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A Time-Scale Decomposition Approach to Adaptive
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Abstract—Fair resource allocation in high-speed networks, such lead to the optimal solution of the convex program. Further, it
as the Internet, can be viewed as a constrained optimization pro- has been shown in [7] that the shadow prices can be conveyed
gram. Kelly et al. have shown that an unconstrained penalty func- to the sources using a single-bit mark in each packet

tion formulation of this problem can be used to design congestion In thi tudv the adaptive desi f th ki
controllers that are stable. In this paper, we examine the question n this paper, we study the adaptive design of the marking

of providing feedback from the network such that the congestion rates at each node to drive network to the optimal fluid op-
controllers derived from the penalty function formulation lead to  erating point in the case where the congestion controllers are

the solution of the original unconstrained problem. This can be derived using a penalty function formulation. The penalty func-
viewed as the decentralized design of explicit congestion notifica- tion formulation is appealing due to the close connection be-

tion (ECN) marking rates at each node in the Internet to ensure ¢ th Hi troll derived and th 1k
global loss-free operation of a fluid model of the network. We then ween the congestion controller so derived an e well-xnown

look at the stability of such a scheme using a time-scale decompo- T CP protocol [6]. We seek an adaptive algorithm that modi-
sition of the system. This results in two seperate systems which are fies the fraction of packets marked (i.e., the marking probability
stable individually, and we show that under certain assumptions in a model that treats packets as discrete entities) at each node
the entire system is semiglobally stable and converges fast to theg,cpy that the total fluid entering each link is less than or equal
equilibrium point exponentially. to the capacity of the link (i.e., near loss-free operation) while

Index Terms—Adaptive virtual queue, congestion control, maximizing the sum of the utilities of all the users of the net-
explicit C(_)ngestion notification (ECN) marking, Internet, singular work (socially optimal operation]By “capacity of the link,” we
perturbations. mean the maximum arrival rate at the link that will maintain

a near loss-free operatiorror example, in a practical network
I. INTRODUCTION with variable packet sizes, round-trip delays and buffers, this

R ECENTLY, there has been an explosive growth in the dgJaximum arrival rate may be as high as 98% of the actual ca-

velopment of new applications that use the Internet. ASnglcity of the link. The motivation for allowing high utilization

result, congestion and packet loss resulting from congestion framnes from many-Sources Igrge-dgwatmn resylts ,[8] Wh,',Ch sug-
st that low-loss operation is possible even with high utilization

become a big problem. To offer multimedia services over t hen th ber of 4 th itv of th work
Internet, some of which may require low-loss, low-delay opef- en the number of users and the capacity of the network are

ation, it is desirable to provide explicit congestion notificatio . . . . .
(ECN) [1]-[3]. Therefore, there has been a surge of interest ir1For certain constrained nonlinear programming problems, it
’ is well-known that penalty functions can be designed such that

designing best-effort service networks that can deliver low-loss, : ; ;
low-delay service by encouraging the users to adapt to netwi solution of the unconstrained problem with these penalty

congestion using minimal information from the network in th jinctions leads to the SOIUUO.n of the original, constrained
form of ECN marks [1], [4]-[6]. problem. Such penalty functions are calledact penalty

In a fluid model, the problem of fair resource allocation to he{ynct|ons[9, Se_c. 4.3]. Thus,. th_e adaptive _algorlthm n .th.'s
r can be viewed as a distributed algorithm for obtaining

erogeneous users over a heterogeneous network can be posga%%

a convex program [4]-[6]. The design of congestion controllefg(aCt pgnalty functions, without each node having any direct

then follows by considering either a penalty function formuldpformat'on about the topology OT the rest_of the network. .

tion of the problem [4], [6] or a dual formulation of the problem The key features of our adaptive algorithm are summarized

[5]. For the dual problem, it has been shown in [5], that a simpf"e‘S follows.

adaptive algorithm to estimate the shadow prices at each nodel) Each node chooses an algorithm according to which it

based only on total flow measurements at each node, together Marks packets.

with appropriate congestion control algorithms for the users, can2) The marking algorithm at each node could be different,

i.e., the nodes need not agree on the same algorithm.
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reasonable properties: it should an increasing function fsults in a near-loss free operation throughout the network.
the total arrival rate and a decreasing function of the vilA/e use the term near-loss free operation to indicate that the
tual capacity. More technical conditions are discussed fluid model of the system is loss free. However, the presence of
the later sections. extremely short flows and other randomness in the system will
5) Each node uses an algorithm to adapt its virtual capacigad to some loss unless one operates the systems at slightly
to drive the fluid model of the network toward loss-freeless than full utilization. This is explored further in [11] for the
socially optimal operation. The adaptive algorithm at ease of fixed virtual capacities.
node uses only the total flow rate at that node, i.e., no The rest of this paper is organized as follows. In Section II,

per-flow measurements are required. we first describe the network model and define the system opti-
With this adaptation at the links, the dynamics of the networRization problem. We will also define and state our assumptions
can be thought of as evolving at two timescales. on the marking algorithms at the nodes. In Section I, we prove

%at the algorithm succeeds in conveying the sum of the shadow
grices of each route to the users of the network. We first show the
existence of virtual capacities that results in a loss-free network.

1) The sources implement the congestion-controllers
maximize the sum of the utilities of all the users (minu

a penalty function) using the feedback from the links. YVe will then show that with these virtual capacities, we obtain

2) E\grgggl;lgnvf?(l)f\lli gg&iﬁg@? ifsulne Cstlsot?];g (t)r:aetthSI tgtﬁt]d%e system optimum rates. We then show that the algorithm in-
capacity of the link. éed converges to virtual capacities that results in a loss-free, so-

cially optimal operation. We then proceed to prove the stability

So, there is a natural tV\_/o—time s_cale b(_ehavior ofthe systemg/pthe reduced-system. In Section IV, we prove the semiglobal
that the sources adapt quickly while the links adapt more slow| Xponential stability of the entire system. Concluding remarks

We can now decompose the system into two parts. are provided in Section V. For ease of exposition, some of the
1) The slow system or the reduced systkmnthis system, we proofs are presented in the Appendix (Section VII).
assume that the user rates have converged for a particular
virtual capacity at the links and the links then modify their II. SYSTEM MODEL

virtual capacities based on these optimum rates. This is
P b \é/e adopt the system model described by Kelly in [12]. Con-

the slow model because we assume that the changes at tg K with a sef of link 4 letC be th .
links are slow enough to make the user rates’ convergeSI er a network with a sel of links and letc; be the capacity

