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Abstract—Task selection(picking an appropriate labeling task) This motivates us to consider another important problem
and worker selection (assigning the labeling task to a suit- in crowdsourcing research, which is calléask assignment
able worker) are two major challenges intask assignmentfor or task routing. In this paper, we focus poshcrowdsourc-

crowdsourcing. Recently, worker selection has been succdglly .
addressed by thebandit-based task assignmeBBTA) method, N9 marketplaces, where the system takes complete control

while task selection has not been thoroughly investigatedey. OVer which labeling tasks are assigned to whadml [14]. In
In this paper, we experimentally compare several task seléon contrast to “static” methods, we refer to task assignment

strategies borrowed from active learning literature, and $ow  methods for crowdsourcing as “dynamic” methods. Most of
that the least confidencestrategy significantly improves the the existing task assignment methods run in an online mode,
performance of task assignment in crowdsourcing. . h , L )
simultaneously learning workers’ reliability and colliegt
labels [8], [5], [9]. They use different mechanisms to deal
with the exploration (i.e. learning which workers are relg
Training labels are essentially important to machine liegrn and exploitation (i.e. selecting the workers consideredbeéo
tasks. Traditionally, training labels are collected frorperts. reliable) trade-off. For more details of these methods, &ferr
However, this could be very expensive and time-consumirtfpe reader to [27, Section 4].
especially when the unlabeled data is large-scale. Thentece In recent crowdsourcing marketplaces, tieterogeneityf
rise of crowdsourcing[11] has enabled us to efficiently com-tasks is increasing. In such a scenario (we céleierogeneous
bine human intelligence by asking a crowd of low-paid worksrowdsourcing), a worker may be reliable at only a subset
ers to complete a group of micro-tasks, suclnssge labeling of tasks with a certain type. For example, when completing
in computer vision [[26] andecognizing textual entailmentname entity recognitiotiasks [[10], [[20] in natural language
in natural language processirig [24]. Although crowdsageci processing, a worker may be good at recognizing names
has provided us a cheaper and faster way for collectiof sports teams, but not be familiar with cosmetics brands.
labels, the collected labels are often (highly) noisy, sincThus it is reasonable to model task-dependent reliabibty f
workers are usually non-experts. This is the trade-off eetw workers in heterogeneous crowdsourcing. The task assiginme
cost, time and quality. However, crowdsourcing serviceg. (e methods mentioned above are designed forhbmogeneous
Amazon Mechanical TLED( are still successful, because thersetting, where they do not consider workers’ reliabilityask-
exists a phenomenon of tivésdom of crowd$16]: properly dependent. Although they can also run in the heterogeneous
combining a group of untrained people can be as good as #wting, the performances could be poor (for experimental
experts in many application domains. Then how to propengsults, see [27, Section 5]).
combine the crowds is what to investigate in crowdsourcing Bandit-based task assignme(BBTA) [27] is a contex-
research. tual bandit formulation for task assignment in heterogeiseo
The primary challenge in crowdsourcing research is howowdsourcing. In this formulation, aontextcan be inter-
to estimate the ground truth by using noisy labels fromreted as the type or required skill of a task, and each arm of
workers with various unknown reliability [6]. [19]. [25]1P], the bandit represents a worker. The feedback after pulling a
[17], [28]. Many existing methods are based Brpectation- arm depends on the current context. This corresponds to the
Maximization (EM) [7], jointly learning workers’ reliability task-dependent reliability of workers. BBTA focuses on the
and inferring true labels. We refer to these methods asi¢statstrategy ofworker selectiorin heterogeneous crowdsourcing.
methods for crowdsourcing, as they usually run on ¢oé That is, given a task with a certain type, BBTA tries to select
lectedlabels but do not focus ohow to collectthese labels. a suitable worker who tends to be good at this task.
From the perspective of a requester, it is necessary todensi As well as worker selectiontask selection(i.e. how to
how to adaptivelycollect labels from workers, for the purposepick an appropriate task at each step) is also involved in the
of intelligently using the total budget. task assignment problem. A good strategy of task selection
may help us efficiently use the budget when assigning the
Lhitps:/www.mturk.com/mturk/ tasks to workers. For example, if we are already confident
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in the aggregated label of one certain task, we should rdnote the index set a¥’ tasks with context by Z; in this
require more labels for this task, otherwise it would be phase.
waste of budget. Although a common uncertainty criterion is Since we have no prior knowledge of workers’ reliability
used for picking tasks in BBTA, task selection is worth ferth at this moment, we treat them equally and give all of them
investigating. the same weight when aggregating their labels (equivatent t
In this paper, we investigate the strategies of task selanajority voting):

