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We consider a continuous material flow manufacturing system with an unreliable production system and 

a variable demand source which switches randomly between zero and a maximum level.  The failure and 

repair times of the production system and the switching times of the demand source are assumed to be 

exponentially distributed random variables.  The optimal production flow control policy that minimizes 

the expected average inventory carrying and backlog costs is characterized as a double-hedging policy.  

The optimal hedging levels are determined analytically by minimizing the closed-form expression of the 

cost function.  We investigate two approximate single hedging policies.  It is empirically shown that an 

approximate policy that uses a single hedging level which is the sum of a production uncertainty term 

and a demand uncertainty term gives accurate results for the expected average cost. 

1. Introduction 

The purpose of this study is to analyze a manufacturing flow control system with an unreliable 

manufacturing facility and uncertain demand which switches randomly between zero and a maximum 

value with exponential switching times.  The randomly switching demand source in this model 

differentiates this study from a chain of related articles in the manufacturing flow control literature 

including (Kimemia and Gershwin (1983), Bielecki and Kumar (1988), Akella and Kumar (1986), 

Sharifnia (1988), Liberopoulos and Caramanis (1994), and Hu, Vakili, and Yu (1994)). 

The system with two machine states and two demand states is transformed into an equivalent 

system with four states.  Following the results of Hu, Vakili, and Yu (1994) and Liberopoulos and 

Caramanis (1994), we argue that the optimal policy is a hedging point policy.  When the maximum 

production rate is less than or equal to the maximum demand rate, the policy is a single hedging policy 

where the only feasible hedging point corresponds to the only feasible state where the machine is up 

and the demand is zero.  If the maximum production rate is greater than the maximum demand rate, 

there are two feasible hedging points corresponding to the two feasible states, where the machine is up 

and the demand rate is either zero or at its maximum value.  This leads to a double hedging policy.  

The steady-state distribution of inventory/backlog and state of the system is determined and utilized 

to find the closed form expressions for the optimal hedging point(s). 
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We introduce two single hedging policy approximations.  In the first approximation, a single 

optimal hedging point is derived for the original system.  In the second approximation, the hedging is 

given as the sum of a demand uncertainty term and a production uncertainty term.  The demand 

uncertainty term is determined by considering a system with a reliable station whose production rate 

is set to the stand-alone average production rate of the station in the original system and variable 

demand.  Similarly the production uncertainty term is determined by considering a system with an 

unreliable station and constant demand source whose rate is set to the average demand rate of the 

original system.  An intuitive closed-form expression for the single hedging point is given.  We compare 

the average cost of these approximations with the optimal double hedging policy. 

2. Model Description 

We consider a continuous material flow system with a single unreliable station that produces to 

meet a random demand.  The state of the station and the demand source at time t is (α(t), β(t)) where 

α(t) is the state of the station which is either up(U) or down (D) and β(t) is the state of the demand 

source which is either on (U) or off (D).  Then there are four different states: UU, UD, DU, DD.  At 

time t, the amount of finished foods inventory or backlog is x(t).  Then the state of the system at time 

t is (α(t), β(t), x(t)). 

 The processing rate of the station at time t is denoted by u(t).  The maximum processing rate of 

the station is µ1, i.e., 0 1≤ ≤u t( ) µ .  The machine is unreliable and the time to failure is an 

exponentially distributed random variable with rate p(t) which is linearly dependent on the processing 

rate p(t)=u(t) p1/µ1.  In other words, we assume operations dependent failures.  The repair time is also 

an exponential random variable with rate r1. 

The demand rate at time t is denoted by d(t).  The demand variability is modeled by a valve 

that is switched on and off randomly.    When the valve is on, there is a constant stream of demand 

with rate µ2 and when the valve is off, there is no demand.  The time to switch on and the time to 

switch off are also assumed to be exponentially distributed random variables with rates p2 and r2.  

We define e
r

p r
i

i

i i

=
+

, i=1, 2 as the average up time of the station and the demand source.  

