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Abstract—In this contribution we first derive a transmitter
multiuser preprocessing (TMP) scheme for a general multiuser
multiple-input-multiple-output (MIMO) system based on the
minimum power distortionless response (MPDR) criterion, which
minimizes the power in the context of a given downlink mobile
terminal (MT) under the distortionless condition. This optimiza-
tion problem results in a solution, which has the same form as
the minimum mean-square error (MMSE) multiuser detection
(MUD). Hence, we then extend the well-known rank-reduction
techniques in MMSE-MUD to the MPDR-TMP in order to
mitigate the possible implementation problems of the MPDR-
TMP. In our study three classes of rank-reduction algorithms
are considered, which are derived, respectively, based on the
eigen-analysis methods of principal components (PC) and cross-
spectral metrics (CSMs) as well as on the Taylor polynomial
approximation (TPA) approach, which does not depend on
the eigen-analysis. In this contribution both the capacity and
error performance of a downlink space-division multiple-access
(SDMA) system is investigated, when either the full-rank or
reduced-rank MPDR-TMP is invoked. From our study and
simulation results, it can be shown that the MPDR-TMP scheme
is highly efficient for achieving the capacity and for suppressing
the multiuser interference (MUI). The reduced-rank techniques
can be employed by the MPDR-TMP, so as to reduce its
implementation complexity while achieving the near full-rank
performance of the full-rank MPDR-TMP.

Index Terms—Preprocessing, precoding, multiple-input
multiple-output, space-division multiple-access, minimum power
distortionless response, reduced-rank, subspace.

I. INTRODUCTION

RECENTLY, transmitter multiuser preprocessing (TMP)
or simply preprocessing, which suppresses multiuser

interference by carrying out corresponding signal processing
at the transmitter, has received wide attention [1–7]. One of
the main advantages of employing the TMP techniques is that
it is possible to implement low-complexity and high power-
efficiency mobile terminals (MTs) for downlink transmissions
in cellular systems using, typically, the time-division duplex
(TDD) [2, 4]. In the context of the preprocessing algorithms
for TMP, it can be found from the literature that three typical
optimization schemes have so far been invoked for deriving the
preprocessing matrices, which include the matched-filtering
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(MF) [2, 6, 8, 9], zero-forcing (ZF) or decorrelating [1, 3, 7, 10]
as well as the minimum mean-square error (MMSE) [3–5,
11–13]. It can be shown that, when the MMSE-TMP does
not exploit the knowledge about the noise power in the
preprocessing, the MMSE-TMP scheme is then reduced to
the ZF-TMP scheme [3, 13].

In this contribution another type of TMP scheme is pro-
posed for preprocessing in general multiple-input-multiple-
output (MIMO) systems. The preprocessing algorithm is de-
rived based on the minimum power distortionless response
(MPDR) criterion, which minimizes the power in the context
of a given downlink MT, while satisfying the distortionless
condition. In principle, this optimization problem results in
that the interference power imposed by the given MT on the
other MTs is minimized [14]. From this point of view, the
optimization does not seek to maximize the desired MT’s
performance, but tries to minimize the desired MT’s effect
on its colleague MTs. Hence, this type of optimization can
be referred to as the altruistic (A)-optimization and hence
the corresponding solution is A-optimum [14]. Although A-
optimization does not seek an optimum solution for the desired
MT, however, as shown in [14] the overall solutions or the
system is optimum, when all the invoked downlink MTs
achieve their A-optimum solutions.

Specifically, in this contribution our study shows that the A-
optimization for TMP based on the MPDR criterion yields an
A-optimum solution, which has the same form as the MMSE
solution in MUD [15]. Hence, in a straightforward way, vari-
ous classes of rank-reduction algorithms that are well-known
in reduced-rank MMSE-based detections (see e.g., [16–24])
may be extended to the MPDR-TMP, in order to mitigate the
possible problems in implementation of the MPDR-TMP, such
as high-complexity and existence of ill-conditioned matrices
that are not invertible. Note that, reduced-rank techniques have
drawn wide attention for signal detection in various scenarios.
However, the reduced-rank techniques have so far received
little research in the context of transmitter preprocessing.
Therefore, in this contribution three classes of rank-reduction
algorithms are considered associated with the MPDR-TMP.
These rank-reduction algorithms are derived, respectively,
based on the eigen-analysis methods of principal components
(PC) and cross-spectral metrics (CSM) [16, 18, 19] as well as
on the Taylor polynomial approximation (TPA) approach [15,
24], which does not depend on the eigen-analysis.

In this contribution both the capacity and error performance
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of the multiuser MIMO systems are investigated, when the
proposed MPDR-TMP using either the full-rank or reduced-
rank preprocessing is employed. As an example, in our sim-
ulations the capacity and error performance of a downlink
SDMA system is investigated. From our study and simulation
results, it can be shown that the MPDR-TMP scheme is highly
efficient for achieving the capacity of a MIMO system and
also for suppressing the downlink MUI. The reduced-rank
techniques can be efficiently employed by the MPDR-TMP, in
order to reduce its implementation complexity while achieving
the near full-rank performance.

The rest of the paper is organized as follows. Section II
provides the preliminaries of a multiuser MIMO system,
which assumes that the uplink and downlink channels are
reciprocal. Section III derives the full-rank MPDR-TMP and
its capacity expression. In Section IV three types of rank-
reduction techniques are introduced to the MPDR-TMP. In
Section V simulation results in the context of both the capacity
and bit error rate (BER) of the SDMA system are presented.
Finally, in Section VI conclusions are summarized.