2) The boundary-layer systendere, we assume that the vir—Of Imlk l,],?fobr ! he L. Le:c a rou_t;r be a nonempiy Squ?et df
tual capacity remains constant, and therefore, the syst@ﬂphet ’ eF eseto pl_oswm edrout'fges.;&“u _hl e \7N
is characterized by the set of congestion-controllers fgp that route- traverses link and set5,; = 0 otherwise. We

the original system with a fixed virtual capacity at eaCPﬁi” associate an user with each route and hence we will use
link the term “user” and “route” interchangeably throughout this

The entire system’s response to external stimuli (i.e initiaf e Let user generate traffic at rate,.. The ratez, is as-
o sumed to have a utility/,.(z,.) to userr. Assume that/..(-) is

condition) can now be characterized by the presence of slgw__ " : : ) i \
continuously differentiable, strictly concave, increasing func-

and fast transients. Loosely speaking, we can approximate | en in the interval(0, o) and we assume thaf,(z,) is un-

slow transient by the reduced system and the fast transient is the

difference between the full system and the reduced-system [],t 'gﬂgzgl?tS?Ex_;g;?ezn?)?rseutchhatae?;:c?izir i%iﬁkig;e grc])gzero

In this paper, we study the stability properties of the entir_el/xj LetU = (U(-)r € R)z = (2.7 € R) and
system which comprises the congestion-controllers of the _ (Col € £). The opti’mal rates’forthis neiwork e

users and the_ _adaptive ma_rking algorithm at the links. _-Eﬂ)tained by solving the following maximization problem:
study the stability of the entire system, we start by studying

the reduced-model and the boundary-layer mode_l of the SYSTEM(U/, S, C) :

system. The boundary-layer model of the system is shown

to be globally asymptotically stable in [4]. In this paper, we Ig;“? AUn () @)
will show that the reduced system is stable whenever all the . "

links in the network are fully utilized. We will also show that subject to

both the reduced system and the boundary-layer system are ST <0 (2)
semiglobally exponentially stable. By semiglobal exponential x>0 3)

stability, we mean that the system is exponentially stable

whenever the system is constrained to lie in a compact sehereA,. > 0. The above maximization problem has a strictly
We will then show that under certain assumptions, the enticencave objective function and the maximization is performed
system is semiglobally stable and converges to the stable paiaér a compact set. Therefore, the above maximization problem
exponentially. In congestion-controlled systems such as thas a unique solution. In the rest of the paper, we refer to the
Internet, the transmission rates of all sources are constraingolution to the aforementioned maximization problem as the
Thus, the set of allowable initial conditions is compact. Thersystem optimal rates

fore, “semiglobal” is effectively equivalent to global stability Let each linki in the network generate feedback in the form
in our context. We will also show that the equilibrium poinbf ECN marks. Assume that the fraction of packets marked is
maximizes the sum of the utilities of all the users and alsofunction of the total arrival rate\;) and the virtual capacity
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(Cy) of the link and that the total marks are distributed amorthus ensure loss-free operation. We also need to take care that
the users in proportion to their flow rates. We also assume theg are not under-utilizing the link sincg <« C; also results
the same flow is presented by a user to all links on its route, a loss-free operation. Therefore, we negd~ C; where
even though the flow will actually be “thinned” in downstreanpossible. This motivates our adaptive algorithm which is given
links due to losses at upstream linkeK independenceas- by the following.

sumption). Therefore, the total flow into any liiks given by Algorithm 11.1: Each linki € £ updates its virtual capacity
A= 30aer Tre Letp (N, él) be the fraction of the total flow according to the ordinary differential equation (ODE)

that is marked by link. Therefore, if User has a rate;,. going . 1

into link {, then the total rate at which marks are received by Cir=-—a—————=(C—X\) (8)
Userr from link 7 is p;(\;, Cy)z,.. We will make the following Ipi(Ar, C)/9C

assumption regarding the marking functions at each link.  wherea > 0 is the damping factor. To avoid; becoming neg-

Assumption 1:The marking function at each link ative, we set’; = 0 wheneverC; = 0 and)\; > Cj. m
I € Liplg,s)q > 0,5 > 0is assumed to satisfy theNote that the adaptive algorithm increases the virtual capacity
following conditions: whenever the total flow into the link is lower than the capacity of
i) 0< pi(g,s) <1forallg,s; the link. This results in a reduced number of marks to the users
i) limg—oopifg,s) = 1foralls; using that link which results in the users increasing their rates.
i) lims_, o pi(g,s) = 0forall g; Also, note that the algorithm is distributed in nature and does
iv) lim,_,opi(q,s) = 1forallg; not require any transfer of information from other nodes/links.
V) pi(q, s) is strictly increasing iy and strictly decreasing This algorithm is a modification of the one presented in [6].
ins; Here, we have introduced the derivative of the marking rate with
vi) pi(g,s) is twice continuously differentiable in both itsrespect to the virtual capacity in the adaptive algorithm. This
arguments; modification is necessary to our proof of convergence. How-
vii) For eachl € £, there exists a virtual capaci@l(d) >0 ever, simulation studies in [6] suggest that the algorithm may
which solves converge without the derivative term and the proof of this is an

open problem.
The complete system of differential equations governing the

C, = Z U,’,_l {Aﬁ (Cy, Ol)} . (4) behavior of the network can now be written down as
r:ler r
da.(t)

. . . . ) =|A,— (M, C VreR
This assumption states that if we consider each ling £ dt < l% Pl G ) re
in isolation (by assuming all the other links have infinite ca- 9)

. i . = (d)
pacity), then we can find a virtual capacﬂ?;f such that solu- 4 o
tion (z},r € [) to the optimization problem = ——(C1—N\) VleL. (10)

5 dt Ipi( A, Cr)/OC
max AU(zy) — /3/ et iz, C’l) dz (5)
0

{arirel} £ [ll. STABILITY ANALYSIS OF THE REDUCED SYSTEM

satisfiesS> _,o* = Cj. In other words, we assume that We consider the system of differential equations governing
rre -

the network is provisioned such that each node consideredfy§ Pehavior of the network
|solat|qn can choose a virtual capacity to provide loss-free ¢z, .(¢) _

operation. [ a

Now, let each User employ the congestion-control algorithm,

E P )\I,Ol> VreR
llC1
(11)