tion for task assignment in heterogeneous crowdsourcimg. |

. X . . K
particular, we extend BBTA by using different strategies of ~ . 1
picking tasks. The idea of these strategies is borrowed from e 7S Zy”
query strategiet active learning22]. We embed several task =t
selection strategies into BBTA, one of which is equivalent tin the standard crowdsourcing scenario, all of the true la-
the uncertainty criterion used in the original BBTA. We esipe bels are usually unknown. As in many other crowdsourcing
mentally evaluate these strategies for BBTA, and dematestranethods, we have the prior belief that most workers perform
that the performance of BBTA can be further improved bgeasonably well. To evaluate an individual lae}, using the

adopting appropriate task selection strategies such deake weighted votey; is a common solutiori [8][[9]. We denote the
confidencestrategy. cumulative loss by.: , and initialize it for the next phase as

[l. BANDIT-BASED TASK ASSIGNMENT Lig= > 1, 4, forje[K]ands € [5],
In this section, we review the method dfandit-based i€1y

task assignmer(BBTA) [27]. The notation introduced in this where 1, denotes the indicator function that outputs 1 if
section is used throughout the whole paper. condition = holds and O otherwise. This means that when a
worker gives an individual labe); ; inconsistent or consistent
with the weighted votgj;, this worker suffers a loss 1 or 0. It

is easy to see that cumulative losses correspond to workers’
reliability. They are used for calculating workers’ weighh

the next phase. The budget for the next phasgis- T — T,
whereT; = SKN’ < T is the budget consumed in this phase.

A. Problem Setting and Notation

We assume there ar® unlabeled tasksiK workers, and
S contexts. The task is indexed hy wherei € [N] =
{1,2,...,N}. The worker is indexed by, wherej € [K] =
{1,2,...,K}. Each task is characterized by a contextthere
s € [S] = {1,2,...,S}. For simplicity, we consider binary

)

labels, i.e., the label space = {—1,+1}. Each time given C. Adaptive Assignment Phase
a task, we ask one worker from a pool &f workers for a | the adaptive assignment phase, task-worker assignsient i
(possibly noisy) label, consuming one unit of the total betdggetermined for the remaininj — SN’ tasks in an online mode
T. The goal is to find suitable task-worker assignment {gjthin the remaining budgef,. At each steg of this phase,
collect as many reliable labels as possible within the Bahit 5 getermine a task-worker pair, we need to further consider
budgetT". Finally, we estimate the true labels by aggregatinghich task to pick and which worker to select for this task.
the collected labels. According to the weighted voting mechanism (Egh. 1), we
Let y; ; be the individual label of task (with contexts) gefine theconfidence scoréor taski as
given by workerj. If the label is missing (i.e. we did not X
collect the label of task from worker j), we sety; ; = 0. _ ijl w3Yij
We denote the weight of workej for contexts by w3, Yi fo_ Wb,
corresponding to the task-dependent reliability of workésr ) 7= ! _
contexts. Note thatws is positive and dynamically learned inHere. we use the different notation of the confidence score
the method. Then an estimate of the true label is calculafs@m that in the original paper of BBTA [27], for the conve-
by using the weighted voting mechanism as nience of the unified notation in this paper. It is easy to see
K 7, € [0, 1]. If the confidence score of a task is lower than those
~ . D jm1 WY of others, collecting more labels for this task is a reastmab
Yi = sight ( Zf_f w, ) ) @ solution. Thus we pick task with the lowest confidence score
=t as the next one to label:
To avoid complex notation, we do not use the subscriptsfor
which implicitly represents the context of the current task iy = argminy;,
BBTA consists of thepure exploration phase and the 1€tz
adaptive assignmerghase. The details are explained belowwhereZ, is the index set of current available tasks in this
_ phase.
B. Pure Exploration Phase Given the picked task, with contexts, selecting a worker
Pure exploration performs in a batch mode. The purposerdiable at this task is always favored. On the other hand,
to partially know which workers are reliable at which labeli workers’ reliability is what we are dynamically learningtime
tasks. To this end, we pick’ tasks for each of5 distinct method. We then use a contextual bandit [3] formulation to
contexts N’ <« N) and letall K workers label them. We handle this trade-off between exploration (i.e. learnirtgol



worker is reliable) and exploitation (i.e. selecting therkay which is equivalent to Eqi.] 1. We further define thesitive
considered to be reliable) in worker selection. Specificale scoreand thenegative scoreespectively as
calculate the weights of workers as follows: K K

