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Abstract— Recent works show conflicting results: network ca-
pacity may increase or decrease with higher transmission power
under different scenarios. In this work, we want to understand
this paradox. Specifically, we address the following questions:
(1)Theoretically, should we increase or decrease transmission
power to maximize network capacity? (2) Theoretically, how
much network capacity gain can we achieve by power control? (3)
Under realistic situations, how do power control, link scheduling
and routing interact with each other? Under which scenarios
can we expect a large capacity gain by using higher transmis-
sion power? To answer these questions, firstly, we prove that
the optimal network capacity is a non-decreasing function of
transmission power. Secondly, we prove that the optimal network
capacity can be increased unlimitedly by higher transmission
power in some network configurations. However, when nodes
are distributed uniformly, the gain of optimal network capacity
by higher transmission power is upper-bounded by a positive
constant. Thirdly, we discuss why network capacity in practice
may increase or decrease with higher transmission power under
different scenarios using carrier sensing and the minimum hop-
count routing. Extensive simulations are carried out to verify our
analysis.

Keywords:Network Capacity, Power Control, Routing, Link
Scheduling

I. Introduction

Wireless networks have been actively developed for provid-
ing ubiquitous network access in the past decades. Recently,
wireless mesh networks (WMNs) are considered as a key
solution to extend the coverage of the Internet, especiallyin
areas where wired networks are expensive to deploy, e.g., in
rural areas. Therefore, improving network capacity is one of
the most important issues in the research of wireless networks.
Roughly speaking, network capacity is the total end-to-end
throughputs, which we will carefully define in Section II.
Various techniques ranging from physical layer to network
layer have been proposed for this purpose, such as MIMO
[1], multi-channel multi-radio [2], high-throughput routing
[25]–[28], etc. One way to increase network capacity is by
leveraging transmission power. This is effective especially in
WMNs where stationary mesh routers usually have sufficient
power supply, for example, they can share power supply with
street-lamps as cited in [3].

In this paper, we study the impact of power control on the
capacity of wireless networks. In particular, we consider wire-
less networks where nodes are stationary and are connected in
ad-hoc manner. Under this network setting, power control can

significantly affect network capacity via the interactionswith
the link scheduling and the routing algorithms.

First, many link scheduling algorithms in wireless networks
nowadays implement carrier sensing to avoid transmission
collisions due to interferences1. That is, transmitters sense
channel states before transmissions and they can transmit
only when the sensed noise strength is below carrier sensing
threshold. Power control has a tight relation with carrier
sensing. When transmission power increases, the sensed noise
strength, mainly due to interference, is more likely beyond
carrier sensing threshold, which may reduce spatial reuse,
i.e., the number of simultaneous transmissions. Since network
capacity decreases with lower spatial reuse, higher transmis-
sion power may decrease network capacity. Second, power
control has a tight relation with routing. On the one hand,
higher transmission power may reduce the number of hops or
transmissions that a source needs to reach its destination for
a longer transmission range. Since network capacity increases
with fewer number of transmissions for an application-layer
packet, higher transmission power may increase network ca-
pacity. On the other hand, because longer transmission range
reduces spatial reuse (see Section II), higher transmission
power can decrease network capacity. Considering perfect
link scheduling, authors in [4] argued that network capacity
decreases with higher transmission power under the minimum
hop-count routing. However, some recent works showed that
network capacity actually increases with higher transmission
power in some scenarios [5] [6].

In this paper, we systematically characterize the impact
of power control on network capacity and provide a deep
understanding on the interestingparadox: why network capac-
ity may increase or decrease with higher transmission power
in different scenarios? Specifically, we address the following
questions:

1) Theoretically, should we increase or decrease transmis-
sion power to maximize network capacity?

2) Theoretically, how much network capacity gain can we
achieve by power control?

3) Under realistic situations, how do power control, link
scheduling and routing interact with each other? Under
which scenarios can we expect a large capacity gain

1We do not consider CDMA at the moment, which applies some other
techniques for interference cancellation.
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using higher transmission power?

The contributions of this work are as follows:

• We prove that theoptimal network capacity is anon-
decreasing function of transmission power when the
network is using the optimal link scheduling and routing.

• We prove that under some specific configurations, the
optimal network capacity can be increased unlimitedly
by higher transmission power. However, when nodes are
distributed uniformly over a space, the gain of the optimal
network capacity by higher transmission power is upper-
bounded by some positive constant. To the best of our
knowledge, we are the first to prove this property.

• We provide a qualitative analysis on the interactions of
power control, carrier sensing and the minimum hop-
count routing. The later two are the key features com-
monly used in the link scheduling and routing algorithms
nowadays. Through this analysis, we can explain the
paradoxical effects of power control on increasing net-
work capacity. The essential reason is that carrier sensing
and the minimum hop-count routing are not optimal. We
also provide a taxonomy of different scenarios where
network capacity (may) increase or decrease with higher
transmission power.

• Besides the theoretical contributions, our work offers
some important implications to network designers. First,
one can redesign the link scheduling and routing algo-
rithms so as to increase network capacity under high
transmission power. Second, we observe from simulation
that high transmission power can significantly increase
network capacity in the networks whose diameters are
within a few hops, which can find applications in small
WMNs.

The rest of the paper is organized as follows. In Section II,
we present a model of wireless networks and define perfor-
mance measures. In Section III, we prove the theoretical net-
work capacity gain of power control. In Section IV, we discuss
why network capacity in practice may increase or decrease
with higher transmission power, considering the interactions
of power control, carrier sensing and the minimum hop-count
routing. In Section V, we study how network capacity varies
with transmission power in different scenarios via simulation.
In Section VI, we present related works. In Section VII we
conclude our paper.