II. MULTIUSER MIMO MODELS

This contribution considers a general MIMO system having
the downlink MIMO equation expressed as1

yyyD = HHHTPPPxxx + nnn = HHHT
K∑

k=1

pppkxk + nnn (1)

where yyyD is a K-length vector, xxx = [x1, x2, . . . , xK ]T con-
tains the K symbols conveyed by the downlink to one MT in
point-to-point multiplexing scenario, or to upto K MTs when
a multiuser MIMO system, such as code-division multiple-
access (CDMA) or space-division multiple-access (SDMA),
is considered. It is assumed that E

[|xk|2
]

= 1. In (1) HHH is
the (N × K)-dimensional channel transfer matrix given by

HHH = [hhh1,hhh2, . . . ,hhhK ] (2)

where hhhk is the channel impulse response (CIR) connecting
the transmitter with the kth MT and is hence referred to as
the kth user’s signature. We assume that the entries {hij} in
HHH satisfy E[|hij |2] = 1. In (1) PPP is the (N × K) transmitter
preprocessing matrix, which is denoted by

PPP = [ppp1, ppp2, . . . , pppK ] (3)

where pppk is for preprocessing xk . Furthermore, in (1) nnn is the
K-length noise vector containing the noise samples observed
at the K MTs. We assume that each entry of nnn is a complex
Gaussian random variable with zero mean and a variance
of σ2/2 = 1/2SNR per dimension, where SNR denotes the
downlink signal-to-noise ratio (SNR) per MT.

Given the downlink MIMO equation of (1), it can be shown
that the corresponding reciprocal uplink MIMO equation can
be expressed as

yyyU = HHHxxx + nnn (4)

1Note that, more complicated MIMO equations can in general be sim-
plified to the form of (1). For example, for the MIMO systems having
processing at the MTs, the downlink MIMO equation can be expressed as
yyyD = WWWH

DH̃HH
T

PPPxxx + WWW H
Dñnn, where WWWD is the processing matrix at the

MTs. Explicitly, this MIMO equation can be represented by (1) if we set
HHH = H̃HHWWW ∗

D and nnn = WWW H
Dñnn.

where yyyU is a N -length uplink observation vector, while nnn
contains the noise observations of the uplink. Let assume that
the symbols in xxx are independent. Then, it can be shown that
the auto-correlation matrix of yyyU can be expressed as

RRRU = E
[
yyyUyyyH

U

]
= HHHHHHH + σ2IIIN

=
K∑

k=1

hhhkhhh
H
k + σ2IIIN (5)

when we assume that both the uplink and downlink have the
same SNR value. It can be seen in our forthcoming discourse
that RRRU is useful for determining the subspace for the reduced-
rank TMP.

Note that, the general MIMO model considered in this
section, as shown in (1) for downlink and (4) for uplink, may
be used for representation of various wireless communications
schemes. Specifically, the following three communications
schemes have their uplink representation as (4) and their
downlink representation as (1): (a) the point-to-point multi-
antenna MIMO system employing (N ×K) antennas; (b) the
SDMA system employing N base-station (BS) antennas and
supporting K MTs each with one antenna; and (c) the CDMA
system - where the BS employs one antenna and each MT
also employs one antenna - using a spreading factor of N
and supporting K users when communicating over flat fading
channels. Let us first consider the full-rank MPDR-TMP in
the next section.

III. FULL-RANK TRANSMITTER MULTIUSER

PREPROCESSING

In this section we derive the preprocessing matrix PPP for
the full-rank MPDR-TMP under the MPDR criterion, i.e., the
full-rank MPDR-TMP. Specifically, the preprocessing vector
pppk, k = 1, . . . , K is optimized, so that the kth MT imposes the
minimum interfering power on the other (K − 1) colleague
MTs, while achieving its distortionless criterion. Again, we
refer to this type of optimization, which minimizes the impact
of the desired MT on the other MTs, as the A-optimization,
and to the corresponding solution as A-optimum. Note that,
conventionally, as shown, e.g., in [1–6], the optimization
of preprocessing usually aims at deriving the preprocessing
matrix PPP as seen in (3), instead of aiming at its component
preprocessing vectors {pppk}. The optimization concerning the
component preprocessing vectors {pppk} has only been consid-
ered in [14] by the author of this contribution.

According to (1), it can be shown that the power related to
pppk plus the noise power in the context of the kth MT can be
expressed as

Power(k) = Tr
(
pppH

k HHH∗HHHTpppk

)
+ σ2

= |hhhT
k pppk|2 +

K∑
l �=k

|hhhT
l pppk|2 + σ2,

k = 1, 2, . . . , K (6)

where Tr(AAA) denotes the trace of the square matrix AAA. In
the second equation of (6) the first term represents the power
conveyed to the kth (desired) MT, while the second term
represents the interference imposed by the kth MT on the
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other (K − 1) MTs, where the interference imposed by the
kth MT on the lth MT is |hhhT

l pppk|2.
When the transmitter preprocessing is employed, the power-

constraint on the transmitted signals should be satisfied,
which requires that the total transmission power after the
preprocessing should not be increased. In this contribution we
assume for simplicity that the power transmitted to each of
the MTs maintains unchanged before and after the transmitter
preprocessing. This implies that the preprocessing vector pppk

in (1) should be chosen to satisfy

‖pppk‖2 = 1, k = 1, 2, . . . , K (7)

Consequently, upon invoking the power constraint, (6) can be
modified to

Power(k) = Tr
(
pppH

k HHH∗HHHTpppk

)
+ ρσ2‖pppk‖2

= Tr
(
pppH

k

[
HHH∗HHHT + ρσ2IIIN

]
pppk

)
,

k = 1, 2, . . . , K (8)

where we deliberately applied a parameter ρ ≥ 0 associated
with the noise variance. We refer to ρ as the noise-suppression
factor, since its value is related to the noise suppression by
the transmitter preprocessing. More details about the noise-
suppression factor can be found in [14] and Section V, when
showing the related simulation results.

