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An Exact Method for the Stability Analysis of Time-Delayed

Linear Time-Invariant (LTI) Systems

Nejat Olgac and Rifat Sipahi

Abstract—A general class of linear time invariant systems with time delay is 
studied. Recently, they attracted considerable interest in the sys-tems and 
control community. The complexity arises due to the exponen-tial type 
transcendental terms in their characteristic equation. The tran-scendentality 
brings infinitely many characteristic roots, which are cum-bersome to 
elaborate as evident from the literature. A number of method-ologies have 
been suggested with limited ability to assess the stability in the parametric 
domain of time delay. This study offers an exact, structured and robust 
methodology to bring a closure to the question at hand. Ultimately we present 
a unique explicit analytical expression in terms of the system parameters which 
not only reveals the stability regions (pockets) in the do-main of time delay, 
but it also declares the number of unstable character-istic roots at any given 
pocket. The method starts with the determination of all possible purely 
imaginary (resonant) characteristic roots for any pos-itive time delay. To 
achieve this a simplifying substitution is used for the transcendental terms in 
the characteristic equation. It is proven that the number of such resonant roots 
for a given dynamics is finite. Each one of these roots is created by infinitely 
many time delays, which are periodi-cally distributed. An interesting property 
is also claimed next, that the root crossing directions at these locations are 
invariant with respect to the delay and dependent only on the crossing 
frequency. These two unique findings facilitate a simple and practical stability 
method, which is the highlight of the work.

Keywords—Commensurate time delay, linear time invariant (LTI), re-tarded 
systems, stability.

I. INTRODUCTION AND THE PROBLEM STATEMENT

A general class of time delayed linear time invariant (LTI) systems

is considered

_x = Ax+Bx(t�� ) x(n�1); A;B 2 <(n�n); � 2 <+: (1)

Clearly, the delay injects exponential transcendentality to the character-

istic equation. This results in infinitely many finite characteristic roots,

which make the stability outlook very complex. As many recent in-

vestigations declare [2], [8], [11], the stability question of this class of

systems is not fully resolved up to now. We propose a novel treatment

in this text yielding a practical and structured methodology to bring a

closure to the question.

The characteristic equation of the system in (1) is

det(sI�A�Be��s) = 0 with � > 0 (2)

which imparts a generic form of

CE(s; � ) =an(s)e
�n�s+ an�1(s)e

�(n�1)�s + � � �+ a0(s)

=

n

k=0

ak(s)e
�k�s = 0 (3)

where ak(s) are polynomials of degreen�k in swith real coefficients.

This system is “retarded,” that is, ao(s) is the only system containing

the highest degree of s, which is n, and no delay term accompanying

it. Equation (3) represents n-toppled commensurate time delay (i.e.,

delays of integer multiple of � ).
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The linear system in (1) is asymptotically stable if and only if all the

characteristic roots of the transcendental equation (3) are on the left

half of the complex “s” plane. Since there are infinitely many roots to

be examined, to assure this is a complex task.

To resolve this difficulty we deploy a procedure known as the D-Sub-

division method (or the “continuity argument”), [6]. It simply states,

that in one-dimensional (1-D) parameter space, � , there are regions

(we call them ’pockets’) where the number of unstable (or stable) roots

of (3) is fixed. At the boundaries separating these regions the corre-

sponding � values engender at least one pair of purely imaginary roots.

If all such boundary values of � are determined the next question is

to assess the tendency of imaginary roots (i.e., from stable to unstable

or vice versa) at each boundary crossing. In the case of the former the

transition causes an increase of unstable roots by two, and for the latter

a decrease by two. When this D-Subdivision methodology is applied

to all of the boundary values of � , one obtains the complete picture of

stable regions in � space.

The main theme of the above methodology is not new and has

been implemented for time delayed systems in the past [4], [5], [10],

[13]–[15]. The contributions of this study are to recognize some

critical and enabling features of the time-delayed systems and to

introduce a systematic implementation of the methodology. To achieve

this, two critical properties are claimed for the systems represented by

(1), lack of which forced limitations to the investigations up to now.