Then the average production rate is E e1 1 1= µ and the average demand rate is E e2 2 2= µ . 
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3. Production Control Problem 

In the production control problem, the decision variable is the instantaneous processing rate of the 

station u(t).  The processing rate of the station u(t) is controlled in real time to match capacity and 

demand as closely as possible to minimize the expected average inventory carrying and backlogging 

costs.  The cost of holding inventory is c+ and the backlogging cost is c-.  Let x t x t+ =( ) max ( ),0l q  and 

x t x t− = −( ) max ( ),0l q , then the production control problem can be stated as 

  Min  E c x t c x t dt( ( ) ( ))+ + − −
∞

+
L
N
MM

O
Q
PPz

0

 (1) 

subject to 

 
d

dt
x t u t d t( ) ( ) ( )= −  (2) 
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=
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=
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     if  U

   if  D

β
µ β

 (4) 

       Markov dynamics for α(t) with rates p(t) (from U to D) and r1 (from D to U) 

Markov dynamics for β(t) with rates p2 (from U to D) and r2 (from D to U) 

   x(0) specified. 

4. Characterization of the Optimal Production Control Policy 

Let us consider a station with four modes of operation where the modes UU, UD, DU, and DD 

correspond to the state of the original system and assume that the demand is constant with rate µ2.  

Furthermore let the maximum production rates for each mode be µ1, µ1 +µ2, 0, and µ2 respectively.  

Then the maximum effective rates of increase in the surplus will be  µ1 - µ2, (µ1 +µ2) -µ2=µ2, 0-µ2 = -µ2, 

and µ2 -µ2=0 which are the same as in the original model.  Therefore, this equivalent system can 

produce the same sample path for the surplus variable x(t) as the system considered here.  In this 

equivalent system, if µ1 >µ2 only the modes UU and UD are feasible and if  µ1 ≤µ2, only the mode UD is 

feasible.    

 Hu, Vakili and Yu (1994) consider a single machine system with two machine states (up and 

down).  The machine must produce in order to meet a constant demand rate.  They show that for an 
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extended discounted production inventory/backlog cost criterion, the optimal control policy is a 

hedging point policy, if and only if the failure rate of the machine is a linear function of the production 

rate.  Liberopoulos and Caramanis (1994) conclude that the optimal control policy is a hedging point 

policy, if the failure rate of the machine is a concave or a linear function of the production rate for an 

expected average production inventory/backlog cost criterion.  Based on these results, we believe that 

such policies are also likely to be optimal for our system, and we will restrain ourselves to hedging 

point policies in this paper. 

We state the following feedback policy for the processing rate of the machine  u*( x(t), [α(t), 

β(t)]) as the optimal policy for this failure prone manufacturing system with variable demand.  There 

are two hedging levels of this policy, an upper hedging level, Zu and a lower hedging level, Zd.  If the 

machine is up and the demand is on, the station produces with the maximum rate until the hedging 

point Zu is reached.  When the surplus level is equal to Zu, it produces with the demand rate:  

 u x

x Z

x Z

x Z

u

u

u

*( , )

min( , )

UU =
=
<
>

R
S|
T|

µ µ
µ

1 2

1

0
. (5) 

The second rule is related to the state where the machine is up and the demand is off.  In this 

state, the station produces with the maximum processing rate until the hedging level Zd is reached.  If 

this level is exceeded, the station halts production: 

 u x
x Z

x Z
d

d

*( , )UD =
<
≥

RST
µ1

0
. (6) 

We assume that Zd ≤ Zu.   Note that this is a plausible assumption since the state UU is closer to 

an infeasible state than state UD.  Therefore there is a greater need to hedge against uncertainty when 

the state is in UU and it has a higher hedging point.  Since linear holding and backlog costs are 

assumed, both of these hedging levels are nonnegative (Liberopoulos and Hu, 1995). 

 In order to analyze the performance of this production system governed by this optimal control 

policy, we first set the hedging levels to Zu and Zd.  Then we derive the cost function as a function of 

these parameters.  Finally, the cost function is optimized for the optimal values of Zu and Zd.  This 

approach is similar to the one utilized in (Algoet, 1989, Sharifnia (1988) and Liberopoulos and 
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Caramanis, 1994).  The details of the derivation of the steady-state distribution and the optimal 

hedging levels are not reported here and can be found in (Tan, 2000).  

5. Approximation of the Optimal Policy 

The double-hedging policy is a dynamic policy that requires adjusting the production rate 

depending on the state of the demand.  This introduces a difficulty in implementation due to 

observability of the demand state and also due to the need to adjust the production rate too frequently 

for rapidly changing demand.  We consider two approximations of the optimal policy.   

