at each receiver), the transmit antenna array can be used to transmit
separate data streams to multiple receivers only if the transmitter has very accurate channel knowledge, i.e., if there
is high-rate channel feedback from each receiver. In this work it is shown that channel feedback requirements can
be significantly reduced if each receiver has a small number of antennas and appropriately combines its antenna
outputs. A combining method that minimizes channel quantization error at each receiver, and thereby minimizes
multi-user interference, is proposed and analyzed. This technique is shown to outperform traditional techniques
such as maximum-ratio combining because minimization of interference power is more critical than maximization
of signal power in the multiple antenna downlink. Analysis is provided to quantify the feedback savings, and the
technique is seen to work well with user selection and is alsorobust to receiver estimation error.

I. INTRODUCTION

Multi-user MIMO techniques such as zero-forcing beamforming allow for simultaneous transmission of multiple
data streams even when each receiver (mobile) has only a single antenna, but very accurate channel state information
(CSI) is generally required at the transmitter in order to utilize such techniques. In the practically motivatedfinite
rate feedbackmodel, each mobile feeds back a finite number of bits describing its channel realization at the
beginning of each block or frame. In thevector downlink channel (multiple transmit antennas, single antenna at
each receiver), the feedback bits are determined by quantizing the channel vector to one of2B quantization vectors.
While a relatively small number of feedback bits suffice to obtain near-perfect CSIT performance in a point-to-
point vector/MISO (multiple-input, single-output) channel [1], considerably more feedback is required in a vector
downlink channel. If zero-forcing beamforming (ZFBF) is used, the feedback rate must be scaled with the number
of transmit antennas as well as SNR in order to achieve rates close to perfect CSIT systems [2]. In such a system
the transmitter emits multiple beams and uses its channel knowledge to select beamforming vectors such that nulls
are created at certain users. Inaccurate CSI leads to inaccurate nulling and thus translates directly into multi-user
interference and reduced SINR/throughput.

In this paper we consider the MIMO downlink channel, in whichthe transmitter and each mobile have multiple
antennas (M transmit antennas,N antennas per mobile), in the same limited feedback setting.We propose a receive
antenna combining technique, dubbedquantization-based combining(QBC), that converts the MIMO downlink into
a vector downlink in such a way that the system is able to operate with reduced channel feedback. Each mobile
linearly combines itsN antenna outputs and thereby creates a single antenna channel. The resulting vector channel
is quantized and fed back, and transmission is then performed as in a normal vector downlink channel.

With QBC the combiner weights are chosen on the basis of both the channel and the vector quantization codebook
to produce the effective single antenna channel that can be quantized most accurately. On the other hand, traditional
combining techniques such as the maximum-ratio based technique that is optimal for point-to-point MIMO channels
with limited channel feedback [3] or direct quantization ofthe maximum eigenmode are aimed towards maximization
of received signal power but generally do not minimize channel quantization error. Since channel quantization error is
so critical in the MIMO downlink channel, quantization-based combining leads to better performance by minimizing
quantization error (i.e., interference power) possibly atthe expense of channel (i.e., signal) power.

One way to view the advantage of QBC is through its reduced feedback requirements relative to the vector
downlink channel. In [2] it is shown that scaling (per mobile) feedback asB = M−1

3 PdB , whereP represents the
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SNR, suffices to maintain a maximum gap of 3 dB (equivalent to 1bps/Hz per mobile) between perfect CSIT and
limited feedback performance in a vector downlink channel employing ZFBF. With QBC, our analysis shows that
the same throughput (3 dB away from a vector downlink with perfect CSIT) can be achieved if feedback is scaled
at the slower rate ofB ≈ M−N

3 PdB . In other words, QBC allows a MIMO downlink to mimic vector downlink
performance with reduced channel feedback.

Alternatively, QBC can be thought of as an effective method to utilize multiple receive antennas in a downlink
channel in the presence of limited channel feedback. Although it is possible to send multiple streams to each mobile
if receive combining is not performed, this requires even more feedback from each mobile than a single-stream
approach. In addition, QBC has the advantage that the transmitter need not be aware of the number of receive
antennas being used.

The remainder of this paper is organized as follows: In Section II we introduce the system model and some
preliminaries. In Section III we describe a simple antenna selection method that leads directly into Section IV
where the much more powerful quantization-based combiningtechnique is described in detail. In Section V we
analyze the throughput and feedback requirements of QBC. InSection VI we compare QBC to alternative MIMO
downlink techniques, and finally we conclude in Section VII.

II. SYSTEM MODEL AND PRELIMINARIES

We consider aK mobile (receiver) downlink channel in which the transmitter (access point) hasM antennas,
and each of the mobiles hasN antennas. The received signal at thei-th antenna is given by:

yi = hH
i x + ni, i = 1, . . . , NK (1)

whereh1,h2, . . . ,hKN are the channel vectors (withhi ∈ C
M×1) describing theKN receive antennas,x ∈ C

M×1

is the transmitted vector, andn1, . . . ,nNK are independent complex Gaussian noise terms with unit variance. The
k-th mobile has access toy(k−1)N+1, . . . , yNk. The input must satisfy a power constraint ofP , i.e. E[||x||2] ≤ P .
We useHk to denote the concatenation of thek-th mobile’s channels, i.e.Hk = [h(k−1)N+1 · · ·hNk]. We consider
a block fading channel with iid Rayleigh fading from block toblock, i.e., the channel coefficients are iid complex
Gaussian with unit variance. Each of the mobiles is assumed to have perfect knowledge of its own channelHi,
although we analyze the effect of relaxing this assumption in Section V-C. In this work we study only theergodic
capacity, or the long-term average throughput. Furthermore, we onlyconsider systems for whichN < M because
QBC is not very useful ifN ≥ M ; this point is briefly discussed in Section IV.

