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Consistent Abstractions of Affine Control Systems

George J. PappaMember, IEEEand Slobodan Simic

Abstract—in this paper, we consider the problem of constructing on the cardinality of the resulting quotient space we may have
abstractions of affine control systems that preserve reachability discreteor continuousabstractions. With this notion of abstrac-
properties, and, in particular, local accessibility. In this framework, tion, the abstracted system is defined as the quotient system
showing local accessibility of the higher levelabstractedmodel is S . e . :
equivalentto showing local accessibility of the, more detailed, lower dynamics. In this spirit, abStraCt'_OnS Of_purehscreteevent_
level model. Given an affine control system and a smooth surjec- Systems have been formally considered in the computer science
tive map, we present a canonical construction for extracting an community [9], [16] based on the fundamental work of [17].
affine control system describing the trajectories of the abstracted Similar work for discrete event systems has been also consid-
variables. We then obtain conditions on the abstraction maps that ered in the control community [7], [29], [30]. A related research

render the original and abstracted system equivalent from a local id valent di te abstracti f i
accessibility point of view. Such consistent hierarchies of accessi-aréa considers equivaient discrete abstractions of continuous

bility preserving abstractions of nonlinear control systems are then  Or hybrid systems [2], [8], [14] as well as sufficient discrete
considered for various classes of affine control systems including abstractions of hybrid systems [4], [10], [23].

linear, bilinear, drift free, and strict feedback systems. In previous work, we have focused on extractauptinuous
Index Terms—Abstraction, affine control systems, hierarchies, abstractionsfrom continuous systems. In particular, in [21], a
local accessibility. hierarchical framewaork for continuous control systems was con-

ceptualized and formally proposed. In [20], easily checkable
characterizations were obtained for constructing controllability
preserving abstractions of linear control systems. This imme-
NATURAL approach for reducing the complexity of largegiately resulted in a hierarchical controllability algorithm from
scale systems places a hierarchical structure on the syst@Rich we recovered the best known controllability algorithm
architecture. For example, in the common two-layer plannifgbm numerical linear algebra [11], [15]. In the same spirit, in
and control hierarchies, the planning level uses a coarser sys{en] we characterized stabilizability preserving abstractions of
model than the lower control level. One of the main challeng@fear systems. The resulting hierarchical stabilizability algo-
in hierarchical systems is the extraction of a hierarchy of mode{ghm recovers the stabilizability algorithm in [24].
gt various levels of abstraction while preserving properties of | this paper, we extend our hierarchical approach to a signif-
Interest. icant class of nonlinear control systems that consists of affine

Abstraction is also important in the analysis of complex sygontrol systems on smooth manifold particular, we address
tems. In the area of formal verification of concurrent systemge following problem.

problems of exponential complexity are frequently encountered,problem 1.1: Given anaffine control system

and hierarchical system abstractions are used for complexity re-

duction [9], [16], [17]. For example, in order to verify that a i=F(z)+Gxu zeR* uweR” 1)
given large scale system satisfies certain properties, one tries to

extract a simpler but qualitatively equivalent abstracted systeghd a smooth, surjective map= ®(z), whered:R" — RP,
Checking the desired property on the abstracted system shoyld 1, construct a control system

beequivalentbor sufficientto checking the property on the orig-

inal system. Depending on the property, special quotient sys- g=f)+glyv yeR’ veRF 2
tems which preserve the property of interest are constructed.

As a result, the notion ofbstractionrefers to grouping which can produce as trajectories all functions of the form
the system states into equivalence classediekarchy can y(+) = ®(x(t)), wherex(t) is a trajectory of (1). Furthermore,
be thought of as a finite sequence of abstracti@msistent characterize smooth magsfor which (1) is locally accessible
abstractions are property preserving abstractions. Dependiggntrollable) if and only if (2) is locally accessible (control-

lable).
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dimension is reduced. The abstraction problem that we formand a surjective map = Cx. Then control syster, is called
late does not require the input of the two systems to be the samé&:-abstraction or abstraction of systém if systemX, can
This is typical in planning and control hierarchies where, for exroduce as trajectories all functions of the fog(t) = Cz(¢),
ample, the input at the kinematic level may be a velocity inpuisherex(¢) is a trajectory of systerii; .
whereas the input at the dynamic level may be a torque input. The above definition of abstraction relates the trajectories of
In [20], we extended the geometric notiondfrelated vector the two systems. Note that systéip must capture all (output)
fields to control systems, which allowed us to push forward cotrajectories of systerit;, but may also generate more trajecto-
trol systems through maps and obtain well defined control syges. At the level of vector fields, we have the following notion.
temsdescribingthe abstracted dynamics. The factthatthe abstra®efinition 2.2 (C-Related Linear Systems)Consider the
tion map® sends trajectories of (1) to trajectories of (2) enabldthear time-invariant control systems
usto propagate reachable sets from system (1) to system (2). Fur-
thermore, in [20], we were able to provide constructive formulas (1) #=Ar+DBu zeR" uweR"
for constructing linear abstractions of linear control systems. (82) 9=Fy+Gv yecR veR*
In this paper, we provide a constructive method for extracting
abstractions for affine control systems on smooth manifolc&nd the linear, surjective map= Cz. Then %, is C-related to
Our method is the natural nonlinear generalization of the linedu if for all & € R, u € R¥, there existw € R’ such that
method provided in [20]. Furthermore, the method is natural in
the sense that it constructs thmallest®-related or abstracted C(Az + Bu) = FCx + Gu.

control system. In addition, our method is structure preservi%e notion of C-related control systems simply states that
in the sense that the affine structure of our control systemss' temY, must be able to generate (using its control input

preserved throughout the abstraction process. Therefore, by & RY), the image unde€’ of any tangent vector that system

peating our construction, we can obtain a hierarchy, that isLell may generate at any point € R”, and given any control

finite se;]quence, %famrr:e abstt)rlactlor;s. ) b , iég)ut u € RF. The connection betweefi-abstractions and
We then consider the problem of constructing abstractiops o |4teq systems is given by the following theorem.

while preserving the property of local accessibility [18]. We de- Theorem 2.3@-Abstractions and’-Related Systems [20])

termine conditions on the mapunder which local accessibility . Consider the linear time-invariant control systems
of the abstracted system (2) is equivalent to local accessibility

of (1). Such conditions greatly reduce the complexity of de- (%) &=Az+Bu z€R" uecR™

termining local accessibility properties of nonlinear control (52)

systems, since rather than checking controllability of alarge scale

nonlinear system, we can construct a hierarchy of consistgfifd the linear, surjective map= Cz. Then X, is aC-abstrac-

abstractions and then check the local accessibility of systefig of 3, if and only if 3, is C-related toX;.