Let define

RRRD = HHH∗HHHT + ρσ2IIIN =
K∑

k=1

hhh∗
khhh

T
k + ρσ2IIIN (9)

Then, we have

Power(k) = Tr
(
pppH

k RRRDpppk

)
, k = 1, 2, . . . , K (10)

Notice that, when ρ = 1, we have RRRD = RRR∗
U . Hence, in

practice when the uplink and downlink channels are reciprocal,
the auto-correlation matrix RRRD for downlink preprocessing
can be estimated directly from the observations of the uplink
channels using the well-known approaches, such as those in
[16, 25]. Specifically, let σ2

U be the noise variance of the
uplink. Then, once the auto-correlation matrix RRRU of the
uplink has been estimated, the auto-correlation matrix RRRD for
downlink preprocessing can be formed as

RRRD = RRR∗
U − (σ2

U − ρσ2)IIIN

For transmitter preprocessing, the criterion of distortionless
response can be expressed as

hhhT
k pppk = βk (11)

where βk > 0 is for achieving the power constraint. Notice
that, based on (6) (or (10)) and (11), given that the distor-
tionless condition of (11) is satisfied, minimizing Power(k)
of (6) (or (10)) results in that the compound power of the
interference imposed by the kth MT on the other (K − 1)
MTs and the background noise is minimized. Consequently,
using the Lagrange multiplier, we can form the minimization
problem for the MPDR-TMP as

J = pppH
k RRRDpppk − λ∗ (hhhT

k pppk − βk

)− (pppH
k hhh∗

k − βk

)
λ,

k = 1, 2, . . . , K (12)

Upon taking the complex gradient of J with respect to ppp∗k and
solving it, it gives

pppk = RRR−1
D hhh∗

kλ (13)

where λ can be obtained by substituting (13) into (11), yield-
ing λ = βk/(hhhT

k RRR−1
D hhh∗

k). Explicitly, the term hhhT
k RRR−1

D hhh∗
k can be

absorbed into the power normalization factor. Consequently,
the optimum preprocessing vector pppk in MPDR sense can be
expressed as

pppk = RRR−1
D hhh∗

kβ̄k, k = 1, 2, . . . , K (14)

where β̄k = βk/(hhhT
k RRR−1

D hhh∗
k). It can be shown that (14)

takes the same form as the MMSE solution in multiuser
detection [15]. Upon applying (14) into (7), it can be shown
that we have

β̄k =
(
hhhT

k RRR−2
D hhh∗

k

)−1/2
(15)

Hence, the optimum preprocessing vectors in MPDR sense are
finally given by

pppk =
RRR−1

D hhh∗
k√

hhhT
k RRR−2

D hhh∗
k

, k = 1, 2, . . . , K (16)

Given the preprocessing vectors for the K downlink MTs
as shown in (16), the decision variable for the kth MT can be
expressed as

y
(k)
D = hhhT

k pppkxk +
K∑

l �=k

hhhT
k ppplxl + nk, k = 1, 2, . . . , K (17)

where nk is a Gaussian random variable with zero-mean and
a variance of σ2/2 = 1/2SNR per dimension. Based on (17),
the signal-to-interference-plus-noise ratio (SINR) for detection
of xk is given by

γk =
1
2

E2
[
y
(k)
D

]
Var
[
y
(k)
D

] =
1
2

∣∣hhhT
k pppk

∣∣2
⎛
⎝ K∑

l �=k

∣∣hhhT
k pppl

∣∣2 + σ2

⎞
⎠

−1

(18)

When applying (16) into the above equation, it yields the SINR
for the full-rank MPDR-TMP, which is given by

γk =
1
2
β̄2

k

∣∣hhhT
k RRR−1

D hhh∗
k

∣∣2
⎛
⎝ K∑

l �=k

β̄2
l

∣∣hhhT
k RRR−1

D hhh∗
l

∣∣2 + σ2

⎞
⎠

−1

=

∣∣hhhT
k RRR−1

D hhh∗
k

∣∣2
2hhhT

k RRR−2
D hhh∗

k

⎛
⎝ K∑

l �=k

∣∣hhhT
k RRR−1

D hhh∗
l

∣∣2
hhhT

l RRR−2
D hhh∗

l

+
1

SNR

⎞
⎠

−1

,

k = 1, 2, . . . , K (19)

Furthermore, according to (14), (16) and (17), it can be
shown that the desired power conveyed to the kth MT can
be expressed as

P (D)
ower(k) =

∣∣hhhT
k pppk

∣∣2 = β̄2
k

∣∣hhhT
k RRR−1

D hhh∗
k

∣∣2
=

∣∣hhhT
k RRR−1

D hhh∗
k

∣∣2
hhhT

k RRR−2
D hhh∗

k

. (20)

Straightforwardly, when given the transmission power in the
context of pppk, it is desirable that the desired power received
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by the kth MT, i.e., P
(D)
ower(k), is as high as possible, in order

to minimize the interference of the kth MT on the other MTs.
When assuming that xk, k = 1, . . . , K is taken from a zero-

mean Gaussian process with unity variance and that, after the
MPDR-assisted optimum preprocessing, the decision variable
y
(k)
D in (17) can be approximated as a Gaussian variable with

its corresponding SINR given by (19), the mutual information
between xk and y

(k)
D or the channel capacity corresponding to

the kth MT can be expressed as [26]

Ck =
1
2
Eγk

[log2(1 + 2γk)] bits/s(ample)/Hz,

k = 1, 2, . . . , K (21)

In our forthcoming discourse we refer to (21) as the full-
rank channel capacity per MT. According to (21), intuitively,
an efficient reduced-rank MPDR-TMP scheme should be able
to reach the full-rank channel capacity with a rank as low as
possible. Let us now turn to consider the reduced-rank MPDR-
TMP in the next section.