. dél 67
Ty = i )\1, Cl Vr eR. (6) — = —*(Cl - )\1) vie L. (12)
< " g;, ) dt Api( M, Cr)/OC
This is an additive-increase, multiplicative-decrease algorithY 1€tting 7 = at, we can rewrite (11)~(12) as
wherein the user reduces its rate proportional to the number of
dz,.(t)
marks it receives. From [4], we know that the congestion-control « ar 7 U’ Z (s Cz VreR
scheme given by (6) converges to the unique optimal solution of l ler
the optimization problem given by (13)

dé] 1
—— =——————(C1—N\) VIeL 14
I[Iglga}i( AU (2,) [32/ (7) dr ap(\, Cz)/aCl( l 1) (14)
i er This reduces (9)—(10) to (13)—(14), which is a standard singular

The optimal solution of the optimization problem given by (7perturbation model of the system [10]. If we set= 0, we get
depends upon the virtual capacity at each link. Therefore, by

adaptively changing the virtual capacities, we can ensure that <A _ Z n(M, C) ) —0. (15)
the total flow into the link is less than the capacity of the link and l ler
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We know from [6] that there exists a unique ropt’} to will state and prove some lemmas which will be used in the
the above algebraic equation that also solves the optimizatiexistence proof.

problem givenby (7). Lex; = > ... x;.. The reduced-system Consider the single-link optimization problem

is given by

max AU () (29)
Z e Zr ~ {xr}:lerr:IET
ot = arg mﬁxz AnlUn(wr) =3 ; /0 il G dz, subjectto 3"z, < ¢ (20)
ridéer
. (16) 2. >0 Vriler 1)
= (Cr— A7) VledL. a7)

T Ip(Nf, Cr)/9C, The Lagrangian of this maximization problem can be written as

This model assumes that = (z,,» € R), whose velocity B
given by is large whenx is small, converges rapidly to the G(x, 1) = Z ArUp(r) =1 Z @y — G (22)
equilibrium point of (13). The boundary-layer system is given rier rier

by wherey, is the Lagrange multiplier. Therefore, the optimal so-
lution satisfies [9]
dx,.(t) 54 -
= Ar I 3 ’ = [
dr < Ut (5) g; pux Cl)) rer =0 zl: n<
der r:{Cr
(18) w>0 it S m=0 (23)
where{él} is treated as a constant parameter. It is shown in [4] rider

that the boundary-layer system is globally asymptotically stable.Lemma IIl.1: The feedback from the link in a single link
We will study the stability of the reduced system in this sectiogase wher(; = él(d), whereél(d) is defined in Assumption
We will first define an invariant point of the algorithm given inl, is equal to the Lagrange multiplier obtained by solving the
(17) as follows. constrained optimization problem in (19). In other words
Definition 111.1: A point {C;} is an invariant point if (&)
v = /3])1 (Cl, Cl ) .

él:O V{ZZOI<OO}

) A Proof: See Appendix VII.A ]
Ci>20 WY{i:C;=o0}. Next, let us consider the LagrangianSf STEM(U, S, ©)
Before discussing the stability of the adaptive algorithm, we will
first prove the existence of virtual capacities at each link so thatt(A, ) = max > AUn(w,) = > | Y 2, = C;
socially optimal operation can be guaranteed and that these vir- erd 5 leL rijer

tual capacities are a\_lso an invariant pomt _of the _system. T%ereu — (u : 1 € £) is the Lagrange multiplier. Therefore,
shows that there exists at least one invariant point of the

: . . WF know that the optimal solution satisfies [9]
duced-system that guarantees a socially optimal operation. We

will then proceed to show that all the invariant points of the =0 if Z 7 < C)
reduced-system in (16)—(17) ensure socially optimal operation rler
(i.e., they result in system optimal rates). We then prove the >0 if Z 2 =C, (24)

global asymptotic stability of the reduced-system.

 Let{z,} be the system optimal rates obtained by solvin
SYSTEM(U, 5,C) and leth; = 3 .,z foralll € L.

s Let z*({Ci}) = (=z:({Ci}),» € R) be the solution
of (16) with C; = ¢, for all I € L, where{C,}

r:lEr
Ig_]et z, denote the system optimal rates obtained by solving
SYSTEM(U, S,C) and letA; = >~ .. %.. By writing the
first-order necessary conditions, we get

is an invariant point defined in Definition IIl.1. Let ,
NUGH = Yeei({G)) forall 1 e £ and =Y vt % . (25)
A({Gh) = (NG e £). ) riler jger "

* Lo({C1}) = {setofcongestedlinksi.e\j({Ci}) = | emmall.2: 4 < v foralll e £.
Cj, atan invariant poin{q} o_f the algorithny. _ Proof: See Ap_pendix VII.B. -

* L, = {setof congested links i.e\; = C;, atthe solution  Thegrem |11.1: (Existence Theorem) There exists virtual
of SYSTEM(U, 5, O)}. capacities{C;} at each linkl € £ such that the unique

maximum of the optimization problem given by (7) also solves

We show in this section that there exists virtual capacities at Proof: The optimization problem is given by
each link that allows the congestion controllers obtained from

A
the penalty function formulation to drive the system toward the InaXZ A () — Z/ lpl(z, & da.
solution of SYSTEM(U, S, C). Before showing this result, we {er} = ez /0
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Let * be the solution to the above optimization problem and/e also know that
let \j = >, e, @y forall 7 € £. Writing down the first-order -

necessary conditions, we get 4| B . A
:ZU; A—ij()‘j’cj)

Al
5) riler r JijEr
T, = < f Z pk ) . -

*

Ar k:ker 1| B I5] A
= Z le ' ~ (AL 0) + Z pj()‘jvcj)
Therefore, for each link € £ rler _Ar A, Jijeril
. (B . - . _—
A= Z UL <A_, Z AL C). ) However,p(q, s) is increasing iny. Therefore
riler k:kEr N
N d to show that th iftg [ € £ that sol o bﬁpl( 0
ow, we need to show that there exi at solves
Sl € = BoN0+8 D pi(A;,Cy) > Bp(CL0).
3 . Jigerg#l
=Y Ut [ > i, ) (26)
riler Ar k:ker Since,U/~1 is a strictly decreasing function an¥, > 0, we
Comparing (26) and (25), let us set have
= BpA,Cr) VIEL. B B . P
- o Cr < Z U/ ! A— 1()\1, ) Z Kpj()\j,cj')
If \i < Gy, then from (24); = Bpi(\i, Ci) = 0. Therefore, ridér ger Al
setC; = oo for such links. We now need to show that there - L
exists aC; which will satisfy the above equation for all links for Z t _pl (CL0)| =G

which X, = C;. From Lemma (lll.1), there exists @* that rider

solvesy; = ﬁpl(cla_él)-ﬁ'soﬂzz())m Lemma (I1.2),.u < 1. which is a contradiction. Hence, condition 3) is not possible.
Therefore, there exists@ > C;™ for all / € £ such that Therefore, either conditions 1) or 2) should be satisfied when