which are much smaller in size. A property preserving hierarchy Gjven C-abstractions an@-related systems, it is clearly ad-

will then propagate the desired property along the sequence,ghtageous to work witi’-related systems since they poten-

abstractions from the simplest abstracted model to the origifglly offer algebraic methods for constructing abstractions. In

complex system. particular, the following proposition gives us a canonical con-
The structure of this paper is as follows. In Section II, we restruction in order to generaté-related linear abstractions.

view the results in [20] in the setting of linear systems. In Sec- Theorem 2.4 [Canonical Construction ([20])] Consider the
tion 111, we review some differential geometric concepts that algear system

used in the paper, whereas in Section IV, we review some re-

sults from [20] that are used in this paper. In Section V, we pro- (1) 2=Az+ Bu
vide methods for constructing abstractions of affine control sys-

tems. In Section VI, we characterize abstractions that preseARd @ surjective map = Cxz. Let

the property of local accessibility. This leads to hierarchical ac- .
cessibility criteria which are considered for various classes of (X2) 4 =TFy+Gv
gffine systems ir! Section VII. Finally, Section VIII discussegg the system where
interesting directions for further research.

g=Fy+Guv yecRP veR*

F=cACT
[I. LINEAR ABSTRACTIONS G=[CB CAvy ... CAv,.]

ere CT is the Moore-Penrose pseudoinverse (f and
1,-- -, v Span Ke¢C). Then, is C-related toX; .

Note that by Proposition 2.5, givemylinear control system,
and any full-row rank matrix C, there always exists another
linear control system which i€'-related to it. In addition to
propagating trajectories from the original to the abstracted
(X1) ¢=Az+Bu ze€R" uweR™ system, we are also interested in propagation of other properties
(%) 9=Fy+Guv yecR’ veR* such as controllability. From linear systems theory we know

of the results in [20]. We start our review of the results in [20
with a formal definition of linear abstractions.

Definition 2.1 [Linear Abstractions ([20])]: Consider the
linear control systems

The main goal of this paper is to obtain nonlinear analogui%
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that the reachable space from the origin for syst@in) is smooth manifoldsi/ and vV, the tangent maf,,¢: 7,M —
given byR(A,B) = Im[B AB ... A" 'B]. In partic- TN pushes forward tangent vectors fraipM to T, V.
ular, systen; is controllable if and only ifR(A, B) = R™. The union of all tangent magg,® is denoted byI'®. Recall
As an immediate corollary of Theorem 2.3 we obtain thdhat if both A/ and N are euclidean spaces, thé&rp is just
CR(A,B) C R(F,d), and, in particular, i, is controllable the total derivative ofp. In this paper, we will be concerned
then3, is controllable. with maps®: M — N which are surjective submersions. In

In order to propagate controllability from the abstracted lineauch cases, we will think oV as an embedded submanifold
systent, to the original systerx;, conditions must be placedof A7. As a model example to keep in mind, také = R",
on the abstracting map= Cxz, resulting inconsistentibstrac- N = R* = R* x {0} ¢ R”, wherek < n, and® is the projec-
tions [20]. With respect to controllability, the following theorention to the firstk coordinates.

characterizes consistent linear abstractions. A vector field on a manifold A/ is a smooth map
Theorem 2.5 [Controllability Preserving AbstractionsX:M — TM which assigns to each point € M a
([20])]: Consider the linear system tangent vectotX (p) € 7,M. An integral curve of a vector
. field X is a smooth curve:I C R — M that satisfies
(X1) &= Az +Bu Tic = X(c(t)) for all ¢ € I. Given two vector fields¥ andY

on M, by [X, Y] we denote their usual Lie bracket.

and surjective map = Cxz. Let e .
A distribution A on M assigns to eacp € M a sub-

(X2) 9=Fy+Gu space ofl,M. A distribution generated by vector fields

Xi,..., X is given by A = spad Xy, Xo,...,Xi}. The

be theC'-related system where dimension ofA atp € M, denoted bydim(A(p)), is then
F —CACt dim(spad Xi (p), X2(p), ..., Xx(p)}). Regular distributions

require the dimension of the distribution to be independent
of p € M. A vector field X belongs to a distributior\ if
X(p) € A(p) ateacty € M.

Given two smooth distributiord; andA.,, we define the dis-

G=[CB CAv, ... CAu,]

where C* is the Moore—Penrose pseudoinverse (vfand

v1, ..., v Span KefC). Furthermore, if o .
tribution [A4, As] by declaring Ay, As](p) to be the subspace
Ker(C) C R(A, B) of T,,M generated by vectors of the forpiX;, X,](p) where
) ) o X1, X, are smooth vector fields belonging is; and A, re-
thenX, is controllable if and only &2, is controllable. spectively. Given a distributior, Lie(A) is the Lie algebra

The condition KefC') C R(A, B) suggests that in order t0 generated byA. It is obtained by taking the span of iterated Lie
abstract away some dynamics (captured by(&Kg) while pre- prackets of vector fields igh.
serving controllability, one would have to ensure the ignored Gjyen a vector fieldX on manifold A/ and a smooth map
dynamics are controllable. From the assumptions of Theoreg s _, N not necessarily a diffeomorphism, the push for-
2.5, itis easy to see that a controllability preserving linear aq of X by 7'® is generally not a well-defined vector field on
straction always exists iB # 0, since we can always chooSey, This leads to the concept @frelated vector fields.
matrix C satisfying Ke(C') = Im[B]. Therefore the control-  pefinition 3.1 (@-Related Vector Fields [1], [18]): Let X
lability preserving condition serves as a guideline for choosing,qy he vector fields on manifold8/ and N, respectively,

our abstracting matric’. o and®: M — N be a smooth map. Thek, is ®-related taX if
The goal of this paper is to develop similar results for nogg, everyp € M

linear, affine control systems of the forin= f(z) + g(z)u. In
particular, we are interested in generalizing the canonical con- TH(X — V(o 3
struction of Theorem 2.4 for affine control systems. Further- (X)) (2(p))- 3)

more, given that most results for nonlinear systems are local ]incb is a smooth surjection from\/ to N, then given a