We wish to briefly state these properties at this point in order to better

prepare the reader and provide their proofs in the later parts of the text.

a) This class of systems exhibits only a finite number of possible

imaginary characteristic roots for all � 2 <+ at given frequen-

cies. And the method must detect all of them. Let us call this set

f!cg = f!c1; !c2; . . . ; !cmg (4)

where subscript c refers to “crossing” the imaginary axis. This

finite number,m, is influenced not only byn, but also the numer-

ical formation of A and B matrices. Furthermore to each !ck,

k = 1; . . . ;m correspond infinitely many, periodically spaced

� values. Call this set

f�kg = f�k1; �k2; . . . ; �k1g k = 1; . . . ;m (5)

where �k;`+1 � �k;` = 2�=!k is the apparent period of repeti-

tion.

b) The root sensitivities associated with each purely imaginary char-

acteristic root, !cki with respect to � is defined as

Ss
�
s=! i

=
ds

d�
s=! i

; i =
p�1 (6)

and it displays an unexpected feature: a quantity defined as

Root Tendency (RT) = RTjs=! i = sgn [Re (Ss
� js=! i)] (7)

is invariant with respect to � . Notice that RT represents the direc-

tion of transition of the roots at !cki as � increases from �k`�",

to �k` + ", 0 < "� 1. That is, the root !cki crosses the imag-

inary axis either to the unstable right half plane (for RT = +1)

or to the stable left half plane (RT = �1) independent of �k`,

` = 1; 2; . . . ;1. This finding is presented as the key and en-

abling contribution of the note.

The method offers an alternative practical and simple approach to

those introduced in [2], [8], and [11]. In [2], the crossing frequen-

cies are determined using Hermite matrices [1], however the approach

cannot treat the pockets of stable regions in � . As a reference book
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[8] contains a good cross-section of the state-of-the-art on the stability

problem at hand. Most accepted methods therein introduce a complex

integral transformation for (1), which imparts some undesired addi-

tional dynamics. This feature alone causes substantial limitations in

determining the stability margin in � space. Needless to say, these tech-

niques also fall short in detecting the various stability pockets in � . It

is also clear [7], [16] that the conventional Nyquist stability method

yields exact limits of first stable pocket of � . Its graphical nature, how-

ever, is prohibitive for casual applications. Not only that, but also the

tedious search for the secondary stable pockets using Nyquist is insur-

mountably difficult. The method presented here is exact, but it avoids

the hurdles of the Nyquist approach. We can perform numerical exam-

ples that have much higher dimensions than those offered in the litera-

ture. This is an indication of simplicity of the new procedure.

A number of investigators studied the same question in the past, one

of which [12] proposed a substitution in place of e��s. This procedure

converts the transcendental characteristic equation (3) into an algebraic

polynomial, which is then analyzed relatively easily for the cases with

purely imaginary roots. Most investigations following this proposition

[4], [13], [14] were confined to small dimensions (generally n � 2)

because of the lack of recognizing the feature (b).

Another study [15] introduces a strategy, which reduces all the com-

mensurate delay terms to one. The correspondence between this final

form and the original system is only at the coincidence of their imag-

inary roots. The stability features, however, are different and as such

the method fails to offer a practical tool.

The strategy we pursue here starts with the directions suggested by

Rekasius [12], and further investigated in [4] and [13]. This new ap-

proach is explained in Section II with proofs. Section III offers an ex-

ample case, for n = 3. As we routinely demonstrate, there is no struc-

tural limitation to n for the new method.

II. METHODOLOGY

The method evolves as follows.

A) Root Crossings For the characteristic (3), we first evaluate the

complete root crossing structure [!ck; f�kg], k = 1; . . . ;m for �k 2
<+. A systematic procedure is given for this operation:

A1) For an obvious simplification in the characteristic equation, we

deploy a substitution by Rekasius [12], which is given by

e
��s =

1� Ts

1 + Ts
� 2 <+

; T 2 < (8)

and defined only for s = !i, ! 2 <. This is an exact substitution, not

an approximation, with the obvious mapping condition of

� =
2

!
tan�1(!T )� `� ` = 0; 1; 2; . . . (9)

This equation describes an asymmetric mapping in which one T is

mapped into infinitely many � ’s for a given !. Inversely for the same

!, one particular � corresponds to one T only.