IV. REDUCED-RANK TRANSMITTER MULTIUSER

PREPROCESSING

As shown in (16), in order to derive the preprocessing vector
pppk for k = 1, . . . , K , the following main computations are
required: (a) inverse the (N×N) matrix RRRD once2, which has
a complexity on the order of O(N3); (b) K(N2+N) complex
multiplications, where N2 is from computing RRR−1

D hhh∗
k, N is

from computing hhhT
k RRR−2

D hhh∗
k. Hence, we can be implied that,

when N is large, the complexity for deriving the preprocessing
vectors might be extreme. Additionally, in wireless commu-
nications especially in SDMA systems where user signatures
are formed by CIRs, the covariance matrix RRRD might be ill-
conditioned and is not invertible. Although the probability is
low, this may happen when two or more user signatures are
highly correlated, or when one or several user signatures or
their linear combination lies in the noise subspace. Therefore,
in this section we investigate the transmitter preprocessing in
reduced-rank subspaces, in order to reduce the complexity
for computing the preprocessing vectors {pppk}, and/or to
circumvent the problem of ill-conditioned covariance matrix.

A. General Theory

The reduced-rank TMPs start with expressing the prepro-
cessing vectors pppk as

pppk = PPP ∗
kp̄ppk, k = 1, 2, . . . , K (22)

where PPP k is a (N × L) matrix, which is referred to as the
processing matrix (preprocessing subspace) for convenience,
while p̄ppk is a L-length vector to be determined based on the
MPDR optimization. It can be shown that, by substituting (22)
into (12) and following the similar approaches for deriving pppk,

2Note that, since in the proposed MPDR-TMP RRRD is only required to be
inverted once for all the MTs even in the full-rank scenario, the complexity of
the proposed MPDR-TMP in full-rank case may still be substantially lower
than that of the TMP based on the singular value decomposition (SVD)
principles [10], where the SVD having a complexity of O

(
(N − 1)3

)
must

be operated in the context of each of the MTs.

we can find the solution to p̄ppk in the L-rank subspace, which
can be expressed as

p̄ppk =
(
PPPT

k RRRDPPP ∗
k

)−1
PPPT

k hhh∗
kβ̄k, k = 1, 2, . . . , K (23)

where β̄k is for achieving the constraint on the transmission
power. According to (7), β̄k is given by

β̄k = 1
/√∥∥∥PPP ∗

k

(
PPPT

k RRRDPPP ∗
k

)−1
PPPT

k hhh∗
k

∥∥∥2

(24)

With the aid of (22), (23) and (24), the SINR observed at
MT k for the reduced-rank TMP can be computed by (18).
Furthermore, the mutual information between xk and y

(k)
D for

the reduced-rank TMP can be obtained from (21).
As shown in (23), instead of inverting a (N × N) matrix

in (14) for the full-rank TMP, the reduced-rank TMP of (23)
inverts a (L×L) matrix. Therfore, for design of reduced-rank
MPDR-TMP, one of the main tasks is to derive a L < N
dimensional preprocessing subspace, so that it can approxi-
mate the N -dimensional original space as closely as possible
or so that the error performance achieved by the reduced-
rank MPDR-TMP can be similar as that achieved by the full-
rank TMP. Below three types of rank-reduction algorithms
are derived and investigated. These reduced-rank MPDR-TMP
algorithms constitute the counterparts of the reduced-rank
detection algorithms that have been widely studied in array
processing and MUD, as seen, e.g., in [16–24] as well as the
references in them. However, we note again that the reduced-
rank TMP has so far received relatively little attention in
literature.

B. Eigenspace: Principal Components

The principal components (PCs) based reduced-rank signal
processing has received wide research and application in array
processing and signal detection [16, 17]. With the PC-based
approach, eigen-decomposition on the auto-correlation matrix
is carried out and a number of principal eigenvectors are
chosen to form a subspace, which is used to approximate the
original space.

In the context of the PC-based reduced-rank MPDR-TMP,
the Hermitian auto-correlation matrix RRRD in (9) can be
expressed with the aid of its eigen-decomposition as3

RRRD = RRR∗
U = ΦΦΦ∗ΛΛΛΦΦΦT =

N∑
n=1

λnφφφ∗
nφφφT

n (25)

where ΦΦΦ∗ = [φφφ∗
1,φφφ

∗
2, · · · ,φφφ∗

N ] is an orthonormal matrix whose
columns consist of the eigenvectors of RRRD, where φφφ∗

n is
the eigenvector corresponding to the eigenvalue λn, ΛΛΛ is a
diagonal matrix containing the eigenvalues, ie.

ΛΛΛ = diag {λ1, λ2, . . . , λN} (26)

Let us assume that the eigenvalues are ordered as λ1 ≥
λ2 ≥ . . . ≥ λN . Then, for a given rank L of the preprocessing
subspace, the processing matrix PPP k in (22) in the context of

3Below we deliberately invoke the MUD-related auto-correlation matrix
RRRU in our analysis, in order to emphasize the fact that the reduced-rank
techniques can be directly based on RRRU , when the uplink and downlink
channels are reciprocal.
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the PC-based reduced-rank MPDR-TMP is constituted by the
first L columns of ΦΦΦ, which can be expressed as

PPP k = PPPL = [φφφ1,φφφ2, . . . ,φφφL] , k = 1, 2, . . . , K (27)

Explicitly, PPP k is independent of the MT index of k and PPP k =
PPPL is hence the same for all the MTs. Consequently, when the
PC-based reduced-rank MPDR-TMP is considered, we only
need to compute the preprocessing subspace PPP k = PPPL once
as well as the inverse operation

(
PPPT

k RRRDPPP ∗
k

)−1
in (23) once,

in order to derive the K preprocessing vectors for the K MTs.
Therefore, it can be implied that the PC-based reduced-rank
MPDR-TMP has a low implementation complexity. However,
as our simulation results in Fig. 7 of Section V shown, unless
the preprocessing subspace has the same rank as the signal
subspace, ie., unless L = K , the downlink SDMA otherwise
conflicts severe MUI and the error performance of the PC-
based reduced-rank MPDR-TMP is much worse than that of
the full-rank MPDR-TMP.