- Zj:l wi-Ly, =41 Zj:l wi -1y, =

s s TS . er = andy; =
wjvts = exp(_ntsLlj,ts—l)v for S [K]a v ZK s 1 ZK

wheret® is the appearance count of contexand ;. is the It is easy to see thagt, 7. € [0,1]. For taski, the posi-

. . . . 7
learning rate related te*. This calculation of weights by tive/negative score will bé if and only if we have collected

using cumulative losses is due to teeponential weighting |55 fromall workers andall of them are consistent. On the

scheméd], [1], which is a standard tool for sequential decisioge hand, when we have no positive/negative label for task
making. Following the exponential weighting scheme, Wenthei the positive/negative score will ki

selekc ta W%Lkeyt fgom tgebql|_fcrete pl’Ob?bIllt)ll ?lsttrr]lbuno_n r?tn At each step of the adaptive assignment phase, we pick a
workers with each probability;,. proportional to the Weight ¢y according to theonfidence scorg;, which is calculated

S
Wi,to by using the positive score and the negative score based on

Then we ask yvorkeg’t for an |nd|\{|dual Iabelyihj,_, and e specific task selection strategy we adopt. The details of
calculate the weighted votg;, by using Eqn[IL. With the 15qy selection strategies are presented below.
weighted votey;,, we obtain the loss of the selected worker
Jgit Ui, .t = 1g,, 4y, ;,- Note that we can only observe the Ios% Least Confidence
of the selected workey;, and for other workers, we decided
to give an unbiased estimate of Iogﬁg = lf—vtllj:jt. The strategy calledeast confidencé€LC) corresponds to

Finally, we update the cumulative Ioss%:;s — LS o 1+ probably the most commonly used frameworkusfcertainty

I;. for j € [K], and the confidence scores of tasks with thg2MPlingin active learning([15]. _
same context as the current one. Specifically, at step of the adaptive assignment phase, we

The above assignment step is repedfadimes until the Pick the task with the index:

budget is used up. i, = argminy,;, wherey; = max(y;,7; ).

For more details (including the pseudo code, regret arslysi i Ty
comparison experiments), we refer the interested readéeto o . .
original paper of BBTA [[27]. This is a straightforward way to pick a task. Here, the

confidence scorg; is simply set as the larger one between the
positive scorgy;” and the negative scofg . That is, it is the
score of the more probable label1 or +1). Then we pick

In this section, we investigate how the performance dee taski; with the lowest confidence score, indicating that

BBTA changes when we adopt different strategies of pickirfj"ond all tasks we are the least confident in the aggregated
tasks. label of taski;, and thus we require one more label for this

task at step.

IIl. TASK SELECTION STRATEGIES FORBBTA

A. Task Selection Strategies C. Margin Sampling

The idea of task selection strategies in this paper is badow
from query strategies, which are the common frameworks fPor
measuring theénformativenes®f instances in active learning In
[22]. For example, at each step of an active learning aligr;it
the mostuncertaininstance is sampled for training, where thg
uncertaintyis calculated according to some query strategy.

Usually, query strategies in active learning are desigioed f
probabilistic models. In this paper, we introduce these strate-
gies into our task assignment problem, where the weighted iy = argming;, wherey, = Wv _7—‘ '
voting mechanism ision-probabilistic Although we do not ieT, ' T
have probabilities of labels as in probabilistic models, we . _ ) )
instead define a confidence score for each task, to describl IS €8Sy 0 see that this strategy is equivalent to the uncer
how confident we are in the aggregated label of this task. tainty criterion (Eqn[R) used in the original BBTA method.

For convenience, we rewrite the weighted voting mechanis S'Ca”.V’ the confidence scofg here is the z.ibsolute.value
of the difference between the sum of (normalized) weights fo

The strategy calleMargin sampling(MS) is originally used

r multi-class uncertainty sampling in active learnind][2
stead of only considering the information about the most
robable label (as in LC), MS also involves the information
bout the remaining label(s).