A. Finite Rate Feedback Model

In the finite rate feedback model, each mobile quantizes its channel toB bits and feeds back the bits perfectly
and instantaneously to the transmitter at the beginning of each block [3][4]. Vector quantization is performed using
a codebookC of 2B M -dimensional unit norm vectorsC , {w1, . . . ,w2B}, and each mobile quantizes its channel
to the quantization vector that forms the minimum angle to it[3] [4]:

ĥk = arg min
w=w1,...,w2B

sin2 (∠(hk,w)) . (2)

For analytical tractability, we study systems usingrandom vector quantization(RVQ) in which each of the2B

quantization vectors is independently chosen from the isotropic distribution on theM -dimensional unit sphere and
where each mobile uses an independently generated codebook[5]. We analyze performance averaged over random
codebooks; similar to Shannon’s random coding argument, there always exists at least one quantization codebook
that performs as well as the ensemble average.

B. Zero-Forcing Beamforming

After receiving the quantization indices from each of the mobiles, the AP can use zero-forcing beamforming
(ZFBF) to transmit data to up toM users. For simplicity let us consider theN = 1 scenario, where the channels are
the vectorsh1, . . . ,hM . When ZFBF is used, the transmitted signal is defined asx =

∑M
k=1 xkvk, where eachxk

is a scalar (chosen complex Gaussian) intended for thek-th mobile, andvk ∈ CM is thek-th mobile’s BF vector.
If there areM mobiles (randomly selected), the beamforming vectorsv1, . . . ,vM are chosen as the normalized
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rows of the matrix[ĥ1 · · · ĥM ]−1, i.e., they satisfy||vk|| = 1 for all k andĥH
k vj = 0 for all j 6= k. If all multi-user

interference is treated as additional noise and equal powerloading is used, the resulting SINR at thek-th receiver
is given by:

SINRk =
P
M
|hH

k vk|2

1 +
∑

j 6=k
P
M
|hH

k vj|2
. (3)

The coefficient that determines the amount of interference received at mobilek from the beam intended for mobile
j, |hH

k vj |2, is easily seen to be an increasing function of mobilek’s quantization error.
In the above expression we have assumed thatM mobiles are randomly selected for transmission and that equal

power is allocated to each mobile. However, the throughput of zero-forcing based MIMO downlink channels can
be significantly increased by transmitting to an intelligently selected subset of mobiles [6]. In order to maximize
throughput, users with nearly orthogonal channels and withlarge channel magnitudes are selected, and waterfilling
can be performed across the channels of the selected users. In [7] a low-complexity greedy algorithm that selects
users and performs waterfilling is proposed. If this algorithm is used, a zero-forcing based system can come quite
close to the true sum capacity of the MIMO downlink, even for amoderate number of users.

C. MIMO Downlink with Single Antenna Mobiles

In [2] the vector downlink channel (N = 1) is analyzed assuming that equal power ZFBF is performed without
user selection on the basis of finite rate feedback (with RVQ). The basic result of [2] is that:

RFB(P ) ≥ RCSIT (P ) − log2

(

1 + P · E
[

sin2
(

∠(ĥk,hk)
)])

(4)

whereRFB(P ) andRCSIT (P ) are the ergodic per-user throughput with feedback and with perfect CSIT, respec-
tively, and the quantityE

[

sin2
(

∠(ĥk,hk)
)]

is the expected quantization error. The expected quantization error

can be accurately upper bounded by2−
B

M−1 and therefore the throughput loss due to limited feedback isupper
bounded bylog2

(

1 + P · 2−
B

M−1

)

, which is an increasing function of the SNRP . If the number of feedback bits
(per mobile) is scaled withP according to:

B = (M − 1) log2 P ≈ M − 1

3
PdB ,

then the difference betweenRFB(P ) andRCSIT (P ) is upper bounded by1 bps/Hz at all SNR’s, or equivalently
the power gap is at most 3 dB. As the remainder of the paper shows, quantization-based combining significantly
reduces the quantization error (more precisely, it increases the exponential rate at which quantization error goes to
zero asB is increased) and therefore decreases the rate at whichB must be increased as a function of SNR.

III. A NTENNA SELECTION FORREDUCED QUANTIZATION ERROR

In this section we describe a simple antenna selection method that reduces channel quantization error. Description
of this technique is primarily included for expository reasons, because the simple concept of antenna selection
naturally extends to the more complex (and powerful) QBC technique. In point-to-point MIMO, antenna selection
corresponds to choosing the receive antenna with the largest channel gain, while in the MIMO downlink the receive
antenna that can be vector quantized with minimal angular error is selected. Mobile 1, which has channel matrix
H1 = [h1 · · ·hN ] and a single quantization codebook consisting of2B quantization vectorsw1, . . . ,w2B , first
individually quantizes each of itsN vector channelsh1, . . . ,hN

ĝi = arg min
w=w1,...,w2B

sin2 (∠(hi,w)) i = 1, . . . , N, (5)

and then selects the antenna with the minimum quantization error:

j = arg min
i=1,...,N

sin2 (∠(hi, ĝi)) , (6)

and feeds back the quantization index corresponding toĝj . The mobile uses only antennaj for reception, and thus
the system is effectively transformed into a vector downlink channel.
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Fig. 1. Effective Channel forM = K = 3, N = 2 System

Due to the independence of the channel and quantization vectors, choosing the best ofN channel quantizations
is statistically equivalent to quantizing a single vector channel using a codebook of sizeN · 2B . Therefore, antenna
selection effectively increases the quantization codebook size from2B to N · 2B , and thus the system achieves the
same throughput as a vector downlink withB + log2 N feedback bits. Although not negligible, this advantage is
much smaller than that provided by quantization-based combining.

IV. QUANTIZATION -BASED COMBINING

In this section we describe the quantization-based combining (QBC) technique that reduces channel quantization
error by appropriately combining receive antenna outputs.We consider a linear combiner at each mobile, which
effectively converts each multiple antenna mobile into a single antenna receiver. The combiner structure for a 3
user channel with 3 transmit antennas (M = 3) and 2 antennas per mobile (N = 2) is shown in Fig. 1. Each
mobile linearly combines itsN outputs, using appropriately chosen combiner weights, to produce a scalar output
(denoted byyeff

k ). The effective channel describing the channel from the transmit antenna array to the effective
output of thek-th mobile (yeff

k ) is simply a linear combination of theN vectors describing theN receive antennas.
After choosing combining weights the mobile quantizes the effective channel vector and feeds back the appropriate
quantization index. Only the effective channel output is used to receive data, and thus each mobile effectively has
only one antenna.