II. System Model

In this section, we first present a physical model commonly
used in the research of wireless networks [7]. Then we define
performance measures and some notations used throughout
this paper.

In this paper, we consider astatic network of n nodes
which are located on a 2D plane. Nodes are connected in
ad-hoc manner. We use(A,B) to denote a link transmitting
from nodeA to nodeB, and use|A − B| to denote the
Euclidean distance betweenA andB. We make the following
assumptions for the wireless physical model:1) Common
transmission power.All nodes use the same transmission
power. This assumption simplifies our discussions. Actually,

the authors of the COMPOW (COMmon POWer) protocol
showed that per-node (or per-link) power control can only
improve network capacity marginally thancommon power
control [4]. 2) Single ideal channel.All nodes transmit on
an ideal channel without channel fading. This assumption
simplifies our analysis so that we can focus on understanding
this paradox. In practice, there are some physical technologies
such as MIMO which can greatly mitigate channel fading
by using smart antennas [1].3) Single transmission rate.All
nodes transmit at the same date rate ofW bps. 4) Correct
packet reception based on signal-to-noise (SNR) threshold.

Let Pt be the transmission power. For a linke, the received
signal strengthPr at e’s receiver is

Pr =
cpPt

dα
, (1)

wherecp is a constant determined by some physical parame-
ters, e.g. antenna height,α is the path loss exponent, varying
from 2 to 6 depending on the environment [9], andd is the
distance frome’s transmitter to its receiver (we call it the
lengthof link e). We assume allcp’s are equal. Thus, by letting
Pt denotecpPt, we can simplify Eq. (1) as

Pr =
Pt

dα
. (2)

For link e, its signal-to-noise (SNR) is defined at its receiver
side, which is

SNR =
Pr

∑

i6=e Ii +N0
, (3)

where Pr is the signal strength ate’s receiver, Ii is the
interference strength from some other transmitting linki to
e, andN0 is the white noise.Ii is also calculated by Eq.(2)
except thatd here is the distance fromi’s transmitter toe’s
receiver. The accumulative interference strength andN0 are
treated asnoiseby e’s receiver. Note thatN0 is usually small
comparing with interference strength so that we can ignore it.

To successfully receive a packet, the following two condi-
tions should both be satisfied:

Pr ≥ Hr, (4)

and

SNR ≥ β, (5)

whereHr is the receiving power threshold andβ is the SNR
threshold for decoding packets correctly.

From the above equations, one can deriver, the maximum
distance between a transmitter and a receiver for successful
packet receptions (the maximum is achieved when interference
is zero),

r = min

{

(

Pt

N0β

)1/α

,

(

Pt

Hr

)1/α
}

. (6)

We refer tor as transmission range. Two nodes can form a
link when they are within a distance ofr.

The interference rangerI of a link e is defined as the
minimum distance between an interfering transmitter ande’s
receiver so thate’s transmissions are not corrupted. Letd be
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the length ofe. From Eq. (2)-(3), and ignoringN0, we have

Pt/d
α

Pt/rαI
= β,

which yields

rI = β1/α · d (7)

We observe thatrI is a constant times ofd and is inde-
pendent of transmission power. Another observation is that
the silence areafor successful transmissions of a link is
proportional to the link length. This suggests that spatialreuse,
i.e. the number of simultaneous transmissions, will decrease
with the lengths of links.

Next, we define network capacity according to [8]2, which
is from the perspective of end-users. We consider a network
G and a set of flowsF . Each flow is associated with a rate.
The rate of a flow is the average end-to-end throughput of the
flow. We use a vector to denote the rates of all flows, named
flow rate vector. Capacity regiondefines all flow rate vectors
that can besupportedby the network.

We definetraffic patternas the ratio of the rates of all flows,
which can be represented in the vector form:(v1, v2, ..., v|F |),
wherev21 + v22 + ... + v2|F | = 1. Given the traffic pattern, we
can obtain a corresponding flow rate vectora ·(v1, v2, ..., v|F |)
by a scaling factora. The network capacityunder the traffic
pattern of(v1, v2, ..., v|F |) is defined as

max
a>0







a ·
∑

i=1...|F |
vi







, (8)

, which is the maximum total rates of flows supported by the
network.

We illustrate the above definitions by an example. There
are four nodes (A, B, C and D) and two flows (f1 from
A to C and f2 from B to D) in the network of Fig. 1. So
there are three links ((A,C), (B,C) and (C,D)) contending
the channel. Letλ1 and λ2 be the rates of the two flows,
respectively. We can easily calculate the capacity region of
(λ1, λ2) by the constraintλ1 + 2λ2 ≤ W . Suppose the traffic
pattern is( 1√

2
, 1√

2
), then the network capacity is23W when

λ1 = λ2 = 1
3W .

� �
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Fig. 1. Illustration of the definition of network capacity

Equivalently, we can calculate network capacity as follows.
Given the traffic pattern(v1, v2, ..., v|F |), we generate the
corresponding traffic workload vectorb · (v1, v2, ..., v|F |) by
a large scaling factorb (b · vi is the traffic workload assigned

2We adopt this definition of network capacity because it isolates the capacity
definition from fairness concerns

to the ith flow). Suppose that the network delivers all traffic
workloads in timeT , then the network capacity is

b ·∑i=1...|F | vi

T
. (9)

Finally, we define the network capacity gain of power
control. Given the wireless network and the traffic pattern,
let CP (R,S) be the network capacity whenPt = P under
the routing algorithmR and the link scheduling algorithmS.
R defines the routes of each flow, andS defines whether a
link can transmit at any timet. We useC∗

P (R
∗, S∗) or C∗

P to
denote the optimal network capacity whenPt = P under the
optimal routing algorithmR∗ and the optimal link scheduling
algorithmS∗.