_ I~ . LY ) Ol =0. |
w=PoiA,C) Vie{jel: <} Theorem I11.2: The user rates obtained at any invariant point

This shows the existence ofa at each link € £ such that the Of the system givenin (16)—(17) equals the system optimal rates.
unique maximum of the optimization problem given by (7) also ~ Proof: Suppose there exists an invariant pfigt }, such

solves the convex program given BYSTEM((/, S, C). m  thatA*({C1}) does not solve8YSTEM(U, S, C). LetJ (z) de-
note the objective function in the maximization problem given

B. Properties of Invariant Points by (7). Then, the maximum value of the optimization-problem

In this section, we will show that the invariant points of thg) is
reduced-system given by (16)—(17) indeed lead to the socially
optimal operation. Moreover, the rates obtained at the invariantj(x ) = > AU (a}) - /3 Elcg fo iz )d
points are the system optimal rates. =B iec\c., fo pi(z,Cr) dz

Lemmalil.3: The user rate§\*({C:})) atan invariant point 27)
{C} satisfies the following conditions:

) R Equation (27) can be rewritten as
N =C Vie{jeLl:C; <o}

N <C Vlel{jeLl:C; =} S AU (zr) — /3216& e S iz, Cr) dz
Proof: From (17) and Definition 111.1(; is an invariant J(@") = ~F Liec, n(EVE )fo puz Co) dz
point iff ﬁzleg\g fO pl z Ol) dz
1) A = Cif €1 < o0; (28)
2) )\; < Cy andql = 00,
3) Ar > CrandC; = 0. Also
Therefore, we need to show that condition 3) is not possible. _ C A
Assume that it is possible, i.€; = 0 and} > C;. Also, from 2 Arlinee) =P ez ne, Jo pilz C1)dz
Assumption 1, we know thaft'l(d) > 0. From Assumption 1 and J(@) =4 -8 Elc,c m(,c\,c ) fo pi(z Cl) dz—
the fact that//~* is a strictly decreasing function, we know that /3El€£\£ fo DL 2701)652
1| B ~(d (29)
c=Y Ut |:A—Tpl (cn.e)
riler However, we know that
> Z -t [ﬁpz(Cz, )} ) 1) >, AU(z) > 3, AU (zF), as{z,} is the unique
vt A maximum point ofSYSTEM(U, 5, O);
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2) _apl((‘))‘é{;él) 0 . 0
Ap2(A3,C2)

N - 0 _ oY e 0

-3 Z / iz b= : : 2 0
ICLLN(ENL,) . 0 0 _W

/\ M
DN E (33)
1€L,N(L\L,)

_ We know thatB > 0 from Assumption 1. We also know that
as)\l<leoraIIleL NLN\ Ly); forallr € R

3) /321C£\£ fo pi(z,C)dz = 0asC; = oo forall | €

LNL zh=U </3 Zpk )

Therefore A, keker

J(z) > T (z"). Therefore, differentiating the above expression with respect to

o o . . C;, we get
However, the invariant point is the optimal solution to the opti-

mization problem (7) which leads to a contradiction. Therefore, = 1 (ﬂ > Apr(Np,Ch) » d&)
the rates obtained at the invariant point of the algorithm also “*r _ ) UZ(=;) kik€r OAY k€ dc;

solve the system probleRYSTEM(/, S, C). [ dc; +L,,(w 3 f Opi E’))\c Ci )IZE,,\# ERVieL

C. Stability of the Reduced-System (34)
In this section, we will prove that the reduced-system given wherel, is the indicator function that eveatoccurs. Define

by (16)—(17) is globally asymptotically stable using a Lyapunawe matrixA as

function. We will make the following assumption to show the

stability of the reduced-system. —/JZMGT M r#£q
Assumption 2:All the links in the network are fully utilized ~ 4re = N (35)

. . o AU (7)) = B Ok A:Ch)

i.e., the solution t& YSTEM(U/, S, C) satisfies \; = C; for all k:k€r T OA q

lel.

Let us consider the function We can now rewrite (34) as

) day BopiALCO) I
WX (€)= 3 (G- N2 (30) &, oc, i€t
el ) japz()‘g 7C )Iz
- Al | 2 |f 2l vies (36)
W(A*) is a positive convex function. Le/ be the number of
links in the network, i.e.M = card £). and N be the number doy /3"’1’7 (/\7 :C D J
. ) . dc; tEN
of routes. We will show tha¥V(A}) is a Lyapunov function for
the system described by (16)—(17). Let us now consider the titHewever, A is the Hessian of
derivative of W(A*). We get
de & oN dt reR fes
AN; dc, Since, (37) is a strictly concave functiod, is strictly nega-
= Z —2.(Cr = A]) Z e tive—definite, i.e.,A < 0, for all {C;}. Therefore,A~!
les keL ICk Let
=-2 Z(OI - d}  da}
lel dC dC s
* * dxy dz;
X Z & _(Ck T )\k) _ Q.= dcy T dCas (38)
kel de 8pk()\;,0k)/80k : :
_ o TAp-1 da’y da’y
=2 A5 (31) dCy T dCu A NXM
where and
aP1()\ ,C1) an()\l ,Cw)
dA] AN oC, et oG, 1Ml
Al A1 3y apl()\l Cl)I ap;\[()\:v C]\/[)
Z% ddCAE’ gl B ii D:=p aCy 0Cn Me2 -8B
N B I T (32) : :
. . ’ . Ip1 ()\T,él) Opar ()\T\'/,,CM)
: : : === ey e R e
dX%, dX\}, Ch — A% 9 9C
. M (39)

dC dChr
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where ST is the routing matrix defined in Section 1l. Now, weWe will make use of Assumption 3 to show that there exists an

can rewrite (36) as « small enough such that the entire system given by (11)—(12)
or equivalently (13)—(14) is semiglobally exponentially stable.
AQr=D (40)  Note that Assumption 3 encompasses Assumption 2 and also
=>Q=A"'D ensures that there exists an unigti¢hat achieves the equilib-
= ST = STA" 1D rium point. R R
S A= —BSTA'SB. (41) We define the vectors\* := (A\},l € £),C := (O}, €