We introduce this strategy into our task assignment problem

as " . ..
positive labels and that for negative labels. The uncestam
K_l ws -1y, —. MS can be interpreted as ambiguity. The intuition is thatgas
Ui = argmax —I_—t—"— with smaller margins are more ambiguous, and ambiguous

S .
{141} Xy W) tasks usually require more labels.
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Fig. 1: Distribution of true accuracy of simulated workeos three benchmark datasets with three worker models.

D. Information Density datasets int® = 3, 4, 5 subsets respectively (corresponding to
It is argued in [[23] that the informativeness of instancddfferent contexts). Since there are no crowd workers is¢he

should not only be measured by the uncertainty, but also §¢t@sets, we then simulate workess & 30, 40, 50, respec-
the representativenessf the underlying distribution. This is fVely) by using the following worker models in heterogenso

the motivation of the strategy callddformation Density(ID) ~ Setting: .
23] Spammer-Hammer Model: A hammer gives true labels,

Similarly, in our heterogeneous crowdsourcing setting, wahile a spammer gives random labels|[13]. We introduce this

can also consider the proportions of different task types model into the heterogeneous setting: each worker is a hamme

well as the confidence scores when picking tasks. We ad@One subset of tasks (with the same context) but a spammer

the idea of ID and develop the task selection strategy as ©n others. _ _
One-Coin Model: Each worker gives true labels with a

N\* given probability (i.e. accuracy). This model is widely dse
(W) ’ in many existing crowdsourcing literatures (e.q.1[19])[5]
. . . . for simulating workers. We use this model in heterogeneous
where, is calculated as in LC or MSs is the type (i.e. setting: each worker gives true labels with higher accutaey

. . .
context) of taski, and N* is the total ngml_)er of tasks with set it to 0.9) on one subset of tasks, but with lower accuracy
types. The parametef controls the relative importance of the(We set it to 0.6) on others

density term (i.e. the proportion of tasks with contextWhen o : - J— :
One-Coin Model (Malicious): This model is based on the
5 approaches 0, ID strategy degrades to LC or MS (dependl&%vious one, except that we add more malicious labels: each

on how we caIc_uIateji). As B gets larger, the density termWorker is good at one subset of tasks (accuracy: 0.9), makci
becomes more important. )
or bad at another one (accuracy: 0.3), and normal at the rest

IV. EXPERIMENTS (accuracy: 0.6).
With the generated labels from simulated workers, we can
Iculate the true accuracy for each worker by checking
e consistency with the true labels. Figlile 1 illustratess t
npéoportions of simulated workers with the true accurachrigl

; . . the associated interval (e.g., 0.65 represents thatrthe t
experimental setup as that in the original paper of BBTA [27 ceuracy is between 60% and 65%). It is shown that the

We first conduct experiments on benchmark data with sim- ammer-hammer model and the one-coin model (malicious
ulated workers, and then use real data for further comparisgp ( )

. create more unreliable environments than those by the one-
All of the experimental results are averaged over 30 runs. coin model y

A. Benchmark Data We compare the least confidence (LC), margin sampling

We perform experiments on three popular UCI benchmaf¥!S) and information density (ID) strategies for BBTA in
datasef& ionosphere ¥ = 351), breast (V = 569), and pima terms of accuracy. Accuracy is calculated as the proportion

(N = 768). We consider instances in these datasets as labelfffgcorrect estimates for true labels. We set = 1 for all -
tasks in crowdsourcing. True labels of all tasks in thesifategies. Recall that MS is equivalent to the uncertainty

datasets are available. To simulate various heterogerases Cfitérion used in the original BBTA method. For ID, we
in the real world, we first us&-meansto cluster these three Nave ID (LC) and ID (MS), indicating that we use LC and
MS respectively to calculate confidence scores. We set the

2http:/farchive.ics.uci.edu/ml/ parameterg to 0.05 in both ID (LC) and ID (MS), which

iy = argmax(1l — 7,)
1€Lo

In this section, we experimentally evaluate different task
selection strategies for BBTA. Since the margin samplin
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Fig. 2: Results of different task selection strategies ardthenchmark datasets with three worker models.