Upon applying (27) into (23) and (22), we can find that the
preprocessing vectors for the PC-based reduced-rank MPDR-
TMP can be expressed as

pppk = PPP ∗
Lp̄ppk = PPP ∗

L

(
N∑

n=1

λnPPPT
Lφφφ∗

nφφφT
nPPP ∗

L

)−1

PPPT
Lhhh∗

kβ̄k

= PPP ∗
LΛΛΛ−1

L PPPT
Lhhh∗

kβ̄k, k = 1, 2, . . . , K (28)

where ΛΛΛ−1
L = diag

{
λ−1

1 , λ−1
2 , . . . , λ−1

L

}
, and β̄k =

1
/√∣∣hhhT

k PPP ∗
LΛΛΛ−2

L PPPT
Lhhh∗

k

∣∣.
C. Eigenspace: Cross-Spectral Metric

The cross-spectral metric (CSM) based technique for
reduced-rank signal detection has been investigated, e.g., in
[16–18, 20–23]. In the context of the CSM-based reduced-
rank MPDR-TMP, the processing matrix PPP k, k = 1, . . . , K
is formed as follows.

For the full-rank MPDR-TMP, the desired power transmit-
ted to the kth MT is given by (20). When applying (25)
of the eigen-representation of the auto-correlation matrix RRRD

into (20), the desired power conveyed to the kth MT can be
expressed as

P (D)
ower(k) = β̄2

k ×
∣∣∣∣∣

N∑
n=1

∣∣hhhT
k φφφ∗

n

∣∣2
λn

∣∣∣∣∣
2

(29)

In principle, given the constraint on the transmission power
and the MPDR criterion, the preprocessing vector, say p̄ppk,
in the preprocessing subspace should be designed so that the
power conveyed to the kth (desired) MT is as high as possible.
This in turn implies that those φφφn’s that are most similar to
the signature hhhk of the kth MT should be chosen to form
the processing matrix PPP k. Hence, given the dimension L of
the preprocessing subspace, the processing matrix PPP k for the
CSM-based reduced-rank MPDR-TMP is constituted by the
L eigenvectors of RRR∗

D, which correspond with the largest L
values of the CSMs defined as∣∣hhhT

k φφφ∗
n

∣∣2 , i = 1, . . . , N (30)

Note that, the difference between the CSM in TMP and that
in MUD, see, e.g. [18, 20–23, 27], is that the CSM in MUD

takes into account the power in the direction of an eigenvector
and is defined as

∣∣hhhT
k φφφ∗

n

∣∣2 /λn. The CSM defined in this way
is capable of resulting in a minimum of the mean-square error
(MSE) for a given rank L of the subspace. By contrast, for our
MPDR-TMP, given the constraint on the transmission power in
terms of pppk, i.e. Power(k), it is straightforward that the better
performance may be achieved, when more transmission power
of P

(D)
ower(k) is conveyed to the kth (desired) MT. Hence, the

definition of (30) is appropriate.
Finally, it can be shown that the kth preprocessing vector

pppk in the CSM-based reduced-rank MPDR-TMP has a similar
form as (28), which can be expressed as

pppk = PPP ∗
kΛΛΛ

−1
k PPPT

k hhh∗
kβ̄k, k = 1, 2, . . . , K (31)

where ΛΛΛ−1
k = diag

{
λ−1

k1 , λ−1
k2 , . . . , λ−1

kL

}
and its L eigenvalues

are in correspondence with the L eigenvectors in PPP k.
When compare the CSM-based reduced-rank MPDR-TMP

with the PC-based reduced-rank MPDR-TMP, it can be seen
that in the CSM-based reduced-rank MPDR-TMP the process-
ing matrix PPP k is formed with considering the power conveyed
to the desired MT. By contrast, the PC-based reduced-rank
MPDR-TMP tries to approximate the auto-correlation ma-
trix RRRD regardless of the power conveyed to each of the
remote MTs. From this point of view and also as shown
by our simulation results in Figs. 7 and 8 of Section V,
the CSM-based reduced-rank MPDR-TMP outperforms the
PC-based reduced-rank MPDR-TMP in terms of their BER
performance. However, in the PC-based reduced-rank MPDR-
TMP the preprocessing subspace, ie. PPP k, is the same for all the
MTs, but in the CSM-based reduced-rank MPDR-TMP every
MT corresponds to a specific PPP k. Hence, the implementation
complexity of the PC-based reduced-rank MPDR-TMP can be
lower than that of the CSM-based reduced-rank MPDR-TMP.

D. Taylor Polynomial Approximation

The processing matrix PPP k (k = 1, . . . , K) in the Taylor
polynomial approximation (TPA) assisted reduced-rank TMP
is derived by first approximating the term of RRR∗−1

D hhhk in (14)
with the aid of the Taylor expansion of the auto-correlation
matrix RRRD. The TPA technique has been originally applied
for deriving the reduced-rank linear detectors for CDMA
systems [15, 24]. Specifically, let λmax be the maximum
eigenvalue of RRR∗

D = RRRU . Let μ be a constant satisfying
0 < μ < 1/λmax. Then, the matrix RRR∗−1

D can be Taylor
expanded as [15, 24]

RRR−1
U = RRR∗−1

D = μ (μRRR∗
D)−1 = μ [III − (III − μRRR∗

D)]−1

= μ

∞∑
n=0

(III − μRRR∗
D)n (32)

Using the first L terms in (32) to approximate RRR∗−1
D , we obtain

RRR∗−1
D ≈ μ

L−1∑
n=0

(III − μRRR∗
D)n (33)