The substitution of (8) into (3) results in a rational polynomial

n

k=0

ak(s)
1� Ts

1 + Ts

k

= 0 (10)

or recasting it into a simpler form (by multiplying with (1 + Ts)n)

n

k=0

ak(s)(1 + Ts)n�k(1� Ts)k = 0: (11)

Sorting the terms in power of s, this equation becomes

2n

k=0

bks
k = 0 (12)

where bk = bk (T; aij; bij), aij, bij, 1 � i, j � n being the elements

ofA andB matrices. AssumingA andB are given constant matrices

bk’s are parameterized in T only. Note that T 2 <, thus it can also be

negative. Please take note that nth degree transcendental characteristic

equation with delay (3) is now converted into 2n-degree polynomial

without transcendentality (12) and its purely imaginary characteristic

roots coincide with those of (3) exactly.

A2) These coincident imaginary roots are determined next. For this,

the Routh–Hurwitz criterion is applied on the simpler characteristic

equation (12), which reveals

Number of unstable roots = Number of Sign changes

in the first column elements (NS)

Note that NS is parameterized in T as well, i.e., NS(T ), because the

Routh’s array contains T as the only free variable within the terms

bk. As bk(T ) are polynomials of T , the Routh’s array forms a first

column which consists of rational functions of T , and their numerators

and denominators are simple polynomials of T . The real roots of these

polynomials can be (exhaustively) calculated. It is clear that the sign

change in the first column elements will only come at these values of

T ’s. Their number is finite.

A3) Those values ofT are determined next, where a change in the NS

takes place. Let’s say there are m such points, which we call fTcg =
Tc1; Tc2; . . . ; Tcm. At each Tck and only at these Tck values, the char-

acteristic equation (12) possesses one pair of imaginary roots (�!cki),
as well as (3). There is a one-to-one mapping between fTcg and f!cg
sets, as per Routh’s Criterion. This can be confirmed by the differ-

ence between the successive NS values, which should be 2 as T varies

crossing any one of the fTcg values.

A noteworthy and interesting feature is observed at T = 0. As T

varies �" ! 0 ! +"(" � 1) the NS value drops by n although for

this transition there are no imaginary axis crossings of the characteristic

roots. This feature is due to the padding of the characteristic equation

from n degrees to 2n during the Rekasius substitution. Therefore, this

point (T = 0) should be overlooked when the set fTcg is formed,

as long as the variation of NS is “n”. The proof of this claim and the

treatment of degenerate cases when the variation of NS is not “n” are

left for another publication due to length restrictions here.

Before progressing further we state the two propositions mentioned

earlier and their proofs:

Proposition I: A given time delayed system (1) can exhibit only

a finite number (m) of purely imaginary characteristic roots �!cki,
k = 1; . . . ;m for all possible � 2 <+.

Proof: It is evident that the coefficients of (12) are polynomials

in T , and consequently the elements of the first column, fFCg, of

Routh’s array are rational polynomials of T . The number of real zeros

and poles of this set, fFCg, is therefore finite for varying �1 <

T < +1. Let us call this finite set fTcg. A subset of fTcg called

fTcg contains all the values of T for which NS registers a change (i.e.,

increases or decreases); fTcg 2 fTcg. At each one of the m elements

of fTcg

fTcg = Tc1; Tc2; . . . ; Tcm (13)

there is one pair of imaginary roots (�!cki) which crosses to the

other half of the complex plane. These !ck values are also determined

out of the Routh’s array. For the typical changes of NS, which is 2

at a Tck, it is clear that there is only one pair of imaginary roots at
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hand, !ck . Thus, the set f!cg is of dimension m and it is finite. For

the exceptional and degenerate cases, when successive NS values

differ by 4, 6, or higher valued even numbers, we find the respective

2; 3; . . . ; !ck’s again through Routh’s Criterion. In such cases the

array fTcg is also augmented by 2; 3; . . . repeated Tc values. This

situation does not change the proposition nor its utilization.

From (9) for each Tck (or the corresponding !ck), there are infin-

itely many time delays f�kg. In summary, the dynamics given in (1)

can exhibit only finite number of purely imaginary roots f!cig =
f!c1i; !c2i; . . . ; !cmig for infinitely many (but not dense) values of

time delays. Schematically, the correspondence is as follows:

Tck
generates

��������!!ck
generates

��������! �k`

k =1; 2; . . . ;m ` = 0; 1; 2; . . . ;1: (14)

Proposition II: As � reaches one of the infinitely many values of

�k`, k = 1; . . . ;m, ` = 0; 1; . . . ;1, the system in (1) possesses a

pair of imaginary characteristic roots at s = �!cki. The root tendency

(RT) at these locations as defined in (7) is:

RT =sgn Re
ds

d�

k =1; . . . ; m ` = 0; 1; . . . ;1 (15)

is invariant for a given !ck, independent of �k`.
Proof: From (3), the following is obtained by differentiation:

ds

d�
s=! i

=

n

j=0

ajjse
�j�s

n

j=0

da

ds
� jaj� e�j�s

(16)

for any one of !ck; k = 1; 2; . . . ;m. Notice in this expression ak(s)
is only a function of !ck. So is

e�j�s =
1� Ts
1 + Ts

j

k =1; . . . ;m ` = 0; 1; . . . ;1 (17)

which eliminates the dependence on � . Therefore all the terms in (16)

but the � in the denominator is independent of the particular time delay

involved.

We rewrite (16) dividing the numerator and the denominator by the

coefficient of � .

ds

d�
s=! i

=

s

��
: (18)

Consequently

RT =sgn Re
ds

d�
s=! i

=sgn Im

n

j=0

a0je
�j�s

n

j=0

jaje�j�s
: (19)

Using (17) and the ensuing arguments, it is clear that (19) is invariant

with respect to �k`. It only depends on Tcj or the corresponding !cj .

In short the characteristic roots of (1) cross the imaginary axis at m
locations, !cki, k = 1; . . . ; m for infinitely many delays, �k`, k =
1; . . . ;m, ` = 0; 1; . . . ;1. The root tendencies (or the root crossing

directions) at these points are independent of the corresponding delay,

�k`. We will show that this feature offers a very convenient tool in

determining the stability regions in � . It was also observed by Cooke

and van den Driessche [3] for scalar systems (n = 1) following an

analysis which is prohibitive to deploy for n > 1. To the knowledge of

the authors, investigations to date failed to recognize this property for

higher dimensional dynamics.

B) Having established the [!ck; f�kg], k = 1; . . . ;m sequence, we

now return to the main problem, and present structured steps of the

methodology (i.e., the deployment of D-Subdivision method).

• Form a table of �k`, k = 0; 1; . . . ;m, ` = 1; . . . ;1 and

RTj
�

= RTj
k

in ascending order of �k`. Notice the slight

breach of notation that we are suppressing s = !cki to simply k.

• Consider � = 0 for which the number of unstable roots is known

from Routh’s Criterion.

• Go to the smallest �k` > 0, assess the number of unstable roots

as � = �k` + ", 0 < " � 1 using the RTj
k

. Let us call this

number NU, which is obviously a function of � . If RT = +1 NU

increases by 2, if RT = �1 it decreases by 2. This step is where

we use the D-Subdivision method precisely.

• Repeat the previous step for the next �k`. Continue completing

the analysis until the target value of � is reached.

• Identify those regions in � , where NU(� ) = 0 as stable and

others as unstable.

This completes the procedural steps of the new method.

These steps could be even further simplified. Notice that �k` se-

quence (9) for a fixed k is periodic, with the period of ��k = 2�=!k.

The RTj
k

is the same for all of these points as per the Proposition II.

Then the table previously explained is achieved only with the knowl-

edge of

�k`; !ck;RT
k

k = 1; . . . ; m; ` = 0:

The stability regions of � can then be declared for arbitrarily large range

of time delays. This conclusion is possible due to the highlight contri-

bution of this work, Proposition II.

We can now express the number of unstable roots NU(�) as an ex-

plicit function of �

NU(�) = NU(0) +

m

k=1

�
� � �k0
��k

� U(�; �k0) � RTk (20)

where NU(0) is the number of unstable roots when � = 0,

U(�; �k0) = step function in � with the step taking place at �k0

U(�; �k0) =

0 0 < � < �k0
1 for � � �k0, !ck = 0

2 � � �k0, !ck 6= 0

�(x) = Ceiling function of x, � returns the smallest integer greater

than or equal to x. This expression NU(�) requires the knowledge of

four things

i) NU(0);
ii) �k1, k = 1; . . . ;m, the smallest � value corresponding to each

one of the Tck’s;

iii) ��k, k = 1; . . . ;m;

iv) RT
k

, k = 1; . . . ;m.

All of these quantities are calculated as described in the above text. And

these calculations can be completed within a single MAPLE file, the
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output of which is the stability outlook of the system in various regions

of time delay.