Let P andKP (K > 1) be the minimal and the maximal
transmission power, respectively. Note thatP should guarantee
network connectivity; Otherwise, network capacity is meaning-
less since some flows may not be able to find routes to reach
their destinations. We definenetwork capacity gain of power
control (GK(R,S)) by using the routing algorithmR and the
link scheduling algorithmS as

GK(R,S) =
CKP (R,S)

CP (R,S)
. (10)

Furthermore, we define thetheoretical network capacity gain
of power control(G∗

K), i.e.,

G∗
K =

C∗
KP

C∗
P

. (11)

Unless we state otherwise, we will useK to denote the ratio of
the maximal transmission power to the minimal transmission
power in this paper.

III. Theoretical network capacity gain of power control

In this section, we derive the theoretical capacity gain of
power control based on the information-theoretic perspective.
In order to derive the optimal network capacity, we assume that
nodes transmit in a synchronous time-slotted mode and each
transmission occupies one time slot. From now on we will use
the phrase”with high probability” abbreviated as”whp” to
stand for”with probability approaching1 asn → ∞” where
n is the number of nodes in the network.

The following theorem states the relationship between the
optimal network capacity and transmission power.

Theorem 1: Given the network topology and the traffic pat-
tern, the optimal network capacity is a non-decreasing func-
tion of the common transmission power. Therefore,G∗

K ≥ 1.
Proof: Let S∗

P (t) denote the set of transmitting links at time
slot t whenPt = P . For any linke ∈ S∗

P (t), its SNR satisfies

Pr
∑

i∈SP (t),i6=e Ii +N0
≥ β, (12)

wherePr is the signal strength ofe andIi is the interference
strength from some other transmitting linki to e. Now we set
Pt = KP (K > 1) and use thesameroutes and thesamelink
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scheduling sequence asPt = P . We can see that at time slot
t, e’s SNR is

KPr
∑

i∈S∗
P
(t),i6=eKIi +N0

>
Pr

∑

i∈SP (t),i6=e Ii +N0
≥ β, (13)

where we use the fact thatPr and Ii are proportional toPt.
So S∗

P (t) can be scheduled att whenPt = KP for any t.
SinceR∗ andS∗ are optimal routing and link scheduling, we
haveC∗

KP ≥ C∗
P by optimality.

Remarks: The theorem seems counter intuitive but is easy to
understand. Basically, given a set of simultaneous links, SNR
does not decrease with higher transmission power because
both signal strength and interference strength increase at
the same ratio. Network capacity can be further improved
if we can find better routes under higher transmission
power. Therefore, theoretically, it is desirable to use higher
transmission power to increase network capacity.

An interesting question is how much network capacity gain
we can achieve by using higher transmission power. To answer
this question, let us analyze it based on the information-
theoretic perspective [7]. Without loss of generality, we scale
space and suppose thatn nodes are located in a disc of unit
area.

Theorem 2: In general,G∗
K can be unbounded whenn → ∞.

Proof: We prove it by constructing a specific network. There
are2m+1 vertical links each with a length ofd. The horizontal
distance between any two adjacent vertical links is2d. Fig. 2
illustrates five vertical links where (A1, A2) is the middle
link of the network.A3 evenly separates the line betweenA1

andA2. Also, there are two nodes evenly separating the line
between any two horizontally neighboring nodes. So there are
totally n = 12m + 3 nodes in the network. There is a flow
along each vertical link from the top node to the bottom node.
Let α = 4 andβ = 10 in the physical model.

The maximal transmission powerKP is set large enough
that the transmission ranger is much larger thand andN0

can be neglected. Thus, the2m+1 vertical links can transmit
simultaneously for anym. To see this, we can check the
SNR of the middle link (A1, A2) which suffers the most
interference, i.e.,

SNR(A1,A2) ≥
KP
d4

2 ·∑m
i=1

KP

(
√

d2+(2id)2)4

.

(14)

SNR(A1,A2) ≈ 11 > β whenm → ∞. Therefore,C∗
KP is

(2m+1)W or (16n+ 1
2 )W . The minimal transmission power

P is set so thatd > r > 2
3d. Thus all flows have to go through

A1, A3 andA2 to reach their destinations. For example, the
route fromE1 to E2 is throughC1, A1, A3 A2 andC2. SoC∗

P

is at most12W since(A1, A3) and(A3, A2) are the bottleneck
links for all flows. Therefore,G∗

K is at least(13n+ 1), which
is unbounded whenn → ∞.
Remarks: The above theorem shows that network capacity can
be increased unlimitedly by using higher transmission power
in some network configurations.

. . . . . .d

2d

A1

A2

B1

B2

C1

C2

D1

D2

E1

E2

A3

Fig. 2. A network having unboundedG∗

K

However, nodes placement is approximately random in
many real networks. We will show thatG∗

K is upper-bounded
by a constantwhpfor networks with uniform node distribution.
Before we finally prove this result, we have the following
lemmas. We first cite a lemma which was proved in [7].