nature, rather than propagating global controllability, we foc%ctor field X on a manifold M, the push forward of
on the property of local accessibility, and obtain the nonline by T® is a well defined vec,tor field onV only if

analogue of Theorem 2.5. In order to achieve this, we must r Y $(X(p)) = T,,®(X(pz)) wheneverd(p;) = &(p,) for

on the differential geometric methods for accessibility of ”O’Eny two pointgy, ps € M. The following well-known theorem

linear systems. gives us a condition on the integral curves of td@erelated
vector fields.
Theorem 3.2¢-Related Vector Fields [1], [18]): Let X and
We begin by recalling some definitions from differential geY” be vector fields o/ and N respectively and leb: M — N
ometry ([1], [18]). LetM be a differentiable manifold, and de-be a smooth map. Then, vector fiellsandY are®-related if
note by7,M the tangent space @ atp € M. LetTM = and only if for every integral curve of X, ®(c) is an integral
U, ZpM be the tangent bundle 8f, and letr be the canon- curve ofY".
ical projection mapr: 7'M — M. Recall, for instance, that Even thoughb-relatedness of vector fields is a rather restric-
1T,R" = R", and thatl’'R" = R™ x R™. Throughout the paper, tive condition, this is not the case for control systems. In order
the reader can kedfi* as a model manifold without loss of anyto have global definitions of control systems ([6], [18]), we shall
of the main ideas. Given a smooth mé&pM — N between need the concept of fiber bundles.

[ll. GEOMETRIC PRELIMINARIES
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Definition 3.3 (Fiber Bundles):A fiber bundle is a quintuple allows us to remove such restrictions. In [20], Definition 3.1
(B, M,n,U,{O;}icr) whereB, M, U are smooth manifolds and Theorem 3.2 were extended to control systems. We now
called the total space, the base space and the standard fibehriefly review some of the results of those papers. We first
spectively. The map: B — M is a surjective submersion andbegin with a global definition of control systems.

{O;}ies is an open cover al/ such that for every € I there Definition 4.1 (Control Systems [6], [18]) ‘A control system
exists a diffeomorphismi;: 7=1(0;) — O; x U satisfying S = (U, F) consists of a fiber bundte: I/ — M and a smooth
7,0V, = 7 wherer, is the projection fron©; x U to O; (local maplt':U — T M which is fiber preserving, thatis’ o F = «
triviality condition). The submanifolet =1 (p) is called the fiber wherer’: TM — M is the tangent bundle projection. Given a
atp € M. control systemS = (U, F'), the control bundlé3 of S is natu-

If all the fibers are vector spaces of constant dimension, theally defined pointwise by3(p) = F(x~(p)) for all p € M.
the fiber bundle is called a vector bundle. If all the fibers am& control system is called affine if the control bundfeis an
affine spaces then the fiber bundle is called an affine bundle.affine bundle.

The tangent bundle of a smooth manifold is an example of aThe base manifold/ of the control bundle is the state space
fiber (vector) bundle. Some others are as follows. and the fibersr =1 (p) can be thought of as the state dependent
Example 3.4 (Trivial Fiber Bundle)if B = M x U and control spaces. Given the statand the input, the mafp selects
m: B — M is the projection to the second coordindte,«) —  a tangent vector fron8(p) C 7,,M. The notion of trajectories

x, then the five-tuple B, M, =, U, {M}) is called thetrivial ~of control systems in this context is now given.
fiber bundleover M with fiber U. For example, the 2-torus is  Definition 4.2 (Trajectories of Control Systemsk smooth
a trivial fiber bundle over the circlé® with fiber S. Locally, curvec:I — M is called a trajectory of the control system

every fiber bundle looks like the trivial one [1]. S = (U, F) if there exists a curve”: I — U satisfying
Example 3.5 (Distributions):Every distributionA can be re-

garded as a vector bundle by takiBgo be the union of ali\ (p) 7(cY) =¢

and defining the projection by(v) = p whenever € A(p). T,c =F(Y).

The fiber isR¥, wherek = dim A. The local triviality condi-

tion means thaf is locally spanned by linearly independent | |ocal coordinates, Definition 4.2 simply says that a trajec-
vector fields. tory of a control system is a curuet) for which there exists a

If A'is an affine bundle onV/, then locally there exist a function u(t) satisfying,i(t) = F(x(t),u(t)). Note that even
vector field X, and a distributionA such thatd = Xo + A.  though Definition 4.2 assumego be smooth, the bundle curve

If A is generated by vector fields,, ..., X thenA = Xo + U is not necessarily smooth. The definition, therefore, allows
spaf{ Xy, X»,..., Xy }. Formally, B is the union of all affine nonsmooth control inputs as long as the projecti¢e’ ) = ¢
spacesXo(p) + A(p), n(v) = pforall v € A(p), the fiber s smooth.
Uisan arbitrary but fixed affiné-dimensional Subspace g We now Consider abstractions Of Control SystemsaMrac-
wheren = dim M. _ . tion is a map®: M — N which we will assume to be a surjec-
Example23.6: Consider the following (affine) control systemgjye, smooth submersichWe can now definé@-related control
onM = R*: systems in a manner similar to Definition 3.1 for vector fields.
Definition 4.3 (-Related Control Systems) Let
7 =1—uy Sy = (U]w,F]w) with wp: Uy — M and Sy = (UN,FN)

with 7x: Uy — N be two control systems. Lé: M — N
be a smooth map. LeBy; and By be the control bundles
associated with control systerg; and.Sy respectively. Then
gN is ®-related toS), if for everyp € M

Y =Ux.

Then at each pointzo, 7o), the set of all possible tangent di-
rections is a straight line iR? (considered as the tangent spac
to M at(xo,y0)) given by the equatiomo(x — 1) + yoy = 0.