The key to the technique is tochoose combiner weights that produce an effective channel that can be quantized
very accurately; such a choice must be made on the basis of both the channel vectors and the quantization codebook.
This is quite different from maximum ratio combining, wherethe combiner weights and quantization vector are
chosen such that received signal power is maximized but quantization error is generally not minimized. Note that
antenna selection corresponds to choosing the effective channel from theN columns ofHk, while QBC allows for
any linear combination of theseN column vectors.

A. General Description

Let us consider the effective received signal at the first mobile for some choice of combiner weights, which we
denote asγ1 = (γ1,1, . . . , γ1,N ). In order to maintain a noise variance of one, the combiner weights are constrained
to have unit norm:||γ1|| = 1. The (scalar) combiner output, denotedyeff

1 , is:

yeff
1 =

N
∑

i=1

γH
1,i(h

H
i x + ni) =

(

N
∑

i=1

γH
1,ih

H
i

)

x +
N
∑

i=1

γH
1,ink

= (heff
1 )Hx + n,

wheren =
∑N

i=1 γH
1,ini is unit variance complex Gaussian because|γ1| = 1. The effective channel vectorheff

1 is
simply a linear combination of the vectorsh1, . . . ,hN : heff

1 =
∑N

i=1 γ1,ihi = H1γ1. Sinceγ1 can be any unit norm
vector,heff

1 can be in any direction in theN -dimensional subspace spanned byh1, . . . ,hN , i.e., in span(H1).1

Because quantization error is so critical to performance, the objective is to choose combiner weights that yield
an effective channel that can be quantized with minimal error. The error corresponding to effective channelheff

1 is

min
l=1,...,2B

sin2
(

∠(heff
1 ,wl)

)

. (7)

1By well known properties of iid Rayleigh fading, the matrixH1 is full rank with probability one [8].
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Therefore, the optimal choice of the effective channel is the solution to:

min
h

eff
1

min
l=1,...,2B

sin2
(

∠(heff
1 ,wl)

)

, (8)

whereheff
1 is allowed to be in any direction in span(H1). Once the optimal effective channel is determined, the

combiner weightsγ1 can be determined through a simple pseudo-inverse operation.
Since the expression for the optimum effective channel given in (8) consists of two minimizations, without loss

of optimality the order of the minimization can be switched to give:

min
l=1,...,2B

min
heff

1

sin2
(

∠(heff
1 ,wl)

)

, (9)

For each quantization vectorwl, the inner minimization finds the effective channel vector in span(H1) that forms
the minimum angle withwl. By basic geometric principles, the minimizingheff

1 is the projection ofwl on span(H1).
The solution to the inner minimization in (9) is therefore the sine squared of the angle betweenwl and its projection
on span(H1), which is referred to as the angle betweenwl and the subspace2. As a result, the best quantization
vector, i.e., the solution of (9), is the vector that forms the smallest angle between itself and span(H1). The optimal
effective channel is the (scaled) projection of this particular quantization vector onto span(H1).

In order to perform quantization, the angle between each quantization vector and span(H1) must be computed.
If q1, . . . ,qN form an orthonormal basis for span(H1) and Q1 , [q1 · · ·qN ], then sin2(∠(w, span(H1))) =
1 − ||QH

1 w||2. Therefore, mobile 1’s quantized channel, denotedĥ1, is:

ĥ1 = arg min
w=w1,...,w2B

|∠(w, span(H1))| = arg max
w=w1,...,w2B

||QH
1 w||2. (10)

Once the quantization vector has been selected, it only remains to choose the combiner weights. The projection
of ĥ1 on span(H1), which is equal toQ1Q

H
1 ĥ1, is scaled by its norm to produce the unit norm vectors

proj
1 . The

direction specified bysproj
1 has the minimum quantization error amongst all directions in span(H1), and therefore

the effective channel should be chosen in this direction. First we find the vectoru1 ∈ CN such thatH1u1 = s
proj
1 ,

and then scale to getγ1. Sinces
proj
1 is in span(H1), u1 is uniquely determined by the pseudo-inverse ofH1:

u1 =
(

HH
1 H1

)−1
HH

1 s
proj
1 , (11)

and the combiner weight vectorγ1 is the normalized version ofu1: γ = u1

||u1|| . The quantization procedure is
illustrated for aN = 2 channel in Fig. 2. In the figure the span of the two channel vectors is shown along with
the quantization vectorh1, its projection on the channel subspace, and the effective channel.

B. Algorithm Summary

We now summarize the quantization-based combining procedure performed at thek-th mobile:
1) Find an orthonormal basis, denotedq1, . . . ,qN , for span(Hk) and defineQk , [q1 · · ·qN ].
2) Find the quantization vector closest to the channel subspace:

ĥk = arg max
w=w1,...,w2B

||QH
k w||2. (12)

3) Determine the direction of the effective channel by projecting ĥk onto span(Hk).

s
proj
k =

QkQ
H
k ĥk

||QkQ
H
k ĥk||

. (13)

4) Compute the combiner weight vectorγk:

γk =

(

HH
k Hk

)−1
HH

k s
proj
1

||
(

HH
k Hk

)−1
HH

k s
proj
1 ||

. (14)

2If the number of mobile antennas is equal to the number of transmit antennas (N = M ), the channel vectors spanCM with probability
one. Therefore, each quantization vector has zero angle with the channel subspace and as a result the solution to the inner minimization
in (9) is trivially zero for eachwl. Thus, performing quantization with the sole objective of minimizing angular error (i.e., QBC) is not
meaningful whenN = M and is therefore not studied here.
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Fig. 2. Quantization procedure for a two antenna mobile

Each mobile performs these steps, feeds back the index of itsquantized channel̂hk, and then linearly combines
its N received signals using vectorγk to produce its effective channel outputyeff

k = (heff
k )Hx+n with heff

k = Hkγk.
Note that the transmitter need not be aware of the number of receive antennas or of the details of this procedure
because the downlink channel appears to be a single receive antenna channel from the transmitter’s perspective;
this clearly eases the implementation burden of QBC.