III. EXAMPLE CASE STUDY

Let us take A and B of (1) as

A =

�1 13:5 �1

�3 �1 �2

�2 �1 �4

B =

�5:9 7:1 �70:3

2 �1 5

2 0 6

: (21)

It can be shown that the system is stable for � = 0. The characteristic

roots are�2�2i and�2.9. The corresponding characteristic equation

to (3) is

a3e
�3�s + a2e

�2�s + a1e
��s + a0 = 0 (22)

where

a3(s) = 119:4;

a2(s) = 90:9s � 185:1;

a1(s) = 0:9s2 � 116:8s� 22:1;

a0(s) = s3 + 6s2 + 45:5s+ 111:0
The Rekasius substitution converts this into [corresponding to (12)]:

b6(T )s
6 + b5(T )s

5 + b4(T )s
4 + b3(T )s

3 + b2(T )s
2

+b1(T )s+ b0(T ) = 0

where

b6(T ) = T 3;

b5(T ) = 5:1T 3 + 3T 2;

b4(T ) = 253:2T 3 + 17:1T 2 + 3T ;

b3(T ) = �171:4T 3 + 162:4T 2 + 18:9T + 1;

b2(T ) = 898:4T 2 � 71:2T + 6:9;

b1(T ) = 137:8T + 19:6;

b0(T ) = 23:2.

The classical Routh’s array is formed for this polynomial. The

number of sign changes in the first column elements (NS) is depicted in

Fig. 1. NS indicates the number of right hand side (unstable) roots. No-

tice that the T values at five crossings are real, Tck 2 <; k = 1; . . . ; 5,

some of which are negative.

For T = 0 there is a change in NS by 3 (which is equal to n). We

ignore this point as stated earlier. It is critical to observe that at each

crossing (i.e., at each Tck) the NS value changes by 2, which implies

the presence of one pair of imaginary roots at each !ck. The points at

which the roots cross the imaginary axis are given in Table I. In short,

the example system can have purely imaginary roots only at the five fre-

quencies given on the table. No values of � can cause any other purely

imaginary characteristic root for this system. This is the consequence

of Proposition I. Therefore, if the system comes to resonance (meaning

the imaginary roots are the dominant ones) the respective resonance

frequency must be one of these five. This feature resembles the pole

placement procedure followed for a recent active vibration absorption

methodology [5], [9], [10]. In these studies, the absorber is sensitized

using the time delay as one of the control parameters.

Next, we expand the table by adding the corresponding � values from

(9) and RT (root tendency) from (19). Invariance property of Proposi-

tion II is obvious from this table. Periodicity of � can also be observed,

for instance in the case of T = �0:4269, �� = 2�=15:5032 =
0:4052. As Proposition II claims the RTs are all +1, i.e., for increasing

� the characteristic roots move to the unstable right-half plane (RHP)

through this crossing point !c1i = �15:5032i, creating an increase in

NU by 2 each time.

The stability posture of the system is given in the third column

(Stable: S, Unstable: U). The number of roots causing the instability

Fig. 1. The number of sign changes (NS).

TABLE I
STABILITY REGIONS (SHADED)

is also stated on the same column. This table completes the analysis.

It reveals that there are two stable regions of � (shaded)

0 <� < 0:1624

0:1859 <� < 0:222

with zero unstable roots. After � > 0:222 stability never returns.

IV. CONCLUSION

A structured method is presented for assessing the stability of linear

time invariant systems with time delayed state feedback. The method

starts with a substitution for the exponential terms in the character-

istic equation just to facilitate the determination of the root crossing

points over the imaginary axis, and the corresponding delays. Then the

D-Subdivision method is deployed for the intervals of the delay, which

renders stability outlook of the system.

There are two important contributory findings of the work.

a) This class of systems can have only finite number of purely imag-

inary characteristic roots and these roots are generated by in-

finitely many discrete (not dense) values of delays. The method

solves all of these frequencies and the corresponding delays.

b) At each one of these finite number of imaginary roots, the RTs

are invariant with respect to delay. That is, increasing the delay

causes the same root crossing direction. They move either to un-

stable or stable half plane at the given frequency regardless of

the value of � which creates them.
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Especially the second finding facilitates a very practical stability as-

sessment tool. It is exact, considerably less involved in contrast to the

alternative methods in the literature. More importantly, it results in an

explicit expression for the number of unstable roots for any value of

delay, � .
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