= a0III + a1RRR
∗
D + · · · + aL−1RRR

∗L−1
D (34)

where the coefficients {an} are determined by μ associated
with the expansion of (33). Upon substituting (34) into (14),
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the kth preprocessing vector can be approximately expressed
as

pppk ≈ (a0hhhk + a1RRR
∗
Dhhhk + . . . + aL−1RRR

∗L−1
D hhhk

)∗
β̄k,

k = 1, 2, . . . , K (35)

As shown in (35) there are L number of coefficients that
must be determined, which are depended on the expansion of
(33) as well as the constant μ selected. Furthermore, the choos-
ing of the constant μ depends on the eigen-decomposition of
RRR∗

D. Hence, determining the coefficients {an} in (35) may
result in a high complexity. Additionally, as noted in [28],
the finite order approximations that result from tail-cutting of
infinite order approximations generally do not lead to the best
fit among all approximations of the same order. Hence, instead
of using the approximation as in (35), we form a (N × L)
processing matrix as

PPP k =
[
hhhk,RRR∗

Dhhhk, · · · ,RRR∗L−1
D hhhk

]
=
[
IIIN ,RRR∗

D, · · · ,RRR∗L−1
D

]
(IIIL ⊗ hhhk)

= RRRL (IIIL ⊗ hhhk) , k = 1, 2, . . . , K (36)

where RRRL =
[
IIIN ,RRR∗

D, · · · ,RRR∗L−1
D

]
and ⊗ represents the

Kronecker product [16] operation. With the processing matrix
PPP k, then, the preprocessing vectors pppk for k = 1, 2, . . . , K
can be computed according to (22) and (23).

In [29] a reduced-complexity precoding scheme has been
investigated in the context of the frequency-selective MIMO
channels, where a preprocessing subspace having a similar
structure as (36) is applied. In [29] the preprocessing subspace
has been derived from the extension of the multistage Wiener
filter [21], which is a complicated mathematical framework for
deriving the subspace of (36). Note that, the study in [22, 30]
has shown that the TPA-based reduced-rank MMSE detector
is equivalent to the reduced-rank MMSE detector based on the
multistage Wiener filter [21].

It can be noticed from (36) that derivingPPP k does not depend
on the eigen-analysis. Furthermore, (36) shows that RRRL is the
same for all the MTs. Hence, although PPP k needs to be com-
puted with respect to each of the MTs, the transmitter how-
ever only requires to compute RRRL once. Therfore, the TPA-
based reduced-rank MPDR-TMP may even demand lower
implementation complexity than the CSM-based reduced-
rank MPDR-TMP. Furthermore, since the Taylor polynomial
expansion employs the property that the resulted sequence
converges exponentially to the true value, as the simulation
results in Figs. 9 and 10 shown, the TPA-based reduced-rank
MPDR-TMP is capable of achieving the near full-rank error
performance with a preprocessing subspace having a rank that
may be significantly lower than the rank of the corresponding
signal subspace.

V. PERFORMANCE RESULTS

In this section we provide a range of results in order to
show the performance and characteristics of the MIMO sys-
tems using full- or reduced-rank MPDR-TMPs. Specifically,
the capacity and BER performance of the SDMA downlink
systems are considered. When the capacity is considered, we
assume that the transmitted data symbol xk (k = 1, 2, . . . , K)
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Fig. 1. Comparison of BER versus SNR per bit performance of the SDMA
systems using MPDR, zero-forcing (ZF) and minimum mean-square error
(MMSE) assisted transmitter preprocessing schemes, when communicating
over Rayleigh fading channels. In the simulations a noise-suppression factor
of ρ = 1 was assumed.

obeys the Gaussian distribution. It is also assumed that the
total transmission power maintains constant regardless of the
number of MTs supported, in order to illustrate the effect of
the number of MTs (or the number of receive antennas) on the
achievable capacity. By contrast, when the BER performance
is considered, we assume binary phase-shift keying (BPSK)
baseband modulation, where xk (k = 1, 2, . . . , K) takes
a value of +1 or −1 with equal probability. Furthermore,
when considering the BER performance, we assume that the
transmission energy per bit is constant. Hence, when the
SDMA supports more MTs, higher total transmission power
is required. Additionally, in our simulations we assume that
the channel connecting any of the transmit antennas with any
of the MTs experiences independent flat Rayleigh fading.

In Fig. 1 we compare the BER versus SNR per bit per-
formance of the SDMA systems, when the proposed MPDR-
TMP, zero-forcing TMP (ZF-TMP) [3] or the minimum mean-
square error TMP (MMSE-TMP) [4, 5] is employed. In our
simulations the SDMA system employed N = 10 BS trans-
mitter antennas and the noise-suppression factor seen in (8)
was set to ρ = 1. From the results of Fig. 1 we can observe
that the MPDR-TMP is capable of efficiently suppressing the
downlink MUI; it is capable of achieving the same BER
performance as the MMSE-TMP, and both the MPDR-TMP
and MMSE-TMP outperform the ZF-TMP, especially when
the number of MTs supported is high. Note that, as in MUD,
it is not hard to prove that the MPDR-TMP and MMSE-TMP
are equivalent in term of the achievable error rate performance,
although they are derived based on different optimization
principles. From the results of Fig. 1 we can observe that,
there is a trade-off between the achievable BER and the
number of MTs supported for all the three TMP schemes. The
BER performance becomes worse when the number of MTs
supported increases. The reason for this observation is that the
diversity order decreases, when the number of MTs supported
increases, as the BS transmitter has to invest a corresponding
degrees-of-freedom for MUI suppression.
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Full-rank MPDR-TMP: N=10, =1, total Tx power=constant
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Fig. 2. Full-rank: Capacity versus SNR performance of the MPDR-
TMP assisted SDMA using N = 10 BS transmit antennas and the noise-
suppression factor of ρ = 1, when communicating over Rayleigh fading
channels and assuming that the total transmission power is constant regardless
of the number of MTs supported.