V. THROUGHPUTANALYSIS

Quantization-based combining converts the MIMO downlink channel into a vector downlink with channel vectors
heff

1 , . . . ,heff
K and channel quantizationŝhi · · · ĥK . We first derive the statistics of the effective vector channel, then

analyze throughput for ZFBF with equal power loading and no user selection, and finally quantify the effect of
receiver estimation error.

A. Channel Statistics

We first determine the distribution of the quantization error and the effective channel vectors with respect to both
the random channels and random quantization codebooks.

Lemma 1:The quantization errorsin2(∠(ĥk,h
eff
k )), is the minimum of2B independent beta(M−N,N) random

variables.
Proof: If the columns ofM×N matrixQk form an orthonormal basis for span(Hk), thencos2 (∠(wl, span(Hk)) =

||QH
k wl||2 for any quantization vector. Since the basis vectors and quantization vectors are isotropically chosen and

are independent, this quantity is the squared norm of the projection of a random unit norm vector inCM onto a
randomN -dimensional subspace, which is described by the beta distribution with parametersN andM − N [9].
By the properties of the beta distribution,sin2 (∠(wl, span(Hk)) = 1−cos2 (∠(wl, span(Hk)) is beta(M −N,N).
Finally, the independence of the quantization and channel vectors implies independence of the2B random variables.

Lemma 2:The normalized effective channelsh
eff
1

||heff
1 || , . . . ,

heff
K

||heff
K || are iid isotropic vectors inCM .

Proof: From the earlier description of QBC, note thath
eff
k

||heff
k || = s

proj
k , which is the projection of the best

quantization vector onto span(Hk). Since each quantization vector is chosen isotropically, its projection is isotropi-
cally distributed within the subspace. Furthermore, the best quantization vector is chosen based solely on the angle
between the quantization vector and its projection. Thuss

proj
k is isotropically distributed in span(Hk). Since this

subspace is also isotropically distributed, the vectors
proj
k is isotropically distributed inCM . Finally, the independence

of the quantization and channel vectors from mobile to mobile implies independence of the effective channel
directions.

Lemma 3:The quantity||heff
k ||2 is χ2

2(M−N+1).
Proof: Using the notation from Section IV-A, the norm of the effective channel is given by:

||heff
k ||2 = ||Hkγk||2 = ||Hk

uk

||uk||
||2 =

1

||uk||2
||Hkuk||2 =

||sproj
k ||2

||uk||2
=

1

||uk||2
, (15)

where we have used the definitionsheff
k = Hkγk and γk = uk

||uk|| , and the fact thatuk satisfiesHkuk = s
proj
k .

Therefore, in order to characterize the norm of the effective channel it is sufficient to characterize1
||uk||2 . The N -

dimensional vectoruk is the set of coefficients that allowssproj
k , the normalized projection of the chosen quantization
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vector, to be expressed as a linear combination of the columns of Hk (i.e., the channel vectors). Becauses
proj
k

is isotropically distributed in span(Hk) (Lemma 2), if we change coordinates to any (N -dimensional) basis for
span(Hk) we can assume without loss of generality that the projectionof the quantization vector is[1 0 · · · 0]T .
Therefore, the distribution of 1

||uk||2 is the same as the distribution of 1

[(HH
k Hk)−1]

1,1

. Since theN×N matrix HH
k Hk

is Wishart distributed withM degrees of freedom, this quantity is well-known to beχ2
2(M−N+1); see [10] for a

proof.
The norm of the effective channel has the same distribution as that of a (M −N +1)-dimensional random vector

instead of aM -dimensional vector. An arbitrary linear combination (with unit norm) of theN channel vectors
would result in another iid complex GaussianM -dimensional vector, whose squared norm isχ2

2M , but the weights
defining the effective channel are not arbitrary due to the inverse operation.

B. Sum Rate Performance Relative to Perfect CSIT

After receiving the quantization indices from each of the mobiles, a simple transmission option is to perform
equal-power ZFBF based on the channel quantizations (as described in Section II-B). IfK = M or K > M and
M users are randomly selected, the resulting SINR at thek-th mobile is given by:

SINRk =
P
M
|(heff

k )Hvk|2

1 +
∑

j 6=k
P
M
|(heff

k )Hvj|2
. (16)

The ergodic sum rate achieved by QBC, denotedRQBC(P ), is therefore given by:

RQBC(P ) = EH,W

[

log2

(

1 +
P
M
|(heff

k )Hvk|2

1 +
∑

j 6=k
P
M
|(heff

k )Hvj |2

)]

,

where the expectation is taken with respect to the fading andthe random quantization codebooks.
In order to study the benefit of QBC we compareRQBC(P ) to the sum rate achieved using zero-forcing

beamforming on the basis of perfect CSIT in anM transmit antennavector downlink channel (single receive
antenna), denotedRZF−CSIT (P ). We use the vector downlink with perfect CSIT as the benchmark because QBC
converts the system into a vector downlink, and the rates achieved by QBC cannot exceedRZF−CSIT (P ) (even as
B → ∞). We later describe how this metric can easily be translatedinto a comparison betweenRQBC(P ) and the
sum rate achievable with linear precoding (i.e., block diagonalization) in anN receive antenna MIMO downlink
channel with CSIT.

In a vector downlink with perfect CSIT, the BF vectors (denoted vZF,k) can be chosen perfectly orthogonal to
all other channels. Thus, the SNR of each user is as given in (3) with zero interference terms in the denominator
and the resulting average rate is:

RZF−CSIT (P ) = EH

[

log2

(

1 +
P

M
|hH

k vZF,k|2
)]

.