Lemma 1: For any two simultaneous links(A,B) and
(C,D), we have|B − D| ≥ ∆

2 (|A − B| + |C − D|), where
∆ = β1/α − 1.
Remarks: From this lemma, if we draw a disc for each link
where the center of the disc is the link’s receiver and the
radius is ∆

2 times the link length, all such discs are disjoint.
Note that∆ > 0 because we usually haveβ > 1 in practice.

Lemma 2: Consider a set of simultaneously transmitting links
where the length of any link is at leastd. Given a region
whose diameter is2R, the number of links intersecting the
region is upper-bounded by1∆4 (4(∆+1)Rd +∆+2)2, where
∆ = β1/α − 1.
Proof: See Appendix A-1.

We definerc as thecritical transmission range for network

connectivitywhp. From [7], we know thatrc =
√

logn+kn

πn

for n nodes uniformly located in a disc of unit area, where
kn → ∞ asn → ∞.

Lemma 3: Assume transmission power is sufficiently large so
that r > 4rc. For a network with uniform node distribution,
there exists a route between any two nodesA and B which
satisfies the following conditions whp: (a) for any relay link
on the route, its length is smaller than or equal to4rc; (b)
the vertical distance from any relay node to the straight-line
segment of(A,B) is at most rc; (c) the number of hops
between any two relay nodesa1 and a2 is not more than
|a1−a2|

2rc
+ 1.

Proof: See Appendix A-2.
Remarks: Intuitively, the lemma shows that there exists a
route which can ”approximate” the straight-line segment
of any two nodeswhp for a network with uniform node
distribution.

Theorem 3: Assumeα > 2 and transmission power is suf-
ficiently large so thatr > 4rc. For a network with uniform
node distribution,G∗

K is bounded by a constantc whp, where
c is not depending onK or traffic pattern.
Proof: Let P andKP (K > 1) be the minimal and maximal
transmission power, respectively. LetS∗

KP (t) be the set of
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simultaneously transmitting links at time slott when Pt =
KP . To prove this theorem, it is sufficient to prove that for
any t we can schedule the traffic inS∗

KP (t) in at mostc time
slots whenPt = P . By optimality, we haveG∗

K ≤ c. We will
construct suchc.

To avoid confusion here, we use”link” to denote a link
when Pt = KP and use”sublink” to denote a link when
Pt = P . Note that we construct all sublinks from their
corresponding links in this proof according to Lemma 3. That
is, supposeP is sufficiently large so thatr > 4rc, we can find
the relay sublinkswhich satisfy the conditions of Lemma 3
for each link inS∗

KP (t) whp whenPt = P .
First, we will show that such a sublink is interfered by at

most c0 sublinks, wherec0 is a constant not depending on
K or traffic pattern. Note that we only consider the links in
S∗
KP (t) with a length larger than or equal torc here, since we

can schedule the links inS∗
KP (t) with a length smaller than

rc using another time slot.
We consider some relay sublink(A,B). In the preparatory

step, we count the number of sublinks intersecting the annulus
U(i) of all points lying within a distance betweenirc and
(i + 1)rc from B, wherei ≥ m (m is a constant which we
will determine later). We evenly divideU(i) into ⌈2π(i+1)⌉
sectors, each of which has a central angle of at most1

i+1 .
Consider such a sectorS. It is easy to see that its diameter
is not more than2rc. So we can draw a disc of radius2rc,
namedS′, to coverS. From Lemma 3, a relay sublink deviates
from its corresponding link by a distance of not more than
rc. Therefore, if a sublink intersectsS′, the shortest distance
between its corresponding link andS′ is at leastrc. Fig. 3
illustrates the worst case for a link (denoted by the directional
dashed line) whose sublinks intersectS′, where the link should
at least intersect a disc of radius3rc. Since we consider the
links with a length not less thanrc, from Lemma 2, the
number of links whose sublinks intersectS′ is upper-bounded
by 1

∆4 (4(∆ + 1)3rcrc
+∆+ 2)2 = 1

∆4 (13∆ + 14)2.
A sublink cannot intersectS′ if the shortest distance be-

tween its transmitter (or receiver) andS′ is larger than4rc,
since its length is not more than4rc according to Lemma 3.
Therefore, for any link,the number of its corresponding
sublinks intersectingS′ is upper-bounded by2(2+4)rc

2rc
+1 = 7.

�

	
�

��
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Fig. 3. Illustration of the worst case for a link whose sublinks can intersect
S′

From the above results, the number of sublinks intersecting
the annulusU(i) is upper-bounded by⌈2π(i+1)⌉ · 1

∆4 (13∆+

14)2 ·7 < c1(i+2), wherec1 = 14π
∆4 (13∆+14)2. Besides, for

a sublink intersectingU(i), the distance from its transmitter to
B is not less than(i− 4)rc. As a result, the total interference
to B contributed by the sublinks intersectingU(i) is upper-
bounded byc1(i+ 2) · P

((i−4)rc)α
.