5.1. Single Hedging Policy5.1. Single Hedging Policy5.1. Single Hedging Policy5.1. Single Hedging Policy    

The first approximation is to use a single hedging level for the original system.  Note that when 

µ1≤µ2, the double-hedging policy reduces to a single hedging policy.  Therefore this policy is an 

approximation only for the case µ1>µ2.  The system controlled by this policy is again modeled as a 

state space model and the steady-state distribution is obtained.  Then the cost function is optimized to 

determine the optimal single hedging level.  In this case, although an analytic expression is available 

for the optimal single hedging level, it is too lengthy to get any insight from.   

5.2. Superposition Policy 5.2. Superposition Policy 5.2. Superposition Policy 5.2. Superposition Policy     

One plausible approximation is to assume that the optimal hedging level for the single hedging 

policy is the sum of the hedging levels for an uncertain production-deterministic demand case and a 

deterministic production-uncertain demand case.   That is, a hedging level ZPD with value 

 Z Z ZPD P D
* * *= +  (7) 

where ZP
*  is the uncertain production term and ZD

* is the uncertain demand term is used as an 

approximate hedging level.   

In this section, the expression for the single hedging level is written in a way to show clearly the 

effects of system parameters including the variability of production and demand, average production 

and demand rate, and maximum production and demand rate.  The variability of production and 

demand is summarized by using the steady-state squared coefficient of variation rate of the total 

production N1(t) and demand N2(t) accumulated during a period [0, t].  The asymptotic variance rate 

of the amount of material produced V1(t) and the asymptotic variance rate of the demand V2(t) can be 

written by using the result given in (Tan, 1997) as 
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 V
Var N t
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i i

i
i

i i i= =
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2 2 13
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then the squared coefficient of variation of production and demand are defined as: 

 cv
V

E
t

r
ei

t

i

i i
i

2
2

2 1= = −
→∞
lim ( )   i=1,2. (9) 

The above result is invoked to write the optimal hedging point in terms of the production and demand 

uncertainty. 

    Uncertain Production TermUncertain Production TermUncertain Production TermUncertain Production Term    

 In order to determine the uncertain production term, the demand is approximated with a 

constant flow whose rate is equal to the average demand rate E2 and no information about its 

variability is used.  This case is analyzed in detail in the literature (see, Gershwin, 1994).  The optimal 

policy is a single hedging policy with hedging level ZP.  After adjusting for the production-rate 

dependent failure rate and setting the demand rate to E
r

p r
2 2

2

2 2
=

+
µ  and rewriting the result in 

terms of the production variability yields the following uncertain production term  

 Z cv
e

e

E E

E E
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c c
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where cv1
2 is given in equation (9). 

The above expression shows that, keeping all the other system parameters the same, as the 

variability of the production cv1
2  increases, the hedging level increases linearly.  Similarly, the 

difference between the maximum production rate and the average demand rate, the difference between 

the average production and the average demand rate, and the average demand rate affect the hedging 

level.  The optimal hedging level converges to ZP
*  as cv1

2 approaches 0. 

Uncertain Demand TermUncertain Demand TermUncertain Demand TermUncertain Demand Term    

In order to determine the uncertain demand term, we consider a case where the machine is 

perfectly reliable but the demand is uncertain.  In this case, the production source is approximated 

with a flow whose maximum rate is the average production rate of the original station E1, and no 

information about its variability is used.  If this system is transformed to an equivalent system with a 

machine with two failure states and constant demand, it can be shown that the optimal policy is again 
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a single hedging policy with hedging level ZD.  If µ1e1>µ2, this approximation implies that there always 

exists enough capacity to meet the demand, and therefore the optimal hedging level is zero.  

Otherwise, the optimal hedging level can be determined from the steady-state distribution of the 

surplus variable for this system that yields 
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where cv2
2 is given in equation (9). 

The above expression shows that, keeping all the other system parameters the same, as the 

variability of the demand cv2
2  increases, the hedging level increases linearly.  Similarly, the difference 

between the maximum demand rate and the average production rate, the difference between the 

average production and the average demand, and the average production rate affect the hedging level.  

The optimal hedging level converges to ZD
*  as cv2

2  approaches 0 (r2 approaches infinity). 