L),z = (xp,r € R),andC — X" := (C; — X}, 1l € £). The

The next theorem shows that the system described by (16)—(@fginal system (13)—(14) can be written as

is globally asymptotically stable and the invariant points solve . -

SYSTEM(U, S, C). ot = f(z,0) (45)
Theorem 1I1.3: The strictly convex functionV(\*) is a é:g(x,é) (46)

Lyapunov function for the system of differential equations

(16)-(17). The unique valué€);} at W(A*) = 0 is a stable where f is a continuously differentiable function inand C,

point of the system, to which all trajectories converge. Morénd

over,{\;} solvesSYSTEM(U, S, C). - C—3 . c®r ifC, > 0
Proof: We know thatW()\*) is a strictly convex function gi(x, C) = { (C-3 z)F ifC =0
and it has a unique minimizing value. Further, from (31) el l
VO Note thaty(z, C) is continuously differentiable everywhere ex-
= —2¢TAB™1¢. (42) cept at those points whef& = 0 and), > C; for somei. We
dt will now state a sequence of lemmas and theorems that would
Using (41), we can rewrite (42) as be useful to prove the main result of this section.
. Lemma IV.1: Let z*(C) be the unique root of the equation
dy\il(t)\ ) _ 2847 5T A"LSBB~'¢ = 2847 ST A~1 5. f(z,C) = 0. Thenz*(C) is a continuously differentiable func-
tion of C.
(43) Proof: See Appendix VII.C. ]
SinceA~! < 0, we getSA—1S7T < 0. Hence The following lemma gives an upper bound to the virtual ca-
- pacity at a link in the reduced system (17). This lemma is useful
AW(A*) <0 Vi (44) in showing that the virtual capacity in the reduced system be-
dt  — ) longs to a compact set. We can then use this to bound the virtual
Since, we have assumed that the original probleﬁff\pacity in the original singular perturbation system (11)—(12).
SYSTEM(I/, $,C) has all links utilzed ie.,\, = ¢, -emmalV.2:Letc;solve
from Lemma 111.3, we know that all the invariant points of Bo(Cr, Cy) = A, U’(Cl) (47)

the system has = C;. Therefore W(\*(C)) = 0 at the

invariant points. Therefore from LaSalle’s invariance prrncrpl@,hereU () is the utility function of one of the flows that passes
[10], the system of differential functions (16)—(17) converge tgy through linkl. Then, there exists#a< oo, such that for all

the invariant points of the algorithm. B ¢ > { Cy(t) in the reduced system belongs[en,C;], where
Thus, we have shown that the reduced-system is asymptg)ﬁ S 1
caIIy stable with the mvarrant points Ieadrng to the system op-  proof: See Appendix VII.D -

optimal solution, i.e.A; = Cy, for all links I € £. Note that (g, ,¢y], wheren; is some arbrtrary number greater than one
even though the; = C;, for all I € £ is the unique equilib- g9 therefore’(¢) € [0,n,Cy] for all t > 0. Define
rium point, there might be many values @fthat achieves this

equilibrium point. For this reason, we use LaSalle’s invariance Bz = {(u1,u2,...,up) : 0 <y < méi, n; > 1,
principle in the proof to show stability. We will now show that V1<i<M,}
the entire system is semiglobally exponentially stable under cer- -7
tain conditions. Toward this, we will first show that both the reyhere A7 is the number of links in the network, i.edd =

duced-system and the boundary-layer system are semiglob@&ycr/;), We know that,é(t) € By, forallt > 0in the re-

exponentially stable. duced system. Note th#;. is a compact set and that the vir-
tual capacitieC;} that lead to the system optimal rates (i.e.,
IV. STABILITY OF THE OVERALL SYSTEM the solution toSYSTEM(/, S, C)) lies in the interior ofBc..

In this section, we will show that the singularly perturbed herefore, to prever® from leavingB;. in the original model,
system is semiglobally exponentially stable under an additionaé setC; = 0, whenevelC; = n;C; and\; < C.
assumption. We will assume that the system satisfies the fol=rom Section IIl, we know that the system is globally
lowing assumption. asymptotically stable when all the links are fully utilized
Assumption 3:Each link has at least one flow that passes the solution to the original constrained optimization
only through it. m  problem SYSTEM(U, S, C). We will now show that under
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Assumption 3, the reduced-system (17)s&miglobally expo- such that the system is locally exponentially stable uniformly in

nentially stable Appealing to Lemma IV.2, we requig(0) to  C, for all (z, C) € {||lz — z*(C)|| < 7} x Be.. ]
lie in B:.. We rewrite (17) as Lemma IV.3 shows that the boundary- Iayer system is locally
. exponentially stable uniformly i. We can now show that
A" =ABTHC - \") the boundary-layer system is semiglobally exponentially stable.
= _/jsTA—lsBB_l(C -\ i.e., if the user rates are constrained to lie in any compact set
—BSTA™LS(C — AY). B, the_n the boundary-layer system is exponentlally stable uni-
formly in C for all [|=(0)|| € B.. Note that we requirés,. to
Defining C — A* = ¢, we can rewrite (17) as contain the sefz*(C) : C' € Bg}. SinceB is a compact set
andz*(C ~') is a continuously dlfferentlable function 6f, the set
é=pBSTA IS¢, (48) {2*(C): C € B} is also compact.