Full-rank MPDR-TMP: N=20, =1, total Tx power=constant
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Fig. 3. Full-rank: Capacity versus number of MTs (K) performance of
the MPDR-TMP assisted SDMA using N = 20 BS transmit antennas and
the noise-suppression factor of ρ = 1, when communicating over Rayleigh
fading channels and assuming that the total transmission power is constant
regardless of the number of MTs supported.

Fig. 2 shows the capacity of the SDMA system using
N = 10 BS transmit antennas and supporting K = 1, 2, 5, 10
MTs, when the full-rank MPDR-TMP is employed. Note again
that, in our simulations for capacity, we assumed that the total
transmission power and hence the total SNR did not scale with
the number of MTs supported. In other words, a given SNR
value seen in Fig. 2 retains constant no matter how many MTs
are supported. The results of Fig. 2 show that the capacity
increases, when the total transmission power or the total SNR
increases. For the four K values considered in Fig. 2, the
capacity is higher, when the K value is higher, ie., when
the number of MTs supported is higher. However, this is not
always correct, as shown in Fig. 3

In Fig. 3 the capacity of the SDMA system using N = 20
BS transmit antennas is illustrated against the number of MTs,
when the SNR is 0dB, 10dB, 20dB or 30dB. From the results

Full-rank MPDR-TMP: N=20,SNR=30dB , total Tx power=constant
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Fig. 4. Full-rank: Capacity versus noise-suppression factor (ρ) performance
of the MPDR-TMP assisted SDMA using N = 20 BS transmit antennas,
when communicating over Rayleigh fading channels and assuming that
the total transmission power is constant regardless of the number of MTs
supported.

of Fig. 3 we can have the following observations. Firstly,
for a given SNR value, the capacity scales near-linearly with
the number of MTs, when the number of MTs is relatively
low. This observation is explicit, when the SNR value is
high, such as when SNR=20dB or 30dB. Secondly, for a
given total SNR especially when this SNR value is relatively
high, there exists an optimum number of MTs, which results
in the highest capacity of the SDMA system. As seen in
Fig. 3, after the optimum point, the capacity of the SDMA
system decreases when the number of MTs supported further
increases. Furthermore, as shown in Fig. 3, when the SNR
value is higher, the linear increasing range of capacity with
K is also bigger. The reason for the SDMA system using
MPDR-TMP to have the above-observed characteristics can
be explained as follows. Given the total transmission power
or a total SNR, the SDMA system’s capacity increases with
the number of MTs or receive antennas [31]. However, when
the SDMA using MPDR-TMP supports more MTs, the power
must be distributed to more MTs, resulting in that the SNR per
MT decreases. In this contribution we assumed that the power
was evenly distributed to the MTs, which is not optimum
according to the information theory [26, 31]. Additionally,
when there are more MTs, each MT conflicts higher MUI,
which results in that the SNR per MT further decreases.
Therefore, the SDMA system’s capacity decreases due to the
decrease of the SNR per MT and to the non-ideal power
assignment. Consequently, the above-mentioned positive and
negative effects on the capacity result in that the SDMA
system using MPDR-TMP has the capacity curves as shown
in Fig. 3.

Fig.4 illustrates the effect of the noise-suppression factor
ρ on the capacity of the SDMA using full-rank MPDR-TMP,
when the BS employs N = 20 transmit antennas and the
total SNR is 30dB. From the results of Fig.4 we can observe
that the optimum value of the noise-suppression factor is
around ρ = 1 (0 dB). Therefore, in our following simulations,
we mainly used ρ = 1. Additionally, it can be seen from
Fig.4 that the capacity of the SDMA system is not highly
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Fig. 5. Reduced-rank: Capacity versus rank L performance of the
MPDR-TMP assisted SDMA using various rank reduction schemes, when
communicating over Rayleigh fading channels and assuming that the total
transmission power is constant regardless of the number of MTs supported.
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Fig. 6. Reduced-rank (TPA): Capacity versus number of MTs (K)
performance of the MPDR-TMP assisted SDMA using N = 20 BS transmit
antennas, when communicating over Rayleigh fading channels and assuming
that the transmission power is constant regardless of the number of MTs
supported.

sensitive to the varying of the noise-suppression factor in
the preprocessing matrix (vectors). This observation in turn
implies that the error and capacity performance of the SDMA
system using MPDR-TMP is robust to the estimation error of
the noise variance. Furthermore, it can be implied that, in a
channel reciprocal SDMA system, when the noise powers of
both the uplink and downlink is not significantly different, all
the requirements, including the auto-correlation matrix, the
subspace for reduced-rank preprocessing, etc., for downlink
preprocessing may be directly extracted from the uplink.

Having shown the characteristic and performance of the
SDMA systems using full-rank MPDR-TMP, below we pro-
vide the results for the SDMA systems using reduced-rank
MPDR-TMP. Fig. 5 shows the achievable capacity versus
the rank L of the preprocessing subspace for the SDMA

systems using the three types of reduced-rank MPDR-TMPs
considered in Section IV. Specifically, the two best points
seen in Fig. 3, i.e., the points corresponding to (SNR=20dB,
K = 15) and (SNR=30dB, K = 17), were considered.
From Fig. 5 we can see that both the PC- and CSM-based
rank-reduction schemes are capable of reaching the full-rank
capacity regardless of the SNR value, provided that the rank
of the preprocessing subspace, ie. PPP k, reaches the number of
MTs or the rank of the signal subspace. However, when the
rank of the preprocessing subspace is lower than the number of
MTs, there is a significant loss of capacity in comparison with
the full-rank MPDR-TMP. By contrast, the achievable capacity
of the TPA-based reduced-rank MPDR-TMP seems depends
on the SNR value. As shown in Fig. 5, when SNR=20dB,
the TPA-based scheme is capable of achieving a capacity that
is very close to the full-rank MPDR-TMP. However, when
SNR=30dB, the achieved capacity is lower than that achieved
by the full-rank MPDR-TMP. When comparing the capacity
achieved by the TPA-based scheme with that achieved by the
PC- and CSM-based schemes, it can be shown that, for an
available rank value, the TPA-based scheme is capable of
reaching a significantly higher capacity than both the PC-
and CSM-based schemes. Furthermore, Fig. 5 shows that
the CSM-based scheme outperforms the PC-based scheme in
terms of the capacity of a given rank.