Following the procedure in [2], the rate gap∆R(P ) is defined as the difference between the per-user throughput
achieved with perfect CSIT and with feedback-based QBC:

∆R(P ) , RZF−CSIT (P ) − RQBC(P ). (17)

Similar to Theorem 1 of [2], we can upper bound this throughput loss:
Theorem 1:The per-user throughput loss is upper bounded by:

∆R(P ) ≤
(

M−1
∑

l=M−N+1

1

l

)

log2 e + log2

(

1+P

(

M− N+ 1

M

)

E[sin2(∠(ĥk,h
eff
k ))]

)

Proof: See Appendix.
The first term in the expression is the throughput loss due to the reduced norm (Lemma 3) of the effective channel,
while the second (more significant) term, which is an increasing function of P , is due to quantization error. In
order to quantify this rate gap, the expected quantization error needs to be bounded. By Lemma 1, the quantization
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error is the minimum of2B iid beta(M − N,N) RV’s. Furthermore, a general result on ordered statistics applied
to beta RV’s gives [9, Chapter 4.I.B]:

E[sin2(∠(ĥk,h
eff
k ))] ≤ F−1

X

(

2−B
)

whereFX(x) is the inverse of the CDF of a beta(M − N,N) random variable, which is:

FX(x) =

N−1
∑

i=0

(

M−1

N−1−i

)

xM−N+i(1 − x)N−1+i ≈
(

M−1

N−1

)

xM−N ,

where the approximation is the result of keeping only the lowest orderx term and dropping(1 − x) terms; this is
valid for small values ofx. Using this we get the following approximation:

E[sin2(∠(ĥk,h
eff
k ))] ≈ 2−

B

M−N

(

M−1

N−1

)− 1

M−N

. (18)

The accuracy of this approximation is later verified by our numerical results. Plugging this approximation into the
upper bound in Theorem 1 we get:

∆R(P ) ≈
(

M−1
∑

l=M−N+1

1

l

)

log2 e + log2

(

1+P ·
(

M−N+1

M

)

2−
B

M−N

(

M−1

N−1

)− 1

M−N

)

(19)

If B is fixed, quantization error causes the system to become interference-limited as the SNR is increased (see [2,
Theorem 2] for a formal proof whenN = 1). However, ifB is scaled with the SNRP such that the quantization
error decreases as1

P
, the rate gap in (19) can be kept constant and the full multiplexing gain (M ) is achieved. In

order to determine this scaling, we set the approximation of∆R(P ) in (19) equal to a rate constantlog2 b and solve
for B as a function ofP . Thus, a per-mobile rate loss of at mostlog2 b (relative toRZF−CSIT (P )) is maintained
if B is scaled as:

BN ≈ (M − N) log2 P − (M − N) log2 c − (M − N) log2

(

M

M−N+1

)

− log2

(

M−1

N−1

)

,

≈ M − N

3
PdB − (M − N) log2 c − (M − N) log2

(

M

M−N+1

)

− log2

(

M−1

N−1

)

, (20)

wherec = b · e−(
P

M−1
l=M−N+1

1

l
) − 1. Note that a per user rate gap oflog2 b = 1 bps/Hz is equivalent to a 3 dB power

gap in the sum rate curves.
As discussed in Section II-C, scaling feedback in a single receive antenna downlink asB1 = M−1

3 PdB maintains
a 3 dB gap from perfect CSIT throughput. Feedback must also beincreased linearly if QBC is used, but the slope of
this increase isM−1

3 when mobiles have only a single antenna compared to a slope ofM−N
3 for antenna combining.

If we compute the difference between theN = 1 feedback load and the QBC feedback load, we can quantifyhow
much less feedback is required to achieve the same throughput (3 dB away from a vector downlink channel with
perfect CSIT) if QBC is used withN antennas/mobile:

∆QBC(N) = B1 − BN ≈ N − 1

3
PdB + log2

(

M−1

N−1

)

− (N − 1) log2 e.

The sum rate of a 6 transmit antenna downlink channel (M = 6) is plotted in Fig. 3. The perfect CSIT zero-
forcing curve is plotted along with the rates achieved usingfinite rate feedback withB scaled according to (20) for
N = 1, 2 and3. ForN = 2 andN = 3 QBC is performed and the fact that the throughput curves are approximately
3 dB away from the perfect CSIT curve verify the accuracy of the approximations used to derive the feedback
scaling expression in (20). In this system, the feedback savings at 20 dB are 7 and 12 bits, respectively, for2 and
3 receive antennas. All numerical results in the paper are generated using the method described in Appendix II.

It is also important to compare QBC throughput to the throughput of a MIMO downlink channel withN antennas
per mobile. The most meaningful comparison is to the rate achievable with block diagonalization (BD) [11] without
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user selection and with equal power loading. In this case,M
N

mobiles are transmitted to (withN data streams per
mobile). In [12] it is shown that the BD sum rate is

∆BD−ZF (N) = (log2 e)
M

N

N−1
∑

j=1

N − j

j

larger thanRZF−CSIT (P ) at asymptotically high SNR, and that this offset is accurateeven for moderate SNR’s.
This can be translated to a power offset by multiplying by3

M
to give 3 log2 e

N

∑N−1
j=1

N−j
j

dB, which equates to 2.16
dB and 3.61 dB forN = 2 andN = 3. Therefore, the rate offset between QBC and BD with CSIT is the sum of
∆R(P ) (equation 17) and∆BD−ZF (N). In Fig. 3 the BD sum rate curves are plotted, and their shiftsrelative to
ZF-CSIT are seen to follow the predicted power gaps.