Consider the discC(B,mrc) of all points lying within a
distancemrc from B. Suppose thatno simultaneoustrans-
missions of the sublinks intersectingC(B,mrc) are allowed,
the SNR of(A,B) is lower-bounded by

P
(4rc)α

∑∞
i=m c1(i + 2) · P

((i−4)rc)α
+N0

=

P
(4rc)αN0

( 6
α−1m

1−α + 1
α−2m

2−α) · c1P
rα
c
N0

+ 1
. (15)

We see that the denominator of the last term above approaches
1 when m → ∞ for α > 2 (In practice, we usually have
α > 2 [9]. And α = 2 corresponds to the free-space path loss
model). SupposeP is sufficiently large so thatr > 4rc, then
we have P

(4rc)αN0

> β. So there must exist some constantm
making Eq. (15) larger than or equal toβ. Clearly,m only
depends onc1. Therefore,(A,B) is only interfered by the
sublinks intersectingC(B,mrc). So the number of sublinks
interfering(A,B) is upper-bounded by

c0 =
1

∆4
(4(∆+1)

(m+ 1)rc
rc

+∆+2)2 ·(2(m+4)rc
2rc

+1)

=
m+ 5

∆4
((4m+ 5)∆+ 4m+ 6)2, (16)

following the similar arguments above. Note thatc0 is not
depending onK or traffic pattern.

Second, we can consider each sublink as avertex. If a
sublink is not interfered by some other sublink, they are
assigned by differentcolors. From the well-known result of
vertex coloring in graph theory, we know that each sublink
can be scheduled at least once in everyc0 + 1 slots to finish
the traffic ofS∗

KP (t).
Finally, consider the links inS∗

KP (t) with its length smaller
thanrc, we havec = c0 + 2, wherec is not depending onK
or traffic pattern.
Remarks: First, the assumption of ”the transmission power is
sufficiently large” is necessary forG∗

K to be upper-bounded.
We illustrate it by an example. Consider there is one flow
transmitting fromA to B in a linear topology. Suppose there
is a direct communication betweenA andB whenPt = KP .
So C∗

KP = W . Suppose there arem hops fromA to B
and each hop distance is exactlyr when Pt = P , wherer
is the transmission range andr = ( P

N0β
)1/α (theoretically,

we can assumeHr is arbitrarily small). Obviously, only
one hop can transmit successfully at a time to satisfy the
SNR requirement. SoC∗

P = W
m . ThereforeG∗

K = m which
is unbounded whenm → ∞. Second, the assumption of
”uniform node distribution” is not necessary forG∗

K to be
upper-bounded. Actually, we can derive the same result in
Theorem 3 if Lemma 3 holds for some other random node
distribution, or more generally, if the route between any two
nodes can ”approximate” the straight line segment of them.
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In summary, the optimal network capacity is anon-
decreasingfunction of transmission power. Under some spe-
cific configurations, the optimal network capacity can be
increased unlimitedly by higher transmission power. However,
when nodes are distributed uniformly over a space, the gain
of optimal network capacity by higher transmission power is
upper-bounded by some positive constantwhp.

IV. Practical Network Capacity Gain of Power Control

In the previous section we see that network capacity is
maximized under the settings of maximal transmission power,
optimal routing and link scheduling. However, the latter two
are NP-hard problems [10] [11]. In this section, we examine
GK by using carrier sensing and the minimum hop-count
routing, which are the key features commonly used in the link
scheduling and routing algorithms nowadays.

First, we discuss carrier sensing. To avoid collisions during
transmissions, many current solutions require transmitters to
sense channel before transmissions. A transmitter can transmit
only when

Ps ≤ Hs, (17)

where Ps is the noise strength sensed at transmitter side
andHs is carrier sensing threshold. Assume the network is
symmetric, that is,Ps at transmitter side is equal to

∑

Ii+N0

at receiver side (Note that the assumption is often invalid
in practice). By settingHs = Pr

β , one can guarantee that
SNR ≥ β [12]. However, it is difficult in practice for a
transmitter to know itsPr at receiver side. To circumvent this
problem, we can conservatively estimatePr by Hr. So we
have

Hs =
Hr

β
. (18)

Hs in current settings is more or less this value, e.g. Lucent
ORiNOCO wireless card [13].

For better illustrations, we introducecarrier sensing range
rs, which is defined as the maximum distance that the trans-
mitter can sense the transmissions of an interfering transmitter.
From Eq. (2) by lettingPr = Hs, we have

rs =
( Pt

Hs

)1/α
. (19)

SupposeHr ≥ βN0, which is usually the case in practice
[14]. From Eq. (6), (18) and (19), we have

rs = β1/α · r. (20)

Comparing with Eq. (7), we see thatrs is equal to the
interference range of the maximum link length.

Fig. 4 illustrates the relationships ofr, rI and rs by a
network of a transmitterA, a receiverB and a interfering
transmitterC. Here, we used to denote|A−B|. The network
is not symmetric asA is further fromC thanB is. In Fig. 4(a),
C causes packet collisions of(A,B) as it is withinrI of B.
However,C is also within rs of A. So A will not transmit
and thus avoid collisions when it senses the transmissions
of C. In Fig. 4 (b),C is moved outsiderI of B and thus
becomes a non-interfering transmitter to(A,B). SoA andC
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Fig. 4. Illustration of the relationships ofr, rI andrs

can transmit simultaneously. However, carrier sensing forbids
the simultaneous transmissions as theC is within rs of A. This
case is often referred to asexposed terminal (node) problem.
Fig. 4 (c) and (d) illustrate the scenarios when we increase
d. By Eq. (7), rI also increases and it is not fully covered
by rs here. In Fig. 4(c), there will be a lot of collisions for
(A,B) asC is insiderI of B and outsiders of A. This case is
often referred to ashidden terminal (node) problem. Currently,
some MAC protocols (e.g. 802.11) use the backoff mechanism
to reduce collisions in this case. In Fig. 4(d),C is moved
outsiderI of B and becomes a non-interfering transmitter to
(A,B). SoA andC can transmit simultaneously.