Note that this line does not pass through the origin which is why
it forms an affine subspace. Her€y = (1,0)* andX,(z,v) =

T,2(Br(p)) € Bu(®(p))- (4)

Control systent - will be referred to as aabstractionof con-

_(y7 x)T'
; - . trol systemS,, ([20]). Note that many control systen§g; may
We will denote the Lie algebra generated Hyby Lie(A). F@—related toSy, as the set of tangent vectors fthat must

It is obtained by taking the span of all iterated Lie brackets ge captured. can be aenerated using many control parameteri-
vector fields in4. For simplicity, we will abuse the notation andzationz ' 9 9 y P

use Lig.A) also to denote the distribution given b (p): X* € It is straightforward to show tha®-relatedness of control

Lie(A)} systems indeed generalizes Definition 3.1 [20]. Furthermore, if

By, andBy, satisfy condition (4), then, N By, also satisfies
IV. CONTROL SYSTEM ABSTRACTIONS condition (4). This suggests that there existaiaimal system
S, up to control parameterization, thatisrelated taSy,. The
Definition 3.1 and Theorem 3.2 capture the essence of

Problem 1.1, but for vector fields. The restrictive nature of 2Note that any mag gives rise to an equivalence relation by defining states

Theorem 3.2 is due to the deterministic nature of vector fields g, equivalentif®(x) = (y). In order for the resulting quotient space to

The nondeterministic nature of control systems, howevegve a manifold structure, the equivalence relation must be regular [1].
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minimal system naturally corresponds to the case where conBlince ® is a submersion, the distributialf has constant di-
tion (4) becomes an equality, or equivalently when the followingiensiont = m — n everywhere, wheren = dim M and

diagram commutes: n = dim N. Furthermore KX is an integrable distribution. De-
o note the foliation that is tangent g by K.
M — N Our goal is to construct the smallest control syst&mon
Bl | Bx (5) N which is ®-related toS,;. We will accomplish this by con-
F(M) e F(N), structing the smallesk -invariant affine subbundlet,; of A7
containing.4,, whose associated distribution contaids and
whereF (M) is the space of fiber subbundles’BiM . taking Sy to be any control system whose control bundle equals

In contrast to the restrictive conditions of Theorem 3.2, thed(A,,).
following straightforward proposition, shows that every control A fiber bundle 3 over M is called X -invariant, for some
or dynamical system is-related to some control system for anysmooth vector fieldX with local flow ¢, if T,¢:(B(p)) C
map®. B(¢i(p)), for allp € M andt € R for which both sides are
Proposition 4.4 ([20]): Given any control systeny,; = defined. For a distributiod, we say that3 is K -invariant, if it
(Unt, Far) and any smooth map: M — N, then there always is X -invariant for every vector field( in K.
exists a control systerfiy = (Un, Fiv) which is®-related to  Proposition 5.1: Let.4 be an affine subbundle @7, where

Swm- A(p) = Xo(p) + A(p), for some vector fieldX, on M and
The following theorem generalizes Theorem 3.2 to contrgistributionA on M. Let X be a vector field on/. ThenA is
systems. X-invariant if and only if
Theorem 4.5¢-Related Control Systems [20]) Let Sy =
(Un, Fy) and Sy, = (Ung, Fiar) be two control systems and [X,A] C A.
$: M — N be a smooth map. The$yy is ®-related toS,, if
and only if for every trajectoryy; of Sy;, ®(cps) is atrajectory Proof: (=): AssumeA is X-invariant. Denote the local
of Sy. flow of X by ¢, and letY be any vector field imA. Then, for

Because of Theorem 4.5, throughout this paper, we can equiveryp € M andt
alently say thatSy is an abstraction of; or thatSy is ¢-re-
lated toS),. If £5,, andXs, denote all trajectories of control To_{Xo(¢e(p)) + Y (d:(p)} € Alp).
systemsSy, and Sy, respectively, then Theorem 4.5 simply _ _ o
states thatSy is -related toSy, if and only if ®(3s,,) C Subtracting¥o(p)+Y (p) from the left hand side, dividing by
s, . The abstracted system therefore overapproximates the 8d letting: — 0, we obtain X', Xo+Y](p) € A(p). Therefore,
stracted trajectories of the original system which may result if, Al C A. .
trajectories that the abstracted systSmmay generate butare (<): Since[X, A] C [X, A] C A, by a standard result in
infeasible in the original modedy, . differential geometry [18], it follows that the distributiah is
Even though Definition 4.3 and Theorem 4.5 for control sys¥ -invariant. Similarly, we obtain that the distributié, & A
tems remove the tight restrictions of Definition 3.1 and ThdS X -invariant. Therefore, for evegy € M andt & R for which
orem 3.2 for dynamical systems, the challenge now beconfé$p) is defined

providing methods for constructing abstractions of control sys- . .
tems. This is the objective of Section V. To—1(Xo(¢r(p)) = op,t)Xo(p) mod A

for some real-valued functioa. That is,T¢_.(Xo(o:(p)) —
a(p, ) Xo(p) € Alp). Since (d/dt)|oTo—(Xo(¢:(p)) =

The results we reviewed in Section IV were true for generfk’, Xo](p) € A(p), it is easy to see thai(p,0) = 0, for all p.
control bundles, including affine bundles. In this section, wdowever,« is a 1-cocyle over the flow ok, i.e.,a(p,t +s) =
present a canonical way of constructing abstractions for affiagp, ¢)a(¢:(p), ), S0&(p,t) = o(p,t)(¢p:(p),0) = 0. Since
control systems. Therefore, from this point on, we assume thatp, 0) = 1, it follows thata(p, ¢) is identically equal to one.
all objects are smooth and all control bundles are affine. This implies that'¢.(X,) € A, as desired. O

Let Sys = (Uns, Far) be a control system on a manifold. Definition 5.2 (Canonical Construction iff) : Given. .4,
Denote the affine control bundle 8f,; by A,;. Thisis an affine andK as above, lefA y; be the smallesk -invariant distribution
subbundle off’M, so there exists a vector fielly; on M and containingA,;, K, and[K, X,,] (see Fig. 1). Therefore)
a distributionA ,, on M such that is generated by

V. ABSTRACTION CONSTRUCTION

A =Xu+Au. Ly UK, LyUIK, [K, Ly]]u--- (7

We say thatA, is the distributionassociated with4y,. Let  whereLy; = Ay U K U[K, Xj]. Define theAd,, as
®: M — N be a surjective submersion, whehe is an em- , ,
bedded submanifold a¥/. Denote byK the vector subbundle Ay =X+ Ay (8)
of T'M defined as .
The affine bundled,, is called thecanonical bundle associated
K =Ker(T®) ={veTM:Td(v)=0}. (6) with Ay and K.
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argument to a finite sequence of foliation charts covering
a path (in the leak(po)) connectings, andp; . O
The above proposition ensures well posedness of the fol-
lowing definition which summarizes our canonical construction
for extracting affine abstractions from affine control systems.
Definition 5.4 (Canonical Construction aiV) : Let Sy, =
(U, Far) be a control system on a manifold with affine
control bundle

Av =Xu+ Ay

Let ®: M — N be a surjective submersion, whe¥eis an em-
bedded submanifold af/. Denote byK the vector subbundle
of 77M defined by (6). Define the affine distributiod; by

Ay =Xy + Ay

where A, is generated by (7). The affine bundiey on N
defined by

Fig. 1. Construction ofd ;. An(q) = T,8(An(p))

. . . ) ) for anyp € ®=1(q), is said to be canonicalg-related tad ;.
The following proposition establishes the invariance prope)g\-ny control systemSy = (U, Fy ) with control bundled y
ties ”eed?q for our constr.ucuon. _ is said to be canonicall$-related toSy,.
Proposition 5.3 f{-Invariance and?-Relatedness). Theorem 5.5 (Canonicallg-Related Systems) The bundle

a) The affine bundlet,; of Definition 5.2 containsdy, itis 4, of Definition 5.4 is the smallest bundle @ which is®-re-
K-invariant, and its associated distributian,; contains |ated to.A,,.