C. Effect of Receiver Estimation Error

Although the analysis until now has assumed perfect CSI at the mobiles, a practical system always has some
level of receiver error. We consider the scenario where a shared pilot sequence is used to train the mobiles. IfβM
downlink pilots are used (β ≥ 1 pilots per transmit antenna), channel estimation at thek-th mobile is performed on
the basis of observationGk =

√
βPHk +nk. The MMSE estimate ofHk is Ĝk =

√
βP

1+βP
Gk, and the true channel

matrix can be written as the sum of the MMSE estimate and independent estimation error:

Hk = Ĝk + ek, (21)

whereek is white Gaussian noise, independent of the estimateĜk, with per-component variance(1+βP )−1. After
computing the channel estimatêGk, the mobile performs QBC on the basis of the estimateĜk to determine the
combining vectorγk. As a result, the quantization vector̂hk very accurately quantizes the vector̂Gkγk, which is
the mobile’s estimate of the effective channel output, while the actual effective channel is given byheff

k = Hkγk.
For simplicity we assume that coherent communication is possible, and therefore the long-term average throughput

is againE[log2(1 + SINRk)] where the same expression for SINR given in (16) applies3. The general throughput
analysis in Section V still applies, and in particular, the rate gap upper bound given in Theorem 1 still holds
if the expected quantization error takes into account the effect of receiver noise. As shown in Appendix III, the
approximate rate loss with receiver error is:

∆R(P ) ≈ log2 e

(

M−1
∑

l=M−N+1

1

l

)

+ log2

(

1+P ·
(

M−N+1

M

)

2−
B

M−N

(

M−1

N−1

)− 1

M−N

+
1

β

)

. (22)

3We have effectively assumed that each mobile can estimate the phase and SINR at the effective channel output. In practicethis could be
accomplished via a second round of pilots as described in [13].
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Comparing this expression to (19) we see that estimation error leads only to the introduction of an additional1
β

term.
If feedback is scaled according to (20) the rate loss islog2(b+β−1) rather thanlog2(b). In Figure 4 the throughput
of a 4 mobile system withM = 4 andN = 2 is plotted for perfect CSIT/CSIR and for QBC performed on the
basis of perfect CSIR (β = ∞) and imperfect CSIR forβ = 1 andβ = 2. Estimation error causes non-negligible
degradation, but the loss decreases rather quickly withβ (which can be increased at a reasonable resource cost
because pilots are shared).

VI. PERFORMANCECOMPARISONS

In this section we compare the throughput of QBC to other receive combining techniques and to limited feedback-
based block diagonalization4. For all results on receiving combining, the user selectionalgorithm of [7] is applied
assuming limited feedback (B bits) regarding the direction of the effective channel and perfect knowledge of the
effective channel norm5. We first describe these alternative approaches and then discuss some numerical results.

A. Alternate Combining Techniques

The optimal receive combining technique for a point-to-point MIMO channel in a limited feedback setting is to
select the quantization vector that maximizes received power [3]:

ĥk = arg max
w=w1,...,w2B

||HH
k w||2. (23)

Because this method roughly corresponds to maximum ratio combining, it is referred to as MRC. If BF vectorw
is used by the transmitter, received power is maximized by choosingγ =

HH
k w

||HH
k
w|| [3], which yieldsheff

k = Hkγk =
HkH

H
k wk

||HH
k wk|| . WhenB is not very small, with high probability the quantization vector that maximizes||HH

k w||2 is the

vector that is closest to the eigenvector corresponding to the maximum eigenvalue ofHkH
H
k . To see this, consider

the maximization of||HH
k w|| when w is constrained to have unit norm but need not be selected froma finite

codebook. This corresponds to the classical definition of the matrix norm, and the optimizingw is in the direction
of the maximum singular value ofHk. When B is not too small, the quantization error is very small and as a
result the solution to (23) is extremely close to||Hk||2. As a result,selecting the quantization vector according to
the criteria in (23) is roughly equivalent to directly finding the quantization vector that is closest to the direction
of the maximum singular value ofHk.

4 It should be noted that comparisons with block diagonalization are somewhat rough because systems that perform BD on thebasis of
limited feedback and that employ user/stream selection have not yet been extensively studied in the literature, to the best of our knowledge.
As a result, it may be possible to improve upon the BD systems we use here as the point of comparison.

5Although the rate gap upper bound derived in Theorem 1 only rigorously applies to systems with equal power loading and random
selection ofM mobiles, the bound can be used to reasonably approximate thethroughput degradation due to limited feedback even when
user selection is performed. See [14] for a further discussion of the effect of limited feedback on systems employing user selection.
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Effective Channel Norm Quantization Error
Single RX Antenna (N = 1) χ2

2M 2
−B/(M−1)

Antenna Selection χ2
2M 2

−(B+log2 N)/(M−1)

MRC ≈ max eigenvalue 2
−B/(M−1)

Max Eigenvector max eigenvalue 2
−B/(M−1)

QBC χ2
2(M−N+1) 2

−B/(M−N)

TABLE I

SUMMARY OF COMBINING TECHNIQUES

The maximum singular value ofHk can be directly quantized if the mobile first selects the combiner weightsγk

such that the effective channelheff
k = Hkγk is in the direction of the maximum singular value, which corresponds

to selectingγk equal to the eigenvector corresponding to the maximum eigenvalue of theN × N matrix HH
k Hk,

and then finds the quantization vector closest toheff
k . The effective channel norm satisfies||heff

k ||2 = ||Hk||2, which
can be reasonably approximated as a scaled version of aχ2

2MN random variable [15]. Therefore the norm of the
effective channel is large, but notice that the quantization procedure reduces to standard vector quantization, for
which the error is roughly2−

B

M−1 .
In Figure 5, numerically computed values of the quantization error (log2(E[sin2(∠(heff

k , ĥk))]) are shown for
QBC, antenna selection, MRC (corresponding to equation 23), and direct quantization of the maximum eigenvector,
along with approximation2−

B

M−1 as well as the approximation from (18), for aM = 4, N = 2 channel. Note that
the error of QBC is very well approximated by (18), and the exponential rate of decrease of the other techniques
are all well approximated by2−

B

M−1 .
Each combining technique transforms the MIMO downlink intoa vector downlink with a modified channel norm

and quantization error. These techniques are summarized inTable I. The key point is that only QBC changes
the exponent of the quantization error6, which determines the rate at which feedback increases withSNR. When
comparing these techniques note that the complexity of QBC and MRC are essentially the same: QBC and MRC
require computation of||QH

k w||2 and ||HH
k w||2, respectively.