Exposed terminal problem is liable to occur when the length
of a link is small, while hidden terminal problem is liable to
occur when the length of a link is large. The radical reason is
that carrier sensing uses fixedHs and operates at transmitter
side, which can not estimate interference accurately.

Therefore, even under the optimal routing, network capacity
can degrade with higher transmission power by using carrier
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sensing. For example, consider a network with all one-hop
flows, higher transmission power increasesrs, which can
reduce spatial reuse and thus decrease network capacity.

However, the currentHs may not be too conservative under
the minimum hop-count routing, because this kind of routing
prefers the links of longest lengths (approachingr), which is
close to the case when we derive Eq. (18). Consider a link
with a lengthd, the range thatrs cannot coverrI is

d+ rI − rs = d+ β1/αd− β1/αr, (21)

which is approximatelyr whend ≈ r. This implies that there
can be more hidden terminals whenr becomes larger under
the minimum hop-count routing.

Next, we discuss the minimum hop-count routing. The
authors of [4] argued that even under optimal link scheduling
network capacity by using the minimum hop-count routingis
proportional to

1

r
. (22)

SoGK = ( 1
K )1/α by Eq. (6). Their interpretation is as follows.

The network capacity consumption of a flow is proportional
to the number of hops the flow traverses, i.e.1

r . Spatial reuse
is proportional to 1

r2 . Network capacity is proportional to
spatial reuse andinverselyproportional to the network capacity
consumption per flow, i.e.1r .

We make some comments on Eq. (22). First, although
it properly characterizes theorder of network capacity as
a function of r, it has some deviations from practice. For
example, the network diameter (in term of the number of
hops) may be so small that the spatial reuse may not decrease
as much as1

r2 due to edge effect3. As a result, the network
capacity may increase with largerr. Fig. 5 shows an example
where there are five nodes and two flows of equal rate in
the network. When the transmission power is low, both flows
need to traverse the centered node to reach their respective
destinations. Since there are four links contending the channel,
the network capacity is14W · 2 = 1

2W . When we increase the
transmission power so that packets can be transmitted directly
from sources to destinations, there are two links contending the
channel, and network capacity is12W · 2 = W . Actually, the
spatial reuse here is always one transmitting link per time slot
for any power level due to edge effect. The network capacity
increases with higher transmission power due to a less number
of hops per flow. Second, itmay nothold for the networks with
non-uniform link load distribution. Fig.6 shows an example
where there arek flows of equal rate traversing through the
centered node. The link load distribution is non-uniform here
as the centered node is the biggest bottleneck. It is easy to
see that the spatial reuse decreases as1

r2 here. However, the
network capacity does not decrease as1

r . To see this, we
consider two specific cases. In the first case of using the
minimal transmission power, each flow ism-hop (m >> 2).
So there are at least2k links neighboring the centered node,
resulting in the network capacity of at mostW

2k · k = 1
2W .

3In here, the edge effect means that the network diameter is sosmall that
most links are near the periphery of the network

In the second case of using the maximal transmission power,
each flow is1-hop. So there arek links contending the channel,
resulting in the network capacity ofWk · k = W .

ïðñò óôõö÷ ø

Fig. 5. An example of a network with a small network diameter
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Fig. 6. An example of a network with non-uniform load distribution

Based on the above observations, one can explain why net-
work capacity sometimes increases with higher transmission
power under the minimum hop-count routing [5].

In summary, current carrier sensing and the minimum hop-
count routing do not guaranteeGK ≥ 1 and may lead to sig-
nificant capacity degradation with higher transmission power.
However, network capacity may increase significantly with
higher transmission power in some scenarios, e.g. in networks
whose diameter is within a small number of hops. Therefore,
there is a paradox on whether to use higher transmission power
to increase network capacity in practice.

V. Simulation Results

In this section, we examine the impact of power control on
network capacity via simulation. We use carrier sensing and
the minimum hop-count routing as the link scheduling and
routing algorithms in our simulations. Our essential goalsare
to verify our analysis in the previous section and to find out
under which scenarios we can expect a large network capacity
gain by using high transmission power.

We use the wireless physical model described in Section II.
We setα = 4 for simulating the two-ray ground path loss
model [9]. We setβ = 10 and Hr = −81dBm [14].
Therefore,Hs = 1

10Hr by Eq. (18). We ignoreN0 which is
usually much smaller than the interference strength. For better
illustrations, we use the transmission ranger to represent the
transmission power. We increase the transmission power so
that r = 250m, 500m, 750m and1000m. Actually, one can
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changer proportionally and scale network topologies at the
same time to obtain the similar simulation results.

We implemented a TDMA simulator for performance eval-
uation. That is, nodes transmit in synchronous time-slotted
mode and each DATA transmission and its ACK occupies
one time slot. Transmitters sense the channel one by one at
the beginning of each time slot. A transmitter will transmita
DATA packet whenPs ≤ Hs and its backoff timer expires.
The receiver returns an ACK to the transmitter when it receives
the packet successfully. If the transmitter does not receive an
ACK due to packet collision, it will carry out the exponential
backoff. The backoff mechanism is similar to that of 802.11
except that we backoff the time slot here.

We calculate network capacity according to Eq. (9). We
assign a traffic workload to each flow before simulations start
and measure the duration until all flows finish delivering its
traffic workload. In our simulations, each flow has a equal
traffic workload of500 equal-sized packets. We generate CBR
traffic for each flow until completing its traffic workload. The
CBR rate is set large enough to saturate the network. Besides,
the packet buffer in each node is set sufficiently large since
we do not consider queue management at the moment.