K. Moreover, it is the smallest affine bundle with these  proof: That.A4y is ®-related taA ; follows from its con-

properties. struction and Proposition 5.3. To show that it is the smallest,
b) If (po) = ¢(p1) for somepog, p1 € M, then assumeB is another bundle otV ®-related toA,,. Let B =
R R (T®)~1(B). ThenB clearly contains4,; and is K -invariant.
(T @) (At (po)) = (Tp, ) (Anr(p1))- Therefore, by Proposition 5.3, C B. It is then immediate
that Ay = T®(Ay;) c T®(B) = B, which proves the mini-
Proof: mality of Ax. O
a) ClearlyAy ¢ Ay, K-invariance follows from the con- Deflnltlon_s 5.2 and 5.4, and Theorem 5.5 provide us with
struction of A, the inclusion a constructive method to construktrelated systems. Further-
more, the construction is natural since it generates the smallest
X, AM] — K, Xu]+ K, AIW] c Ay such system. We shall apply the canonical construction to var-

ious classes of affine systems in Section VII. In Section VI, we
consider the relationship betweénrelated control systems re-

and Proposition 5.1. garding accessibility and reachability properties.

To show that Ay, is the smallest affine bundle
with these properties, let4d be anotherK-invariant
affine bundle containing4,; whose associated distri-
bution containskK. Then A = X\ + A, for some In addition to constructing abstractions of nonlinear systems,
distribution A containing A,,. By K-invariance, we are also interested in preserving properties of interest be-
[K,A] C [K,A] C A, soA is K-invariant. Simi- tween the original and abstracted model. In [20], we focused on
larly, [K, Xp] C A. SinceA ), is by construction the controllability of linear control systems. In this paper, we focus
smallest K -invariant distribution containingA,;, K, on local accessibility for affine control systems.

VI. ACCESSIBILITY EQUIVALENCE

and[K, X ], it follows thatA,, C A, henced,, C A. We first recall some standard definitions for reachable sets.
b) By the Frobenius Theorem, locally each leaf /6fis Consider a control systerfiy; = (Uns, Fir), let V C M be

a planex,.; = constant...,z, = constant,N a neighborhood ofy € M, and consider tim&’ > 0. The

is the planeR™ x 0 in R™, and ¢ is the projection reachable set fromp at time T, denotengM (p,T), is the

(1,...,&m) +— (21,...,2,,0,...,0). Assumep, set of points that can be reached frgnwith trajectories of

and p; both lie in one such foliation chart [1] of. Sy, that remain withinV” for all 0 < ¢ < 7. In our definition
Since A,; is K-invariant and (in the same chart)of control systems, the reachable set is formally expressed as
T¢ = diag{, «n,0), wherel, ,, is then x n identity follows.

matrix, it is easy to see that (b) holds. gf is not in Definition 6.1 (Reachable Sets [18])Let Sy = (Uns, Fns)

the same foliation chart g%, we can apply a similar be a control system on a manifald. Given a neighborhoot
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of p € M, define the reachable set in tirfie> 0 as Therefore
i . . a) if Sy is locally accessible at € M, thenSy is locally
Ry 0, T) ={p" € M | 3V:[0,T] — Uy with accessible ab(p) € N;
c=7n(c) «(0)=p ¢T)=yp and b) if Sy, is locally accessible, thefiy is locally accessible;
VO<t<T, cft)eVh 9) c) if Sy, is symmetric locally accessible pte M, thenSy
is symmetric locally accessible &{(p) € N;
The reachable set fropup to time7” is defined as d) if S is symmetric locally accessible, thefy is sym-
metric locally accessible;
Ri(p,Su) = |J RE,(@,7). (10)  ©) if Sx is controllable, thersy is controllable.
oor<T Proof: Consider anyp € M and letp’ € Ry (p,T).

By assumption there exists trajectm%’;,: [0,T] — Ups of Sy
Using the above definition of reachable sets, we can now dgith ¢y, = ms (c¥;), em(0) = p, em(T) = p’ and for all
fine various notions of local accessibility. 0 < t < T we havecy(t) € V. SinceSy is ®-related to
Definition 6.2 (Local Accessibility [18]):A control system S,,, by Theorem 4.5 there exists trajectafy: [0, 7] — Uy
Sm = (Unr, Far) on a manifoldM is said to be the following. of Sy with ey = 7 (%) anden (t) = ®(ca(t)). Therefore,
a) Locally accessible atc M if for every neighborhood” ¢n(0) = @(p), en(T) = @(p'), anden(t) = (em(t)) €
of p and everyl’ > 0, R).(p, Syr) contains a nonempty, (V) for all 0 < ¢t < T. Thus,®(p') € Rqs’i‘f)(<1>(p),T))

open set ofAf. which proves (11). Having established (11), then (12) as well as
b) Locally accessible if it is locally accessible at everg  a), b), ¢), d), and e) follow immediately using straightforward
M. topological arguments. O
¢) Symmetrically locally accessible ate M if it is locally Note that Theorem 6.4 is true for any mdpas long as it
accessible gt € M, andRY (p, S)) contains an open is a smooth surjective submersion. Furthermore, Theorem 6.4
neighborhood op. holds for any twob-related systems, not only for the canonical
d) Symmetrically locally accessible if it is symmetrically lo-construction of Definition 5.4. A different but equivalent proof
cally accessible at evepy e M. of Theorem 6.4 would propagate the accessibility Lie algebra of
e) Controllable if for every € M, RM(p, Syr) = M. Syr through the epimorphisrir®.