B. Block Diagonalization

An alternative manner in which multiple receive antennas can be used is to extend the linear precoding structure
of ZFBF to allow for transmission of multiple data streams toeach mobile. Block diagonalization (BD) selects

6An improvement over QBC is to choose the quantization vectorand combining weights that maximize the expected received SINR (the
true SINR depends on the BF vectors, which are unknown to the mobile). This extension of QBC, which will surely outperformQBC and
MRC, has been under investigation by other researchers since the initial submission of this manuscript and the results will be published
shortly [16].
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precoding matrices such multi-user interference is eliminated at each receiver, similar to ZFBF. In order to select
appropriate precoding matrices, the transmitter must knowthe N -dimensional subspace spanned by each mobile
channelHk. Thus an appropriate feedback strategy is to have each mobile quantize and feedback its channel
subspace. The effect of limited feedback in this setting (assuming there areM

N
mobiles and equal power loading

across users and streams is performed) was studied in [17]. In order to achieve a bounded rate loss relative to a
perfect CSIT (BD) system, feedback (per mobile) needs to scale approximately asN(M − N) log2 P . Thus, the
aggregate feedback load summed overM

N
mobiles is approximatelyM(M − N) log2 P , which is (approximately)

the same as the aggregate feedback in a QBC system in which each of theM mobiles usesB ≈ (M −N) log2 P .
Thus, there is a rough equivalence between QBC and BD in termsof feedback scaling, and this is later confirmed
by our numerical results.

It is also possible to perform user and stream selection whenBD is used, and [18] presents an extension of the
algorithm of [7] to the multiple receive antenna setting (referred to as maximum eigenmode transmission, or MET).
In essence, MET treats each mobile’sN eigenmodes as a different single antenna receiver and selects eigenmodes
in a greedy fashion using the approach of [7]. Thus, in a limited feedback setting a reasonable strategy is to have
each user separately quantize the directions of itsN eigenvectors and also feed back the corresponding eigenvalues.

C. Numerical Results

In Figures 6 and 7 throughput curves are shown for a 4 transmitantenna, 2 receive antenna (M = 4, N = 2)
system withK = 4 mobiles. Sum rate is plotted for three different combining techniques (QBC, antenna selection,
and MRC) and for a vector downlink channel (N = 1); the BD curves are discussed in later paragraphs. In Fig.
6, B (per mobile) is scaled according to (20), i.e., roughly as(M − N) log2 P , while in Fig. 7 each mobile uses
10 bits of feedback. As expected, the throughput of antenna selection, MRC, and the single antenna system all lag
behind QBC in Fig. 6, particularly at high SNR. This is because the(M −N) log2 P scaling of feedback is simply
not sufficient to maintain good performance if these techniques are used. To be more precise, the quantization
error goes to zero slower than1

P
which corresponds to interference power that increases with SNR, and thus a

reduction in the slope (i.e., multiplexing gain) of these curves. In Fig. 7, MRC outperforms QBC for SNR less
than approximately 12 dB because signal power is more important than quantization error (i.e., interference power),
i.e., the system is not yet interference-limited. However,at higher SNR’s QBC outperforms MRC because of the
increased importance of quantization error.

Figures 6 and 7 also include plots of the throughput of a BD system. In this system, 2 of the 4 users are randomly
selected to feedback subspace information, and equal powerBD with no selection is used to send 2 streams to each
of these mobiles, for a total of 4 streams. In order to equalize the aggregate feedback load, each of the 2 users
is allocated double the feedback budget of the combining-based systems; this corresponds to using two times the
scaling of (20) in Fig. 6 and 20 bits per mobile in Fig. 7. BD performs slightly better than QBC in both figures,
but we later see that this advantage is lost for largerK.
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Figures 8 displays throughput for a 4 transmit antenna, 2 receive antenna (M = 4, N = 2) system at 10 dB
againstK, the number of mobiles. Capacity refers to the sum capacity of the system (with CSIT), MET-CSIT is the
throughput achieved using the MET algorithm on the basis of CSIT[18], and ZF-CSIT is the throughput of a vector
downlink with CSIT and user selection [7]. Below these are four limited feedback curves for 10 bits of feedback
per mobile. The first three, QBC, MRC, and antenna selection,correspond to different combining techniques, while
MET-FB corresponds to performing MET on the basis of 5 bit quantization of each eigenmode (10 bits total
feedback per mobile). QBC achieves significantly higher throughput than MRC or antenna selection, particularly
for larger values ofK. The ZF-CSIT curve is shown because it serves as an upper bound on the performance of
QBC, and the gap between the two is quite reasonable even forB = 10. MET-FB is seen to perform extremely
poorly: this is not too surprising because the MET algorithmis likely to only choose the strongest eigenmode
of a few users [18], and thus half of the feedback is essentially wasted on quantization of each user’s weakest
eigenmode. This motivates dedicating all 10 bits to quantization of the strongest eigenmode, but note that this
essentially corresponds to MRC, which is outperformed by QBC. The huge gap between MET-CSIT and MET-FB
indicates that MET has the potential to provide excellent performance, but extremely high levels of feedback may
be necessary to realize MET’s potential.

Finally, Figure 9 shows throughput versus number of usersK for a 6 transmit antenna (M = 6) channel with
either 1 or 2 receive antennas. Sum capacity forN = 1 and N = 2 is plotted, along with the sum rate of a
perfect-CSIT TDMA system in which only the receiver with thelargest point-to-point capacity is selected for
transmission. The ZF and QBC curves correspond to systems with user selection and either single receive antennas
or quantization-based combining, respectively, for feedback levels of 10, 15, and 20 bits per mobile. For each
feedback level, an additional receive antenna with QBC provides a significant throughput gain relative to a single
receive antenna system. Furthermore, QBC significantly outperforms TDMA (N = 2) for B = 15 or B = 20, and
provides an advantage over TDMA forB = 10 when the number of users is sufficiently large. Note, however, that
there is a significant gap between QBC andN = 2 capacity even when 20 bits of feedback are used; this indicates
that there may be room for significant improvement beyond QBC.