Theorem IV.2: The boundary-layer system given by (18) is
The Lyapunov function (30) can now be rewritten in termgof semiglobally exponentially stable uniformly {mj}

as Proof: See Appendix VII.F |
We now state the main result of the paper.
— 4T .
W)= ¢"¢- (49) Theorem IV.3: Suppose the initial conditiong0) andC(0)
The following theorem shows that the reduced system @ the systemlie inacompact set. Then, there exists amall
semiglobally exponentially stable. enough such that the singularly perturbed system (45)—(46) is
Theorem IV.1:Under Assumption 3, the reduced systeriXPonentially stable. Moreover, the unique vale} at the
given by (17) is semiglobally exponentially stable. stable point of the system solvBY STEM(U, 5, C).
Proof: See Appendix VII.E. ] Proof: See Appendix VII.G. u
_ NOTE: We need Assumption 3 to show that there is an unique
C which solves the optimization problem. Therefore, we can V. CONCLUSION

now look at the problem from th&* space and then convert it

back into theC’ space as there exists a bijective map from the In this paper, we have shown that the shadow prices

\* space to th& space. (Lagrange multipliers) of each link can be communicated to
We know that the boundary-layer system is globally asymg€ end hosts even in networks where each node may use a

totically stable [4]. We will now show that the boundary-layeglifferent marking algorithm. This is achieved by adapting

system is locally exponentially stable uniformlydn the marking probabilities (i.e., the fraction of marked packets
Lemma IV.3: The boundary-layer system given by (18) is loin a fluid model) to attempt to drive the link utilization to a

cally exponentially stable uniformly ifC'}. That s, there exists desired level. Even if a link is underutilized in the optimal
ar > 0, such that fluid resource allocation, this scheme succeeds in conveying

. . . the correct information to the end hosts. We have also shown
l|z(2, ||=(0)|], C) — " (O)|] < K||z(0) — «*(C)||exp[—~t]  that the entire system comprising of congestion-controllers
at the sources and the link adaptation scheme at the links is

for all (, C) € {|lx —«*(C)|| < r} x Be.. globally exponentially stable under some assumptions. This
Proof: Linearizing the boundary-layer system (18) aroung achieved by appealing to the singular-perturbation theory
the equilibrium point we get and decomposing the system into two systems, a slow system

(or the reduced system) and a fast system (or boundary-layer
system). It is then shown that both the reduced system and
the boundary-layer system are exponentially stable. Moreover,
the boundary-layer system is shown to be exponentially stable
uniformly with respect to the virtual capacity. We then show

Ai = CAAz (50)

where A is the Hessian matrix defined in (35) and C is the di;
agonal matrix defined as

ﬁ 0 .. 0 that the entire system is globally exponentially stable.
10 ' L 0 We have shown the stability of the entire system assuming
C = Uz(e2) that each link has a flow that passes only through it. While this
: : e 0 is a limitation, we can approximate any system using this model
0 0 ... m by defining a flow through each link which has a utility function

equal to a strictly increasing concave function multiplied by an
SinceC > 0, all the eigenvalues d@f' A are negative. Therefore, arbitrarily small weighting factor. An open problem is to show
the system is locally exponentially stable. Igt.x(CA) < 0 thatthe stability of a such an approximation implies the stability
be the maximum eigenvalue 6tA. We know that the eigen- of the original system.

values are continuous functions of the element€’df, the el-  In a real network, in addition to controllable flows, there
ements ofC' A are continuous functions @' and C lies in a would be uncontrollable flows such as very short file trans-
compact seB3;. Thereforemaxg pmax(CA) < 0, and hence, fers. These would act as stochastic disturbances to the conges-
C A is uniformly Hurwitz inC. Moreover, the elements ¢fA  tion-controlled long flows. We have studied this phenomenon
are continuously differentiable functions©f Therefore, using using simulations. A challenging open question is to design a
[10, Lemma 5.12], we can conclude that there exists>a 0  framework to incorporate these effects in the design of socially
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optimal, loss-free, delay-free networks. A practical solution 8. Proof of Lemma IV.1
this problem is to design the adaptation algorithm to drive eachgq (40), we get
link’s utilization to a value smaller than 1 [6]. A mathematical
model to drive the choice of this utilization would be desirable. Q= A"1D.
In practice, the step-size parametehas to be chosen as
a function of the round-trip propagation delays of the users nce, the derivative exists at each poirit{C) is a continuous
achieve stability. We have studied the problem of desigaingfunction. Also, each element gf 1 andD are continuous func-
to ensure stability in [13]. tions of C. Hencez*(C') is a continuously differentiable func-

tion of C. [ ]
APPENDIX |

D. Proof of Lemma IV.2

Let us suppose that each link has at least one flow that is
Let us consider link. Let the solution to the single link opti- common to two or more links. If not, then the link is isolated
mization problem (19) béj,. : [ € r). It can be easily seen thatfrom the rest of the network and this case can be handled easily.

> ricr Ur = Cr. Writing down the first-order necessary condi\We need to show that, > C, implies A; > C;. Assume not,

A. Proof of Lemma lll.1

tions for the Lagrangian, we get i.e,C; > él and); < (. Thereforex;“: < C; which implies
A;UNx}) > A;UH(Cr). We know that
1| ™
C = ui—t {—} . (51) .
zl; A, By (x;, Cl) = AU (27)
Comparing (4) and (51), we can see that and from Assumption 1 that
v = o (€L G g (N C) = B (NG
m We can now write
B. Proof of Lemma II1.2 B ()\77 él) > AU ()
From (24), we know that; > 0 only if \; = C;. Therefore, = By (X{, él) > AUNCY)
for eachl € £¢, the conditiory,; < 14 holds trivially from (23) . ’ .
and (24). Let linkl be a congested link, i.€.,c £, Therefore, = Ay (X{, Cl) > Bpi(Cr, C)

we knowy; > 0. Assume that the claim is false, i.@y, > 1.

= )\7 > ()
We know from (25)

- which is a contradiction. Therefor€; < 0, whenever>; > él.
C = Z Ut 12 Sir_wce,thg reguced—system is globally gxgonentiallyAstaple,there
el = A, ¢X|sts atime < oo, sugh that for alt > ¢, Cl(t).< n;C;. Sim-
- ilarly, we can show using Theorem l1l.1 th&} in the reduced
system is always greater than or equal to zero. Therefiris

- Hi Hj A
= Z Ut A, + Z AJ,, . the reduced system eventually belongfta”;]. [ |

r:Cr L JigCrg#l

E. Proof of Theorem IV.1
However,.; > Oforall j € £. Therefore Proof: Consider the Lyapunov function given by (49). We

note that
pr+ Z Hi > v 5
G Cr sl a_z)v h=2p¢" STATIS¢ = 28(S¢)" A7 (S¢).