is a reasonable choice as shown later. We also implement &Ve further check the effects of varying the parameter
random strategy as a baseline, where we randomly pick a taskD. Figure[3 shows the results. The accuracy is calculated
at each step without using any uncertainty criterion. Aacyr when we consume all the budget, corresponding to the right-
of all strategies is compared at different levels of bud¥ét. most points on the curves in Figurk 2. For some largieve

set the maximum amount of budgetAt= 15N.

an appropriate task selection strategy.

do not have the associated accuracy. This is because thistre ex

some tasks that have never been assigned to any worker when
Figure[2 shows the averages and standard errors of accurggy |arger. We consider these casesasignment failur@nd

as functions of budgets for all strategies in nine cases (ig not calculate the accuracy for them. We also plot LC, MS

three datasets with three worker models). Generally, LC agfld the random strategy for reference (dash curves without

ID (LC) can be considered as the best two on these benchmaffor bars). Generally, ID (LC) is better than ID (MS). Rolygh

data, while ID (LC) is slightly better than LC in some casespeaking, the good choice ¢f appears to be in the range
Surprisingly, MS and ID (MS) perform even worse thapetween 0.01 and 0.1.

the random strategy in many cases. This implies that the
uncertainty criterion used in the original BBTA may not be
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Fig. 3: Results of varyings in ID strategy on three benchmark datasets with three wariadels.
B. Real Data we can consider all tasks have the same context. That is, this

gsra homogeneous datasét £ 1). The numbers of tasks and
workers in this dataset aré = 800 and K = 164 respectively.
Since the originally collected label set is not complete.(i.
not every worker gives a label for each task), we decided

. . . to use a matrix completion algoritlﬁ'ﬂo fill the incomplete
natural language processing. This dataset is collectedsimgu label matrix, to make sure that we can collect a label when

ﬁrqﬁfsogxssc(;a?%cslv;r:rrg -I-ilsj,rlz))réiilﬁ tggrvﬁicTwiTEeftlzl:]caen task is assigned to any worker in the exper_lments. Then
i ! X We calculate the true accuracy of workers for this dataset, a

and given a binary choice of whether the second sentence CAltrated in Figurd 4(2)

be inferred from the first one. The true labels of all tasks :

are available and used for evaluating the performancesl ofé':“

strategies in our experiments.

In this dataset, there is no context information availabte, 3we useGROUSE[Z] for label matrix completion in our experiments.

Next, we compare different task selection strategies f
BBTA on two real-world datasets.

1) Recognizing Textual EntailmentVe first use a real
dataset fromrecognizing textual entailmentRTE) tasks in

Figure[5(d) depicts the comparison results on the RTE data,
owing that LC and MS are comparable, and both of them are
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Fig. 5: Results of different task selection strategies on teal datasets.

better than the random strategy. Since this is a homogeneouBigure[5(b) plots the experimental results, showing that ID
dataset, there is only one task type and its proportid®@%. (LC) performs the best on this typical heterogeneous datase
Then ID (LC) and ID (MS) are equivalent to LC and MSand LC follows.

respectively and we do not need to plot curves for ID (LC)

and ID (MS). V. CONCLUSION

2) Gender Hobby DatasefThe second real dataset we use In this paper, we investigated task selection strategies fo
is Gender Hobby(GH) collected from MTurk[[1B]. Tasks in task assignment in heterogeneous crowdsourcing. While the
this dataset are binary questions that are explicitly @iglid existing method BBTA focused on the worker selection strat-
into two contexts § = 2): sports and makeup-cooking. Thisegy in task assignment, we further extended it by adopting
is a typical heterogeneous dataset, where thereVare 204 different task selection strategies for picking tasks. €kper-
tasks (02 per context) and< = 42 workers. Since the label imental results showed that the performance of BBTA can be
matrix in the original GH data is also incomplete, we use tHarther improved by using more appropriate strategiesh sisc
matrix completion algorithm again to fill the missing ensrie least confidence (LC) and its information density (ID) vatia
Figure[4(D) illustrates the distribution of the true acayraf ID involves tuning the importance parametgrwhich could
workers in this dataset. It is easy to see that the labelmgivise cumbersome in practice, while LC does not require tuning
by the workers in this dataset are more unreliable than themsy parameter, and its performance is comparable to that of
in the RTE data (Figurie 4{a)) due to the increased diversity D in most cases. Therefore, a practical choice is to adopt LC
tasks. as the task selection strategy in BBTA.
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