Fig.5 also implies that, for any given K and SNR values,
both the PC- and CSM-based schemes are capable of achiev-
ing the full-rank capacity. However, this is not always correct
for the TPA-based MPDR-TMP. Fig. 6 shows the capacity of
the TPA-based reduced-rank MPDR-TMP versus the number
of MTs supported. In our simulations we assumed that the
preprocessing subspace always used an optimum rank, which
is usually very low. When comparing the results in Fig. 6 with
that in Fig. 3 and Fig.5, we find that the TPA-based scheme
reaches its highest capacity earlier than the full-rank scheme
and also than the PC- and CSM-based schemes. Specifically,
for SNR=30dB, the TPA-based scheme reaches its highest
capacity when the number of MTs is K = 13 or 14. By
contrast, the other schemes reach their highest capacity, when
the number of MTs is K = 17, as seen in Fig. 3 and Fig.5.
Furthermore, Fig. 6 shows that the TPA-based scheme is
capable of reaching the full-rank capacity, when the SNR is
relatively low (<20dB), while there is a gap from the full-rank
capacity, when the SNR is relatively high, such as SNR=30dB.

Finally, in Figs. 7 - 10 the BER performance of the
three types of reduced-rank MPDR-TMPs is investigated.
The parameters used in our simulations are shown in the
corresponding figures. From the results of Figs. 7 - 10, we
may have the following observations.

• For both the PC- and CSM-based reduced-rank MPDR-
TMPs, the BER performance improves, when increasing
the rank, L, of the preprocessing subspace, provided that
the rank L is lower than that of the signal subspace, which
is the number of MTs supported. When the rank L of
the preprocessing subspace reaches the rank of the signal
subspace, both reduced-rank MPDR-TMPs are capable of
achieving the BER performance of the full-rank MPDR-
TMP.

• For both the PC- and CSM-based schemes, when the rank
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Reduced-rank MPDR-TMP (PC): N=20, K =10, =1
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Fig. 7. Reduced-rank (PC): BER versus SNR per bit performance of
the MPDR-TMP assisted SDMA using N = 20 BS transmit antennas and
supporting K = 10 downlink MTs, when communicating over Rayleigh
fading channels.

Reduced-rank MPDR-TMP (CSM): N=20, K =10, =1
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Fig. 8. Reduced-rank (CSM): BER versus SNR per bit performance of
the MPDR-TMP assisted SDMA using N = 20 BS transmit antennas and
supporting K = 10 downlink MTs, when communicating over Rayleigh
fading channels.

L of the preprocessing subspace is lower than that of the
signal subspace, BER error floors are observed.

• It can be observed that, for any given rank L (< K)
of the preprocessing subspace, the CSM-based reduced-
rank MPDR-TMP outperforms the PC-based reduced-
rank MPDR-TMP.

• Finally, the TPA-based reduced-rank MPDR-TMP out-
performs both the PC- and CSM-based reduced-rank
MPDR-TMPs and achieves the best BER performance
for a given rank L of the preprocessing subspace. From
the results of Figs.9 and 10, we can observe that the TPA-
based reduced-rank MPDR-TMP is capable of achieving
the BER performance very close to the full-rank BER
performance with a rank L that is significantly lower than
the rank of the signal subspace. Specifically, as shown
in Figs.9 and 10, when the target BER is in the range

Reduced-rank MPDR-TMP (TPA): N=20, K =10, =1
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Fig. 9. Reduced-rank (TPA): BER versus SNR per bit performance of
the MPDR-TMP assisted SDMA using N = 20 BS transmit antennas and
supporting K = 10 downlink MTs, when communicating over Rayleigh
fading channels.

Reduced-rank MPDR-TMP (TPA): N=30, K =20, =1
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Fig. 10. Reduced-rank (TPA): BER versus SNR per bit performance of
the MPDR-TMP assisted SDMA using N = 30 BS transmit antennas and
supporting K = 20 downlink MTs, when communicating over Rayleigh
fading channels.

of (10−3, 10−2), a rank of L = 4 or 5 is sufficient for
achieving the full-rank BER performance, even the signal
subspace has a rank of K = 10 or 20, respectively.

VI. CONCLUSIONS

In this contribution a TMP scheme based on the MPDR
principles has been proposed for the downlink multiuser
MIMO systems. Its performance has been investigated in
terms of the achievable capacity and BER. Our analysis and
performance results show that in a MIMO system using the
proposed MPDR-TMP the achievable capacity is capable of
scaling linearly with the number of receive antennas (or the
number of MTs supported), when the number of receive
antennas is lower than the number of BS transmit antennas
and provided that the total transmission power is sufficiently
high. The MIMO systems using either the PC- or CSM-based
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reduced-rank MPDR-TMP are capable of reaching the full-
rank capacity, provided that the preprocessing subspace has
the same rank as the signal subspace. The MIMO systems
using the TPA-based reduced-rank MPDR-TMP can reach a
very high capacity with a rank which may be significantly
lower than that of the signal subspace. However, when the
total transmission power is high, the TPA-based technique
may not reach the full-rank capacity. When considering the
error performance, our simulation results show that the TPA-
based scheme is the best among the rank-reduction techniques
considered. It is capable of achieving the near full-rank BER
performance with a preprocessing subspace rank, which is
significantly lower than the rank of the signal subspace.
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