6. Numerical Results and Observations 

In this section we investigate the performance of the single hedging policy and the superposition 

approximation.  In Figure 1, the optimal hedging levels for the optimal policy, and also the hedging 

levels for two approximate policies are given for different levels of production and demand variability 

for the case µ1>µ2. As the production and demand variability increase, the optimal hedging levels for 

the optimal policy and the approximate policies also increase to hold enough safety stock against 

uncertain production and demand.  However, since the superposition approximation does not consider 

the interaction between the production and demand uncertainty, it sets a lower hedging point 

compared to the single hedging approximation.  The optimal hedging level for the single hedging policy 

turns out to be very close to the upper hedging level Zu.  Since the backlog cost is usually higher than 

the inventory carrying cost, the first priority of the policy is to attain a reasonable safety stock.  When 

the policy is restricted to have a single hedging level, this level turns out to be close to the maximum 

hedging level in the optimal policy. 

 Figure 2 shows the average percentage savings that will be obtained by using the optimal policy 

compared to the approximate single hedging policy for the case µ1>µ2. Figure 2 suggests that the 

approximate single hedging policy is quite accurate and yields very close results compared to the 
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optimal policy.  As Figure 1 shows, the single hedging level is close to the upper hedging level of the 

double hedging policy.  This means that single hedging policy sets a comparable safety stock for 

possible future capacity shortages.  The advantage of the double hedging policy comes from 

temporarily stopping the production in the region Zd<x<Zu when the demand is down.    However,  

the time spent in the state where the demand is down and Zd<x<Zu is short compared to the time 

spent in the region x<Zd.   Consequently, the cost benefit that can be obtained in this short period has 

a smaller effect on the overall cost function.  As a result, the single hedging policies perform quite well 

compared to the double hedging policy. 

 Figure 2 shows that the saving percentage increases as the demand variability increases. 

Following equation (9), the demand variability increases with the average switching time from zero to 

the maximum level for the same e2.  Therefore as the demand variability increases, the double hedging 

policy halts the production temporarily above Zd when the demand is down for a longer period of time 

until the demand switches to its maximum level.  This action prevents unnecessary inventory buildup 

for a longer period.  Thus the double hedging policy yields better performance compared to the single 

hedging approximation as the demand variability increases.   

 The advantage of the double hedging policy increases as the production uncertainty decreases for 

a given level of demand uncertainty.  The explanation of this phenomenon follows a similar argument 

given above for the period of comparative advantage between the policies.  As the production 

uncertainty increases, the expected repair time increases for the same e1.  Therefore the total up time 

of the machine when Zd<x<Zu that will give the double hedging policy an advantage gets shorter and 

the advantage of the double hedging policy decreases as the production uncertainty increases. 

Next we investigate the accuracy of the superposition policy where the hedging level is 

approximated by the sum of the hedging levels for uncertain production-deterministic demand and 

deterministic production-uncertain demand policies.  Figure 3a, b, and c depict the average cost 

increase percentage when using the superposition policy for the cases µ1>µ2, µ1=µ2, and µ1<µ2.  The 

figures suggest that the superposition approximation performs remarkably well.  The maximum cost 

increases for the cases µ1>µ2, µ1=µ2, and µ1<µ2 are 1.65%, 0.13%, and 0.035%.  For the case µ1>µ2, 

since the optimal policy is a double hedging policy, some of the cost increase is due to using a single 

hedging level instead of two levels.  For the cases µ1≤µ2, the superposition policy practically yields the 
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optimal costs.   Note that, the cost function is quite flat and insensitive to the changes in the hedging 

levels.  This property of the cost function allows us to use this approximation and get very accurate 

results for the total cost.     

7. Conclusions   

In this study, a continuous material flow production system with production and demand 

uncertainty is analyzed.  The production control policy is stated as a hedging-type policy where there 

are two hedging levels depending on the state of the demand.  This policy performs better than the 

approximate policies that set a single hedging level.  This preliminary analysis indicates that real-time 

policies that incorporate the state of the demand may yield slight improvements in the performance of 

a manufacturing system.      