There are other factors that affect network capacity in
practice such as sophisticated collision resolution mechanisms,
TCP congestion control and queue management. However,
by isolating these factors, we can better understand the key
roles of carrier sensing and the minimum hop-count routing
on network capacity.

For simplicity, in the following experiments, we use CS to
denote carrier sensing and use HOP to denote the minimum
hop-count routing. We implemented a centralized link schedul-
ing, named Cen, as a benchmark, which schedules links one
by one in a centralized and collision-free way and thus ensures
maximal spatial reuse. In each experiment, we take the average
of all simulation results for ten networks.

In the first experiment, we study the interaction of power
control and carrier sensing by considering one-hop flows so
as to isolate the interaction of routing.
Experiment 1 Network capacity vs Power in a random
network with one-hop flows. There aren = 200 nodes
uniformly placed in a square of3000m×3000m, which form
a connected network whenr = 250m. Each node randomly
communicates with one of its nearest neighbors.

Fig. 7 shows the network capacity as a function ofr.
Obviously, the network capacity by using Cen is almost a
constant in this scenario. However, when we use CS, higher
transmission power causes more exposed terminals and de-
crease network capacity, since the carrier sensing threshold is
fixed.

In the following experiments, we study the interaction of
power control, carrier sensing and the minimum hop-count
routing by considering multi-hop flows.
Experiment 2 Network capacity vs Power in a random
network with multi-hop flowsand small network diameter
(in terms of the number of hops). There aren = 20 nodes
uniformly placed in a square of1000m×1000m, which form
a connected network whenr = 250m. Each node randomly
communicates with any other node in the network.
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Fig. 7. Experiment 1: Network capacity as a function ofr

Fig. 8(a) shows the network capacity as a function ofr.
First, in a sharp contrast to Eq. (22), the network capacity by
using HOP significantly increases withr. The reason is that the
network diameter is so small (4-6 hops) that the spatial reuse
only decreases slightly with largerr, as shown in Fig.8(b).
Actually, only a few links can transmit simultaneously in this
scenario due to edge effect. HOP minimizes the number of
hops that flows traverse, as shown in Fig.8(c), which is the
dominant factor for the significant increase of network capac-
ity. Second, CS works reasonably well in this experiment, as
compared with Cen (see Fig.8(b)). The reason is that HOP
prefers longest forwarding links for multi-hop flows, whichis
close to the case that we deriveHs in Eq. (18).
Experiment 3 Network capacity vs Power in a grid network
with multi-hop flowsand large network diameter(in terms
of the number of hops). There aren = 625 nodes placed
in a 25 × 25 grid. There is a distance of200m between
any two horizontally or vertically neighboring nodes. There
are 25 flows from the leftmost nodes to the rightmost nodes
horizontally and25 flows from the topmost nodes to the
bottommost nodes vertically. This configuration ensures a
large network diameter and uniform link load distribution.

We observe that the network capacity decreases significantly
with larger r, as shown in Fig. 9, because of the significant
decreasing of spatial reuse under the minimum hop-count
routing. We also plot the network capacity by using HOP and
Cen, which confirms our explanation.

We also test the random networks with multi-hop flows and
a large network diameter. We observe that the network capacity
significantly decreases with largerr in this scenario whenn
is sufficiently large.

In summary, the following conclusions can be made from
our analysis (Section IV) and simulations. When we use carrier
sensing and the minimum hop-count routing,

• In the networks withone-hop flows, the network capacity
significantly decreases with higher transmission power
due to exposed terminal problem.

• In the networks withmulti-hop flows and a small network
diameter of a few hops, the network capacity can increase
significantly with higher transmission power because the
edge effect makes spatial reuse only decrease slightly
with largerr. This can find applications in small WMNs.
Currently, many WMNs tend to have a small network
diameter (in term of the number of hops), because the
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Fig. 8. Experiment 2

end-to-end throughput of a flow drops significantly with
an increasing number of hops [7] [15].

• In the networks ofmulti-hop flows and a large network
diameter, there are two subcases. Underuniform link load
distribution, the network capacity decreases significantly
with higher transmission power as shown in Eq. (22);
Under non-uniform link load distribution, it is hard to
make a conclusion. The network capacitymay increase
with higher transmission power as illustrated by Fig. 6.

VI. Related Work

In this section, we present related work and highlight our
contributions.

Research on power control can be classified into two classes:
energy oriented and capacity oriented. The first class of works
focus on energy-efficient power control [16] [17] [18]. The ap-
plication is in mobile ad hoc networks (MANETs) or wireless
sensor networks (WSNs), where nodes have limited battery
life. Low transmission power is preferred here to maximize the
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Fig. 9. Experiment 3: Network capacity as a function ofr

throughput per unit of energy consumption, while maximizing
overall network capacity is the secondary consideration. As a
result, their solutions often achieve moderate network capacity.
The second class of works focus on capacity-oriented power
control. The application is in WMNs where mesh routers have
sufficient power supply and maximizing network capacity is
the first consideration.

Authors in [4] indicated that network capacity decreases
significantly with higher transmission power under the mini-
mum hop-count routing and they suggested using the lowest
transmission power to maximize network capacity. There area
lot of works following this suggestion, e.g. [19] [20], and they
observed capacity improvement by using lower transmission
power. However, there is an opposite argument recently. Park
et al showed via simulation that network capacity sometimes
increase with higher transmission power [5]. Behzad et al
formulated the problem of power control as an optimization
problem and proved that network capacity is maximized by
properly increasing transmission power [6].