Since,U/~! is a strictly decreasing function (from our assump- ~ ~

tions onU,(z,)) forall » € R andA, > 0 forall» € R, we We know thatd~"(C) is negative—definite for any value ¢

get and the elements oA~ (C) are continuous il’. Also, by As-
sumption 3, sinceS is a full-rank matrix,S7 A~1S is nega-
tive—definite. We also know that the eigenvaluesSdfA—1$

O, = Ut al + Hi are continuous functions of its elements, and therefore, contin-
l 7 p e

- A, = A, - i iesi

rrler JR uous functions of”. Since,C lies in a compact set, the absolute

T value of the maximum eigenvalue 6 A~*S can be bounded
) —
< zl; U, [A_,} =C by a constant > 0. Therefore
aw

] 2
which is a contradiction. Hencg; < v, forall [ € L. [ ] P ¢ < —200]|¢[I” <O.
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Hence, from [10, Cor. 3.4], (48) is globally exponentially stable, < 1. Also, h(C) andh~1()\*) are continuously differentiable
We will now show that there exists an unigGeor everyA*.  functions. Therefore, we have
By definition, for everyA*, there exists an unique", wherez

is the vector of source rates. For each link £, consider a - s dh=1 (") dh(é)
user that flows only through that link and denote that usd, by IC=C <k W ac | .
Assumption 3 guarantees the existence of such a user. Now oz
N 1C(0) — C*|| exp[—~1],
AU (a7) = Bp(N,Cl),  VieL and (52) = ||C = &l < B|C(0) = C* || expl—1]
* /3 * Whel’e
)\l_z<z Arpk(k,ck) VieL
riler \k:kéer 1 \* Ji C~’
(53) k = kmax dh—() max L >0
Ay o A oy € &,
= A=) Uk (e,) | Ve L. (54) =v

riler \kiker —" Hence, (17) is also exponentially stable. n

Let(y7,vs,...,yx) be the set of values of the flows that satiSg pyoof of Theorem IV.2

fies (16). Therefore

iz <Z > AAkf U, (v,

riler k:ker

We know that the system is locally exponentially stable uni-

formly in C. That is, there exists@a> 0 such that
).Gr ) = 2l ()
’ /3 1. \Jl. )~

2, ()], )l < K||z(0) || exp™ ",

VO € Be., |=(0)]| < r

Since, for eachs, there exists an unique value @fsatisfying

the equation(s, ¢) = constant, there exists an uniqué, that whereX > 1 and~ > 0 are constants independent@fand

leads tar* = (7,95, - .., yx). Also, A" itselfis a continuously B is a compact set. Let us choose< 1 without loss of gen-

differentiable function of”, i.e., \* = h(C), and henceh™* erality. Note: When we sajx|| we meari|xz — «*||. Also, from

exists and is continuously differentiable. By the mean value thite continuous dependence of the solution on parameters and

orem, we have initial conditions, we know thaljz(t, ||z(0)||,C)|| is a contin-
uous function of, ||z(0)||, andC. Define

dh=t(A\*)

C=hrtC

(V=)

Ar=yy

T"(||2(0)||, C) := inf{s > 0: ||z (s, [[=(0)||, C)|| < 7}
whereX* = C'is the equilibrium pointang, = ¢ C + (1 — We k”QW that i
1)\, for some0 < ¢; < 1. LetC* be the virtual capacity at ~ * 27 (||z(0)]|, ) < oc for each||z(0)[| andC;

o)l
the stable/equilibrium point of the reduced-system. Therefore, * 77 (||z(0)]|, C) is a continuous function dfz(0)|| andC
we haveC* = h~1(C). Hence as(t, [|z(0)||, ) is a continuous function of, ||=(0)|

andC.
Therefore, let

I.C
I,C

dhL(A*)

C—C* <
[ | < e

A" = .

A= T = max _ " (||=(0)|], C’)
lz(0)||C B..,C CB,
Let the system given by (48) have an initial conditiori{0).

Since, the system given by (48) is exponentially stable, we hayygere B is a compact set in whiclj.:(0)|| resides. Now,
Tr < o and is well defined. Now, define

for somek,~ > 0, max
" " M= max z(t, |z (0)]|, O)]|.
A" = CIl < KIA*(0) = Ol expl—t), ey, O
S dh=H(A") . [|z(0)|| € Bx
S C-C S || =5 E||A*(0) — O exp[—~1]. CeB-
dX _— c
) ) Note that, we are maximizing a continuous function over com-
Using the mean-value theorem again, we get pact sets and as a resuls exists and\/ < oc. Define a new
function
. dh(C) - - .
IA*(0) — Ol < || = IC(0) - C*| o) = {M 0St<T,
dC | 0  otherwise
=Yz
Define

whereé(o) is the virtual capacity corresponding to the initial
conditionA*(0) andy, = €20 + (1 — )C(0), for somel < () =M+ T — L.
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Let
T = inf{s >0:%(¢) <r}.
Itis clear thatl” < ~o. We can now rewrit&(t) as:
N(t) =r+~T — At.
Now,
N(t) > 0(t) Vt<T.

We now make the following claims.
Claim 1:

|zt [|z(0)|.C)|| < £(t) ¥t e [0.T].
Proof: We know

[(t, [|z0)], O)| < ©(t) < £(t) Yt e [0,Th,,],
and
(e, [2O)[1. OV € 7 S XAE) Yt € [ Do T

Hence, it is proved.
Define

_ KexppyT]
T ’

L:
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Therefore, we need to show th@t’/») > K, which is trivially
satisfied ag" < 1.

Therefore, the system is exponentially stable in the region
B, x Bg. Hence, it is proved. [ |

G. Proof of Theorem IV.3
Define

g (z,C):=Cy — Z L.

r:lcr

Let g(x,C) = [g5(x,C),...,g5(x,C)], where M is the
number of links in the networks. We know thgt(z, C) is a
continuously differentiable function of andC. The reduced-
system is given by

Cri=gf(C) == Y 2O

riler

wherez*(C) is the unique root to the equatigffz,C) = 0.
We know that
» f, g% andg” are continuously differentiable functions from
our assumptions on the utility functions and marking func-
tions and from Lemma 1V.1;
« the reduced system is semiglobally exponentially stable,
as shown in Theorem IV.1;
« the boundary-layer system is semiglobally exponentially
stable uniformly inC' as shown in Theorem IV.2.
If we assume that the virtual capacities can take negative
values i.e.C € R, then we can apply [14, Lemma 1] to infer

Claim 2: The system is exponentially stable in the regiogemiglobal exponential stability. However, since we restrict the

B, x Bg. Thatis

(2, |2, Ol < Ll|2(0)]] exp[—1].

virtual capacities to be positive, i.€Z, € R*, we need to show
that the Lyapunov function is negative—definite at the boundary
points whereC; = 0 and); > C;. Assume that the initial con-
ditionsz(0) andC(0) belongs taB.,(0) and B, respectively,

Proof: Case 1)j|z(0)[| > r. In this case, let us considerwhere bothB,.g) and B¢, are compact sets. Lét(t,C) be

the system in the time intervid), 7]. Note thatX” > 1,» < 1

and(|l=(0)]|/r) > 1.