VII. C ONCLUSION

The performance of multi-user MIMO techniques such as zero-forcing beamforming critically depend on the
accuracy of the channel state information provided to the transmitter. In this paper, we have shown that receive
antenna combining can be used to reduce channel quantization error in limited feedback MIMO downlink chan-
nels, and thus significantly reduce channel feedback requirements. Unlike traditional maximum-ratio combining
techniques that maximize received signal power, the proposed quantization-based combining technique minimizes
quantization error, which translates into minimization ofmulti-user interference power.

Antenna combining is just one method by which multiple receive antennas can be used in the MIMO downlink. It
is also possible to transmit multiple streams to each mobile, or to use receive antennas for interference cancellation
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if the structure of the transmitted signal is known to the mobile. It remains to be seen which of these techniques
is most beneficial in practical wireless systems when channel feedback resources and complexity requirements are
carefully accounted for.

APPENDIX I
PROOF OFTHEOREM 1

Plugging the rate expressions into the definition of∆(P ), we have∆(P ) = ∆a + ∆b where

∆a = EH

[

log2

(

1 + ρ|hH
k vZF,k|2

)]

− EH,W



log2



1 +
M
∑

j=1

ρ|(heff
k )Hvj|2









∆b = EH,W



log2



1 +
∑

j 6=k

ρ|(heff
k )Hvj |2







 ,



15

whereρ , P
M

. To upper bound∆a, we define normalized vectors̃hk = hk/||hk|| and h̃eff
k = heff

k /||heff
k ||, and note

that the norm and directions ofhk and ofheff
k are independent. Using this we have:

EH,W



log2



1 +
M
∑

j=1

ρ|(heff
k )Hvj |2







 ≥ EH,W

[

log2

(

1 + ρ|(heff
k )Hvk|2

)]

= EH,W

[

log2

(

1 + ρ||heff
k ||2|h̃eff

k

H
vk|2

)]

= EH

[

log2

(

1 + ρXβ||hk||2|h̃k
H
vZF,k|2

)]

, (24)

whereXβ is β(M −N + 1, N − 1). Since the BF vectorvZF,k is chosen orthogonal to the(M − 1) other channel
vectors{hj}j 6=k, each of which is an iid isotropic vector, it is isotropic andis independentof h̃k. By Lemma 2 the

same is also true ofvk and h̃eff
k , and therefore we can substitute|h̃k

H
vZF,k|2 for |(heff

k )Hvk|2. Finally, note that
the productXβ||hk||2 is χ2

2(M−N+1) because||hk||2 is χ2
2M , and thereforeXβ ||hk||2 and ||heff

k ||2 have the same
distribution. Using (24) we get:

∆a ≤ EH

[

log2

(

1 + ρ||hk||2|h̃k
H
vZF,k|2

1 + ρXβ||hk||2|h̃k
H
vZF,k|2

)]

≤ −E [log2 (Xβ)] = log2 e

(

M−1
∑

l=M−N+1

1

l

)

,

where we have usedlog2 (Xβ) = log2

(

χ2
2M

χ2
2(M−N+1)

)

and results from [8] to to computeE [log2 (Xβ)].
Finally, we upper bound∆b using Jensen’s inequality:

∆b ≤ log2



1 + E





∑

j 6=k

ρ|(heff
k )Hvj |2









= log2

(

1 + ρ(M − 1)E
[

||(heff
k )||2

]

E
[

|(h̃eff
k)

Hvj |2
])

= log2

(

1 + ρ(M − 1)(M − N + 1)E
[

|(h̃eff
k)

Hvj |2
])

= log2

(

1 + ρ(M − N + 1)E
[

sin2
(

∠

(

h̃eff
k,hk

))])

,

where the final step uses Lemma 2 of [2] to getE
[

|(h̃eff
k)

Hvj|2
]

= 1
M−1E

[

sin2
(

∠

(

h̃eff
k,hk

))]

.

APPENDIX II
GENERATION OFNUMERICAL RESULTS

Rather than performing brute force simulation of RVQ, whichbecomes infeasible forB larger than 15 or 20,
the statistics of RVQ can be exploited to efficiently and exactly emulate the quantization process:

1) Draw a realization of the quantization errorZ according to its known CDF (Lemma 1).
2) Draw a realization of the corresponding quantization vector according to:

ĥk =
(√

1 − Z
)

u +
√

Zs

whereu is isotropic in span(Hk), s is isotropic in the nullspace of span(Hk), with u, s independent.

These steps exactly emulate step 2 of QBC. The same procedurecan also be used to emulate antenna selection,
quantization of the maximum eigenvector, and no combining (N = 1). Because the CDF of the quantization error
is not known for MRC, MRC results are generated using brute force RVQ.
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APPENDIX III
RATE GAP WITH RECEIVER ESTIMATION ERROR

We bound the rate gap using the technique of [13]. We first restate the result of Theorem 1 in terms of the
interference termsE

[

|(heff
k )Hvj |2

]

:

∆R ≤ log2 e

(

M−1
∑

l=M−N+1

1

l

)

+ log2

(

1 + P
M − 1

M
E
[

|(heff
k )Hvj |2

]

)

. (25)

Using the representation of the channel matrix given in (21), we can write the interference term as:

(heff
k )Hvj = (Hkγk)

H
vj =

(

Ĝkγk

)H

vj + (ekγk)
H

vj .

The first term in the sum is statistically identical to the interference term when there is perfect CSIR, while the
second term represents the additional interference due to the receiver estimation error. Because the noise and the
channel estimate are each zero-mean and are independent we have:

E
[

|(heff
k )Hvj |2

]

= E

[

∣

∣

∣

∣

(

Ĝkγk

)H

vj

∣

∣

∣

∣

2
]

+ E

[

∣

∣

∣(ekγk)
H

vj

∣

∣

∣

2
]

The first term comes from the perfect CSIR analysis and is equal to the product of 1
M−1 and the expected quantization

error with perfect CSIR. Becauseγk andvj are each unit norm andek is independent of these two vectors, the
quantity (ekγk)

H
vj is (zero-mean) complex Gaussian with variance(1 + βP )−1, which is less than(1 + βP )−1.

We finally reach (22) by using the approximation for quantization error from (18) and plugging into (25), and
noting that(1 + βP )−1 ≈ (βP )−1.
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