We also proved that the optimal network capacity is a
non-decreasing function of common transmission power in
a simpler way. Furthermore, we characterized the theoretical
network capacity gain of power control. Besides, we studied
the interactions of power control, carrier sensing and the
minimum hop-count routing. As a result, we explained the
above paradox successfully from both theoretical and practical
perspective. Our work provides a deep understanding on the
structuresof the power control problem and can be seen as
an extension to [4]- [6].

Carrier sensing recently attracts attentions in the area of
wireless networks. Many researchers noticed that carrier sens-
ing can significantly affect spatial reuse and the current carrier
sensing threshold is not optimal in many cases. Xu et al
indicated that RTS/CTS is not sufficient to avoid collisions
and larger carrier sensing range can help to some extend [21].
Yang et al showed that the MAC layer overhead has a great
impact on choosing carrier sensing threshold [22]. Zhai et al
considered more factors on choosing carrier sensing threshold
such as different data rates and one-hop (or multi-hop) flows
[23]. They showed that network capacity may suffer a sig-
nificant degradation if any of these factors is not considered
properly. Kim et al revealed that tuning transmission powerhas
the same effect on maximizing spatial reuse as tuning carrier
sensing threshold [24].
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There are some works on high-throughput routing recently.
ETX uses expected packet transmission times as the routing
metric so as to filter poor channel-quality links in fading chan-
nels [25]. WCETT extends ETX for multi-channel wireless
networks by also considering contention time and channel
diversity [26]. MTM uses packet transmission duration as the
routing metric in discovering high-throughput routes in multi-
rate wireless networks [27]. ExOR takes a different approach
which forwards packets opportunistically in fading channels
[28].

VII. Conclusion

This work thoroughly studies the impact of power control on
network capacity from both theoretic and practical perspective.
In the first part, we provided a formal proof that the optimal
network capacity is a non-decreasing function of common
transmission power. Then we characterize the theoretical ca-
pacity gain of power control in the case of the optimal network
capacity. We proved that the optimal network capacity can be
increased unlimitedly with higher transmission power in some
network configurations. However, the increase of network
capacity is bounded by a constant with higher transmission
powerwhp for the networks with uniform node distribution. In
the second part, we analyzed why network capacity increases
or decreases with higher transmission power in different
scenarios, by using carrier sensing and the minimum hop-
count routing in practice. We also conduct simulations to
study this problem under different scenarios such as a small
network diameter vs a large network diameter and one-hop
flows vs multi-hop flows. The simulation results verify our
analysis. In particular, we observe that network capacity can
be significantly improved with higher transmission power in
the networks with a small network diameter, which can find
applications in small WMNs.
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Appendix A-1: The proof of Lemma 2

Proof: We can draw a disc (CR) of radius R to cover
the given region. We calculate the number of simultaneous
links intersectingCR. Let l be the length of the longest
link. Obviously, we can draw a discCR+l to cover all links
intersectingCR, where the center ofCR+l is that ofCR and
its radius isR+l. By Lemma 1, each receiver occupies at least
an area of14π∆

2d2. When l < 2R+d
∆ , the number of links in

CR+l is upper-bounded by

π(R + (1 + ∆
2 )l)

2

1
4π∆

2d2
≤ 1

∆4
(4(∆ + 1)

R

d
+∆+ 2)2. (23)

The upper bound of the above equation is obtained whenl =
2R+d
∆ .
When l ≥ 2R+d

∆ , from Eq. (7), we can easily see that the
silence area (Al) of the longest link coversCR, as illustrated in
Fig. 10. Because all the other simultaneous transmitters should
be outsideAl, for any other link intersectingCR, its length
is at least the shortest distance from the circle ofAl to the
circle of CR, which is (1 + ∆)l − l − 2R = ∆l − 2R in the
worst case. By Lemma 1, each receiver occupies an area of
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at least14∆
2π(∆l− 2R)2. So the number of links inCR+l is

upper-bounded by

π(R+ (1 + ∆
2 )l)

2

1
4∆

2π(∆l − 2R)2
≤ 1

∆4
(4(∆ + 1)

R

d
+∆+ 2)2. (24)

The upper bound of the above equation is obtained whenl =
2R+d
∆ . Combining the above two cases ofl, we proved this

lemma.
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Fig. 10. Illustration ofCR, CR+l andAl

Appendix A-2: The proof of Lemma 3

Proof: We prove it by constructing such a route. If|A −
B| ≤ 4rc, then (A,B) itself is the desired route. Otherwise,
we divide the straight-line segment of(A,B) into small
segments of2rc until reachingB. Then we draw a small disc
Crc(i) of radiusrc to cover each small segment, wherei =
1, 2, ..., ⌈ |A−B|

2rc
⌉. Fig. 11 illustrates the case when⌈ |A−B|

2rc
⌉ =

3. For better illustrations, we define thex axes with its origin
at A and its direction fromA to B, and define they axes
vertical tox. We can see that the coordinate of the center of
Crc(i) is ((2i − 1)rc, 0). The probability of no node lying
in Crc(i) is (1 − πr2c )

n. Since|A − B| is upper-bounded by
the diameter of the disk of unit area, i.e.2√

π
, the probability

that we can select at least one node ineachCrc(i) is lower-
bounded by(1 − (1 − πr2c )

n)
2√

π·2rc , which approaches1 as
n → ∞. Sincer > 4rc, we can connect the selected nodes
to form a route fromA to B. It is easy to see that the route
satisfies the conditions of this lemma.
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Fig. 11. Dividing (A,B) into small segments of2rc
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