L|z(0)|| exp[—vt] = Kexp[ryf]w exp|—71]
> eXp(’yT) exp[—7t]
= exp[—(¢ - )]
>1—~(t-1)
=147 —~t
2r+ ’VT -t
=%(t)

> ||lz(t, lz(0)], O)]|.
Therefore, for alt < 7', we have

(2, |2, Ol < Ll|2(0)]] exp[—1].

Fort > T, we know that|z(t, ||(0)||, C)|| < =, and therefore,

we can use case 2) settifjg(0)|| = ||z(T", ||z (0)]], O)||.

the trajectory of the reduced-system starting’at timet and

let S(r,z;C) be the trajectory of the boundary-layer system
starting at the initial point: at time+ = 0. We know that the
reduced system is exponentially stable whenéy@r) ¢ Bé(o
from Theorem IV.1. From Theorem IV.2, the boundary-fayer
system is exponentially stable uniformly @ wheneverz(0)
andC are constrained to lie in a compact set. Defiifeto be
the virtual capacity that solves SYSTEM, S, C). As defined

in [15], consider the conceptual Lyapunov functions

V(e ::/0 1t C) — O dt
W(z,O) ;:/0 IS (7, 2;C) — 2*(O)||? dr,

whereT’ is a constant defined in [15]. We know tha¢C) and
W(z, C) are positive-definite radially unbounded functions. Let

K, := max V(O),
CeBeo

and

Case 2)]|z(0)|| < ». In this case, we know that the system K, = W(z, ).

is exponentially stable. Also, we can take= 0 in this case.

= max
TE B0y CE Bé‘(o)
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We know that both; and K exists and are finite. Fift < d < e forall (=,C) € (T, x T'g) \ E,
1. Define o . o
(VeV(C))lg(z, C) — g(=7(C), O)]
~ ~ K+ K> © . A

Lo i=1020:V(0) < ——— < ef|C = C|[|lz — 2" (O)|l;
and « forall V(z,C) € (I', x [&) \

r,:= {x:W(aZ,C’)S M, VC’GF@}.

1-d (VeW(x,C)) g(x,C)

We can easily show that bofty. andI", are compact sets. Also, < asllz — 2 (O + eal|C = O |l = 2™ (O]

without loss of generality, we can assume that the marking func:

tions p;(r, 5) is differentiable with respect teat s = 0. From

[14], we can show thav(C) andW(z, C) are Lyapunov func-

tions for the reduced system and the boundary-layer systems Y(z, C) ={i: O, = i(%é) =0} ‘v’(a:,C’) c=.

respectively in the compact sét x '~ when the initial con-

ditions are constrained to lie iB, ) x BC(O) It also follows  However,g;(z*(C),C) > 0
aC = (

where thec;’s are positive constants. Now, for dl, 0) €
2, g:(x,C) = 0 for somei. Let T be defined as

andgs (z, C) < Oforalli € T.
*(C),C) = g,(C). Therefore

from [14], that there exists positive constan{scs, y1, andy.  Also, g5 (z*(C),C) = g;
such that N
e s lgi(z, C) = gi(2*(C), O
(VeV(€)g"(C) < —mC = C"|?, vCel, < |lg¢(z,C) — g5 (a*(C),O)|, VieT
IVeV(O) < eillC - C7ll, ¥C e and
(VoW(z,0)) f(2,C) < =2l — 2™ (O)|? llg:(, C) — gi(z(C), O

xV(z,C) € I'y x I'¢ ! o
e ‘ = |ost@.6) - gi@©).0)| vig,

and
V. W(z,O)|| < eallz — 2*(C)||, V¥(z,C) € Tw x Tz Hence

Define the Lyapunov functiow(z, C) for the original singu- ||g(z,C) — g(z*(C), O)|| < ||z — z*(O)|| Y(z,C) € E
larly perturbed system as .
Therefore, we can writé/(x,C) € =
v(z,C) = dV(C) + (1 — d)W(x, C). . . L
(VeV(E)'g(x,C) — g(z*(C), C)
<

c2|C = ||z = =™ (O)]I-

—_

We can easily show that
{(z,C):C>0 and »(z,C)< K1+ Ky} CT,xTe.  Consider,

We now know that

(VeW(z. C)Y g(z, C) = 2 / [S(r.2;C) — ()Y

Y(@(0), C0) < Kot s X [Ve(S(r,2.0) = ™ (C))lga, ©).
Also, the equation shown at the bottom of the page holds tryge -an also easily show that [14], (

S — h) is uniformly
Define the seE as

bounded. Therefore, we can write [14]

[1]

={(z,0) €yxI'z:C; =0 and g;(z) = 0 for somei}. (VeW(z, €)Y g(w, C)

Clearly, = is a compact set. Note thaj(z) = ¢°(x) for all < eslle =" (O + el C = C*[[ [l = 2™ (O)]]-
(z,C) € ' xTe\Eand||g®(2)]| > ||lg(=)] forall (z,C) € =.
Also, note that the equilibrium poirft:*, C*) € (I'y x T'a) \
E. Since,I';, x ' is a compact set and, g¢ andz*(C) are
continuously differentiable functions, we have from [14] iz, C)

« forall (x,C) € (I'y x Te) \ E

As a result, from [14, Th. 1], we can conclude that there exists
an« small enough such that

) o ) Therefore, we can conclude that when the initial conditions are
llg(x, C) — g(a*(C), O)|| < c1||lz — =*(O)||; restricted to a compact set, the system is exponentially stable for
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from Theorem III.3. u larly perturbed systems|EEE Trans. Automat. Confwol. AC-29, pp.

542-550, June_1984.
[15] N. N. Krasovski, Stability of Motion Stanford, CA: Stanford Univ.
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