The following theorem allows us to check accessibility prop- Whereas Theorem 6.4 propagates accessibility from the orig-
erties of control systems by simply checking the rank of certaifal to the abstracted system, from a hierarchical perspective, the

distributions. reverse question is the complexity reducing direction. In other
Theorem 6.3 (Rank Conditions [18]) Consider a control words, checking accessibility of the abstracted system should be
system Sy = (Un, Fy) on an n-dimensional mani- equivalent to checking accessibility of the original, more com-

fold M, and letB,; be the associated control bundle. Leplicated, system. We shall call such property preserving abstrac-
Cy = Lie(By,) be the accessibility Lie algebra generated bijons consistent abstractions

Bas. Then This question will be answered for the canonical construction
a) if dim(Cps(p)) = n, thenSy, is locally accessible at of Definition 5.4. We begin with the following proposition.
M- Proposition 6.5: Consider an affine control systefy, =

b) if dim(Cps(p)) = n forallp € M, thenS,, is locally (Un, F) and its associated affine control bundg, on a
accessible: manifold /. Let ®: M — N be a surjective submersion where

c) if dim(Cps(p)) = n and By (p) is symmetric atp, that N is an embedded submanifold M Use Definition 5.4 to
is if X, € By(p) then—X, € By(p), thenSy, is construct control systerfi,; on M with control bundleA,,,
symmetrically locally accessible ate M: andSxy = (Un, Fiv) on N that is canonicallyd-related taSy, .

d) if dim(Cys(p)) = n andBy(p) is symmetric for allp ¢ ~ Furthermore, assume that
M, thenS,, is symmetrically locally accessible;
e) if dim(Cps(p)) = n, Bas(p) is symmetric for alp € M,
andM is a connected manifold, thefy, is controllable. .
. Then, the following hold.
We now focus on our problem of interest, namely the prop- L f
agation of accessibility properties from the original to the ab- &) Li€(Aw) = Lie(A).
stracted system, and vice versa. One way is immediately giver?) FOr everyp € M, open set’ C M, andZ’ > 0
to us by Theorem 4.5 which propagates trajectories from the , S
original to the abstracted system. Ry (p:Sm) = Ry (p, Sw).
Theorem 6.4 (Accessibility Propagation)et a control
systemSy = (Bn,Fn) be ®-related to a control system
Sy = (B, Fiay) with respect to some surjective submersion =
d: M —(> N. The)n, forallp € M Av(@) = An(g) N TN

Ker(T<I>) - Lie(.A]w).

¢) For everyg € N we have

, ; d) Foreveryg € N, opense¥W C N,and7T > 0
® (R, (p. 1)) CREY(@(p), T) (11)

@ (RY.(p, Sar)) CRIV(®(p), Sw). (12) RY (¢,5v) =Ry (g, 5u) N N.
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e) Foreveryy € N,openseWW C N,and? > 0
RY (a,5x) =Ry (@ Su)n N,

Proof:

a) SinceK C Lie(Ay;), we haved,; C Lie(Ajys), which
implies that Lie{flM) C Lie(.Aps). The opposite inclu-
sion follows from.A,; C Ay,.

b) Follows from a).

c) Recall thatk C Ay, and?;® is the projectiorify, M —
T,N in the direction ofK. Then, c) follows without dif-
ficulty from these facts.

d) Letq € N be arbitrary and supposg € R (q, Sn).
Then there exists af y-trajectoryc from ¢ to ¢’ with
e(t) e Wfor0 <t < T.Byc),cisalso arE‘M—trajectory
and it clearly lies ifW ¢ N. Thus,¢ € R¥ (¢,5x) C
R? 1(W)(q, Syr) which proves one direction.

Now suppose that € R? 1(W)(q, Sp) N N. Then
there exists arb,;-trajectory ¢ (not necessarily inV)
from ¢ to ¢/ with c(¢t) € ®~Y(W) forall0 < ¢t < T
But then®(c) is anSy-trajectory wherey, ¢ € N, ¢(c)
connectg andq, and®(c)(t) € Wforall0 < ¢t < T.
Thereforeg’ € R} (¢, Sx) which completes the proof.

e) Follows from b) and d). O
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this case, we are only ignoring directions that directly con-
trolled, therefore controllable, and condition (13) is automati-
cally satisfied. The fact that the presence of control makes con-
sistent abstraction possible clearly demonstrates the complexity
reducing properties of control systems.

VIl. COROLLARIES

In this section, we illustrate the construction of Definition
5.4 and apply Theorem 6.6 for various classes of affine control
systems. We begin by recovering the results for linear systems
that were obtained in [20].

A. Linear Systems
Consider the linear system

m

& =Av+) bu; € Av+spar{by,..., by} (14)

i=1

wherez € R™, andby, ..., b,, € R are constant input vector
fields. Suppose our abstraction maps are surjective linear maps
y = ®(x) = Cz. ThenC has full-row rank, the tangent map
T is simplyC, andK = Ker(T'®) = Ker(C). Consider

K =sparfvy,...,u},
A]\{(-T) =Ax + Spar{blv LR brn}'

The following theorem is an immediate consequence of the

preceding result.

Theorem 6.6 (Accessibility Equivalencefonsider an affine
control systenty; = (Uyy, Firy) and its associated affine con-

trol bundle A,; on a manifoldd, and let®: M — N be a

The construction of Definition 5.4 results in

Ly =spaby,...,b0n}
U spad Avy, ..., Av,}

surjective submersion. Use Definition 5.4 to construct a control U spafvy, . .., v}

systemSy = (Un, Fx) on N that is canonicallyb-related to
Ss. Furthermore, assume that

Ker(T®) C Lie(Axr). (13)

Then

a) Sy is locally accessible aj € N if and only if Sy, is
locally accessible at evegye ®~1(g);

b) Sw islocally accessible if and only # is;

c) Sy is symmetric locally accessible @i N if and only if
Sy is symmetric locally accessible at everg ®1(q);

d) Sx is symmetrically locally accessible if and onlySf,,
is;

e) Sy is controllable if and only ifSy, is.

Therefore, ifSy is ®-related taS,,; using the canonical con-

A]w(x) =Azr + spar{bl, ceey bm}
+spadvy,. .., vk}
+spad Avy, ..., Aug }.