However, the difficulty of determining the state of the demand and also adjusting the production 

rate each time the state of the demand changes make it harder to implement the double-hedging 

policy.  Therefore, two single hedging level policies are proposed.  The first policy determines the 

optimal level of the single hedging level for the original model.  In the second policy, the single hedging 

point is set to a level that is the sum of a production uncertainty term and a demand uncertainty term 

and therefore referred as the superposition approximation.  It is shown empirically that the 

superposition approximation yields almost the same optimal cost for the case when µ1≤µ2 and yields 

less than 1.7% cost increase when µ1>µ2.  Although the optimal single hedging level in the first 

approximation can also be determined analytically, the expression for the superposition hedging level 

shows clearly the effects of system parameters including the variability of production and demand, 

average production and demand rate, and maximum production and demand rate. 
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Figure 1.  Hedging Levels for the optimal policy (ZU, ZD), single hedging policy (ZS), and the 

superposition policy (Zpd)  (µ1=1.0, E1=0.9, µ2=0.95, E2=0.8, c+=1, c-=2) 
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Figure 2.   Average cost savings obtained by using double hedging policy instead of the single hedging 

policy vs. demand variability for the case µ1>µ2 ((µ1=2.0, E1=1.4, µ2=1.0, E2=0.8, c+=1,    c-

=2, case 1: cv1
2 =1, case 2: cv1

2 =5, case 3: cv1
2 =10). 
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Figure 3.  The average cost increase percentage by using the superposition policy instead of the double 

hedging policy for Case 1: µ1 > µ2, µ1=1.0, E1=0.9, µ2=0.95, E2=0.8, c+=1, c-=2. 
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Figure 3b.  The average cost increase percentage by using the superposition policy instead of the 

double hedging policy for Case 2: µ1=µ2, µ1=1.0, E1=0.9, µ2=1.0, E2=0.8, c+=1, c-=2. 
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Figure 3c.   The average cost increase percentage by using the superposition policy instead of the 

double hedging policy for Case 3:µ1 < µ2, µ1=1.0, E1=0.9, µ2=1.2, E2=0.8, c+=1, c-=2 

References 

Akella, R. and Kumar, P.R. (1986), "Optimal Control of Production Rate in a Failure Prone 
Manufacturing System," IEEE Transactions on Automatic Control, Vol. AC-31, No. 2, pp. 116-126. 

Algoet, P.H. (1989), “Flow Balance Equations for the Steady-State Distribution of a Flexible 
Manufacturing System,” IEEE Transactions on Automatic Control, Vol. 34, No.8, pp.917-921. 

Bielecki, T. and Kumar, P.R. (1988), "Optimality of Zero-Inventory Policies for Unreliable 
Manufacturing Systems," Operations Research, Vol.36, No. 4, pp. 532-541. 

Gershwin, S.B. (1994), Manufacturing Systems Engineering, Englewood Cliffs, New Jersey: PTR 
Prentice Hall. 

Hu, J.Q., P. Vakili, and Y.G. Yu (1994), “Optimality of Hedging Point Policies in the Production 
Control of Failure-Prone Manufacturing Systems,” IEEE Transactions on Automatic Control, Vol. 
39, pp. 1875-1880. 

Kimemia, J. G. and Gershwin, S. B. (1983), "An Algorithm for the Computer Control of Production in 
Flexible Manufacturing systems," IIE Transactions, Vol. AC-15, pp. 352-362. 

Liberopoulos, G. and M. Caramanis (1994), “Production Control of Manufacturing Systems with 
Production Rate-Dependent Failure Rates,” IEEE Transactions on Automatic Control, Vol. 39, No. 
4, pp. 889-895. 

Liberopoulos, G. and J.Q. Hu (1995), “On the Ordering of Optimal Hedging Points in a Class of 
Manufacturing Flow Control Models,” IEEE Transactions on Automatic Control, Vol. 40, No. 2, pp. 
282-286. 

Sharifnia, A. (1988), "Production Control of a Manufacturing system with Multiple Machine States," 
IEEE Transactions on Automatic Control, Vol. 33, No. 7, pp.620-625. 

Tan, B. (1997), "Variance of the Throughput of an N-station Production Line with No Intermediate 
Buffers and Time Dependent Failures," European Journal of Operational Research, Vol.101, No.3, 
pp.560-576. 

Tan, B. (2000), “Production Control of a Failure Prone Manufacturing system with Variable 
Demand," Koc University Working Paper Series 00-1, Istanbul, Turkey. 


	1. Introduction
	2. Model Description
	3. Production Control Problem
	4. Characterization of the Optimal Production Control Policy
	5. Approximation of the Optimal Policy
	5.1. Single Hedging Policy
	5.2. Superposition Policy
	Uncertain Production Term
	Uncertain Demand Term


	6. Numerical Results and Observations
	7. Conclusions
	References