Higher order Lie brackets in (7) are clearly zero. The affine dis-
tribution Ax(y) aty = Cx is

An(y) = CAz +spad Cby,...,Ch,,}
+spafCAwvy,...,CAu}.

for anyx € C~1(y). SinceC has full row rank, we can choose
r = Cty whereCt = CcT(cc?)~! is the Moore—Pen-
rose pseudoinverse @¢f. Therefore, the canonicalk-related
system for any linear surjective mgp= Cz is

struction described in Definition 5.4, and condition (13) is satdy(y) = CACYy + spa{Cby, ..., Cb,,}

isfied, thenS is a consistent abstraction 8f;.

+spaCAuvy,...,CAu}

Condition (13) can be used in guiding the selection of the ab-
straction mapping(x). Note that (13) can always be satisfietbr more compactly
aslong as inputs exist. For example, for the affine control system

2= F(z)+ G(z)u

we can always choose a még«) whose derivative satisfies the
condition KefT®) = G(x), as long a&7(z) does not vanish. In

y=IFy+Gu (15)
where

F =CACT
G I[ Cbl ... Cbrn CAUl ... CAUk ]
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In order to propagate accessibility properties, the linear abstraderefore. the canonically-related system is
tion map must satisfy the consistency condition (13) which in

the linear context becomes g = CACHy + Z(CBiC+y)Ui
=1

Ker(C) CLie(Ax, by, ..., by) k m ok
=spaiB AB ... A" !'B]+ spafAz}. + > (CAviywy, +> > (CBwj)zij.
(16) i=1 =1 j=1

In order to propagate accessibility properties, the linear abstrac-

Condition (16) can always be satisfied as longiag® 0 since  tjon map must satisfy the consistency condition (13)
we can always choose Kg¥) = spariB]. In order words, we

can always obtain accessibility preserving abstractions as long Ker(C) C Lie(Az, Bz, ..., Byx). (18)
as there are control inputs. Under these conditions, Theorem 6.6

directly implies that local accessibility of (15) éxjuivalento The Lie algebra Liédx,Bjx,...,By,x) of bilinear
local accessibility of (14). In fact, from Theorem 2.5, conditiosystems is spanned byA, B;|z, [B;, Bl and higher

(16) propagates not only local accessibility, but also global coorder matrix brackets. Unfortunately, at = 0 we have

trollability [20]. Lie(Az, Biz,...,B,x) = 0, and therefore, a consistent
abstraction is obtained only @&\ {0}. This is not necessarily

B. Bilinear Systems the case, however, if one considers bilinear systems of the form

Consider the bilinear system m k
. = Ax + Z(Bz - z)u; + Z d;w;
i=Az+» (B z)u (17) =1 =1

i=1 in which case one can consistently abstract some dynamics on

R™ by choosing KefC) C sparddy, ..., dx}.
wherez € R", andA4, By, ...,B,, € R™". Note that the y g Ket©) < spar{d, )

reachable set from the origin is only the origin. Suppose o@. Drift Free Systems

aggregation map is again linepe= () = Cx and surjective. As a special case of affine control systems, consider the

Then so-called drift free systems
K =spafvy,...,vi}, oo
An =Ar + spar{Bu.. By}, b= 3 (o) € Spartgs (@) oam(@)} (19)
The canonical construction results in wheregy (), . .., gn(x) are smooth vector fields d&”. In this
case, the canonical construction of Definition 5.4 is simplified
Ly(x) =spa Bz, ..., Bpz} as the drift termX,, = 0. Therefore, rather than dealing with
affine bundles, we now work with standard distributions. This
+spadvy,. .., vk} . . .
results in the following construction.
) +spafAvy, ..., Av}, Definition 7.1 (Canonical Construction oi¥): Let Sy, =
An(z) =Az + spad Biz, . .., Bna} (Uns, Far) be a drift-free control system on a manifdld with
+spar{vi, ..., vk} distributionA ;. Let &: M — N be a surjective submersion,
hereN is an embedded submanifold &f. Denote byK the
+ spa{ Av, ..., Auy W \
par{ v, o vector subbundle of’M defined as
+ Spar{Blvl, . ,Blvk}
: K =Ker(T®) ={veTM:Td(v) =0}
+span By, v1, - .., Bug}- Define the distribution ; which is generated by
Second-order Lie brackets betwebp, and K are zero. Since Ay UKUK AMUIK K, AU - (20)
v1,...,u € Ker(C), and choosinge = C*y results in an
affine bundleA, defined by The distributionA , on NV defined by
An(y) =CAC*y + span{CB,C*y, ..., CB,,C*y} An(a) = 1,2(Au(p))
+spaqCAvy, ..., CAu} for anyp € ®~1(q), is canonicallyb-related toA ;. Any con-

+ spadCByvy,...,CBiuk} trol systemSy = (Uy, Fiv) with distributionA y is said to be

. canonically®-related toSy,.

: The canonical construction of Definition 5.4 ensures that the
+spaqCB,,v1,...,CByut. abstraction of an affine control system is affine. Similarly, the
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canonical construction of Definition 7.1 ensures that the abstr&uppose our abstraction map is the a simple projecfioa
tion of drift free control systems is also drift free. As an exampl&@(z1, z2) = z1. Then
consider the unicycle model

- T _
z cos(f) 0 y=[I 0] |:.T2:| N
7| = | sin v+ | 0| w (21)
0 0( ) 1 K =Ker(T®) = span{ [ﬂ } . (26)
and consider the abstracting map which simply ignérésatis The canonical construction results fm; = Ay U K U
®(z,y,0) = (x,y). The construction of Definition 7.1 results| i x,,] where
in
. . 0
x| | cos(f) sin(6) Ay = span{ [ } }
|:y:| B |:Sin(9):| vt |:—COS(9) v2 ga(x1, x2)
. 0| |fitor = g
for any choice off. Choosingd = 0 results in [, Xl = HI} ; [ ' f21 2” = [giz}
z =1 and therefore[K, L] consists of
y =V2. (22)

[K,Ap] = span{ {

)y
+]}

0 cos(f) 0 [K, K] =0.
Ker(T®) = sparg | 0 Cspang | sin(f) |, |0
1 0 1 Clearly,[K, L] € K. Higher order Lie brackets, even though

gnzero, also belong td = Ker(T'®). Therefore, the construc-
n results in

Note that the canonical construction preserves the drift free
structure of the system. Furthermore, since

o5] b
0 ?‘3|‘QO
L)

[, 1K, Xoa]] = span{ [

Q| @,
SIS e

system (22) is a consistent abstraction of the unicycle mo
(21). Therefore the unicycle model (21) is locally accessible |

and only if system (22) is locally accessible, which is trivially .. Si(@) + 91 (351) 0
true. The above abstraction of the nonholomic unicycle by a “* = [ fa(z1, x2) } +span{ [92(3517352)}}

two dimensional integrator is exactly in the spirit of [25], where g
topological properties for collision avoidance of the models are + span{ [ i} } + span{ [ } }
also considered in detail. 8

+ span + spark | 8, .
D. Strict Feedback Systems P { { ai} } P { [ &E } }

Consider the class of strict feedback systems used in bagk- hing f gi th WD its |
stepping designs [12], which have the following block triangul rUsSning forwar w (21, 22) throug results in

structure An(z1) = fi(z1) + g1(z1)zo + spag: (z1)}

o1 =fi(21) + g (w1)zs for any (z1,22) € ® !(x;). Choosing(z1,0) € ®~*(z;) re-
T2 =f2(z1,22) + g2(21, %2)73 sults in the following abstracted system:

&1 =f1(x1) + spagi(x1)}

i‘n :fn(xlvx%"'vxn)+gn(x17x27"'7xn)u’ (23) :fl($1)+gl($1)x2 (27)

wherez; € R™ and all mapsf;, ¢; are smooth. For notational
simplicity, we present the canonical constructiorvfce 2, that
is

wherezx, is now thought of as a virtual input. The above calcu-
lation also shows that for strict feedback systems;ifs to be
abstracted, then one can simply eliminate the differential equa-

@] [ filz) + gu(@n)as 0 ” tion associated with». Therefore, the triangular nature of strict

- fola1,22) g2(x1, 2) (24)  feedback systems make the computations for the canonical con-
struction very simple.

and therefore, the affine bundle is In order to propagate accessibility, the consistency condition
(13) must be satisfied. This means that

T2

filz1) + g1(x1)w2
Az, z0) = |: fazy, 2) :| Ker(T®) CLie(Ap)

+ span{ [92(1(1)7 xQ)} } : (25) = span{ [ﬂ } ClLie <[f1 J}lex?} ; [QOQD . (28)
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From (28), itis clear that if= (1, 22) # 0 for all zy, 22, then Therefore, the accessibility properties of system (29) truly de-
the consistency condition is trivially satisfied and the the locabmpose to the controllability property of the linear subsystem,
accessibility of (24) is equivalent to the local accessibility adind the accessibility property of the nonlinear subsystem.
(27). If go(x1,22) = 0 for somezxy, x2, then the consistency
condition may be satisfied by, (xz;.22) or by using higher F. Linear Systems With Appended Nonlinearities
order Lie brackets. For example, the first-order Lie bracket con-Conversely, consider the following class of systems:
tains
T, =Az1 + Bxo
9192 .
span{ [% _ 002y, Oy _ 002 } } T2 =fa(x2) + g2(22)u (31)

Jzo g2 e dx1 Jzq 9122

Therefore, the consistency condition is automatically satisfid§1€réz: € R™, z; € R™, u € R™, f, g are smooth maps,
if and A, B are matrices of appropriate dimension. In this case,

the abstracting ma@(z;,x2) = z; ignores the nonlinear part
span{g2 I, %92 B %b B %fl B %911'2} _ R of the system. Sy_stem (3_1) can be thought of as system in s_trict
T2 By Oz Oz Or1 feedback form with special structure. Therefore, the canonical
construction results in the abstracted model
forall z,, z» € R™ 172 [fthis is not satisfied, then higher order

Lie brackets may be used. %1 = Az + Bzo. (32)
Some classes of strict feedback systems deserve special at-
tention. Again the structure of (29) and some algebra lead to the fol-

lowing form for the consistency condition:
E. Nonlinear Systems With Appended Linear Dynamics

Consider the following class of systems: Ker(T®) = span{ [—ﬂ }
i1 =f(x)) + glzx)x irrelevant term
DA - Span{[ Lie(f2,92) )

To =Axo + Bu (29)

Therefore, if the nonlinear subsystem is locally accessible, that
" n " is Lie(f2,g2) = R™2, then the local accessibility of the non-
wherez, € R™, z € R, u € R", f, g are smooth maps, Iinear(syster)n(Sl) is equivalent to the controllability of the linear
and A, B are matrices of appropriate size. Such systems frg—stem (32)
quently arise in mechanical systems with nonlinear kinematicg '
but linear actuator dynamics. In studying the local accessibility
of such systems, rather than computing the full-blown accessi-
bility Lie algebra, one would like to decompose the analysis in In this paper, consistent abstractions of affine control sys-
order to reduce the complexity. tems were considered. In particular, we provided constructive
System (29) can be thought of as a strict feedback systénethods for abstracting affine control systems with respect
with considerably more structure sin¢g(z1,z») = Az, and to smooth surjective maps. Our construction is structure pre-
g2(x1,22) = B. Consider again the simple projection maggerving in the sense that affine control systems are abstracted
®(x1,2) = z1 Which ignores the linear dynamics. The canory affine control systems. Furthermore, we characterized
ical construction of Theorem 5.5 proceeds in the same wayalstraction maps that result in preserving the property of local
for strict feedback systems and results in dheelated system accessibility from the abstracted model to the original model.
Our framework was then applied to various classes of nonlinear

VIIl. CONCLUSION

i1 = flx1) + g(x1)2 (30) control systems including linear, bilinear, drift free, and strict
feedback systems.
wherezxs € R™ is now an input. We believe that there is a clear research agenda which fo-

Local accessibility of (30) is equivalent to the local accesstuses on classes of systems as well as properties of interest and
bility of (29) if the consistency condition (13) is satisfied. Theharacterizes the abstracting maps that preserve the properties
special structure of system (29), and some algebra reveals dhénterest for the particular class under consideration. For ex-

following consistency condition: ample, obtaining consistent abstractions for nonlinear systems
with respect to stabilizability would be helpful in better under-

Ker(T®) = span{ [ﬂ } sf[anding_ packsteppable systems. For hierarchical controller de-
sign, refining the controller design from the abstracted level to

irrelevant terms the more complicated model is a challenge. For linear systems,
< span{ [ B AB ... A™B } } ’ this was recently achieved in [19] from which we can extract

as a special case the the hierarchical stabilization algorithm of
In other words, if the paifA, B) is controllable, then we can [24]. Other properties of interest include trajectory optimality,
simply ignore the linear part of the system, and local accgsreserving Hamiltonian structure [27], and the propagation of
sibility of (30) is equivalent to the local accessibility of (29)state and input constraints.
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