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Fair Allocation of Utilities in Multirate
Multicast Networks: A Framework for
Unifying Diverse Fairness Objectives

Saswati Sarkar and Leandros Tassiulas

Abstract—We study fairness in a multicast network. We assume slow receivers or starve the fast ones, in absence of additional
that different receivers of the same session can receive information provisions. This is not an issue in unicast networks because there

at different rates. We study fair allocation of utilities, where utility ; ot : .
of a bandwidth is an arbitrary function of the bandwidth. The is only one receiver per application. This can be countered in

utility function is not strictly increasing, nor continuous in general. €@l time multicast applications using multirate transmission.
We discuss fairness issues in this general context. Fair allocation of Here, different receivers of the same application are allowed
utilities can be modeled as a nonlinear optimization problem. How- to receive information at different rates. For this purpose, the
ever, nonlinear optimization techniques do not terminate in a finite source signal is encoded into a number of layers that can be in-
number of iterations in general. We present an algorithm for com- . . . .

crementally combined to provide progressive refinement. The

puting a fair utility allocation. Using specific fairness properties, : : S
we show that this algorithm attains global convergence and yields source transmits all the layers. The receivers adapt to the indi-

a fair allocation in polynomial number of iterations. vidual bandwidth requirements and capabilities by adding and
dropping layers. As each layer is added, there is an improve-
I. INTRODUCTION ment of quality of the received signal and additional bandwidth

E WILL STUDY resource allocation and congestior%S needed to trqnsport the comblngd s_tream. Wher_1 a Iaye_r IS
. . . . . dropped, there is graceful degradation in the reception quality.
control in real time multicast networks in this paper.

. . o . This layered transmission scheme has been used for both video
Multicast is communication between a single source and

L 1o and audio [3] transmissions over the Internet and has poten-
roup of destinations. The source sends one copy of a mes : . )
group Ly S'{? s for use in ATM networks as well [6]. Multirate transmis-

and this copy is replicated only at the branching points ot~ . . )
the multicast route. More traditional forms of communicatioﬁIon |nt.r0('iuces Its own chgllepges though. At every link, the
[gnsmission rate of a session is equal to that of the fastest ses-

llke unicast with & single source and a single destination, an|or1 receiver downstream of the link. So the transmission rate of
broadcast with a single source communicating to all othér . . L ) .
I;ﬂg same session may be different in different links depending

nodes in the network are special cases of multicast. Real ti , . . .
. c ; . . on the configuration of the receivers downstream. Thus, unlike
multicast applications are increasing all the time. Examples are. . .
unicast networks, there is no concept of session rates as such.

collaborative applications like audio or video teleconferencin% : . ;
) : ! . ne needs to consider receiver rates separately, and congestion
video-on-demand services, distance learning, etc. Resource

o . . control schemes need to be modified suitably so as to consider
allocation in multicast networks is more complex than that in

) : the receivers separately.
unicast and broadcast networks. This calls for a separate stuae}é Sep Y- .
very receiver would like to receive as many layers as pos-

of these problems in the multicast scenario. . S .
gllble. However, networks have resource limitations, and deliv-

Multicast congestion control is more challenging than usu :
ing a large number of layers would cause acute congestion.

unicast congestion control on account of network heterogeneﬁ%r/. . . . R
. o oo gsource allocation strategies become important in this situa-
A multicast application may have many destinations, and e

. . . : Ion. Resource sharing objectives determine the individual al-
systems can have widely varying bandwidth requirements. The .. ) . .
. 7 . , ocations. We adopt fairness as our resource sharing objective.
paths to different destinations may have different bandwidth ca- . . . R
ere are several possible notions of fairness. A simplistic no-

pacities, e.g., one may consist of multimegabit links, suchas 13~
(45 Mb/s), and another may have a 128 kb/s ISDN line Asingﬁ'é)n is to serve all users at the same rate. However, some users
’ y : ay receive information through low bandwidth links, while

rate of transmission per session is likely to either overwhelm tma L ) . .
P y some others may receive information through high bandwidth

links. Serving all users at the same rate would tie all users down
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Session 1 tion, and the two need not be investigated separately. This does
° - P Session 2 not hold any longer when different sessions have different layer
e e — Session 3 bandwidth. Consider a specific example. Consider a single link

network. Two sessions traverse the link. Source of the first ses-
Fig. 1. Session 2 traverses both links, and sessions 1 and 3 traverse one$# transmits unit bandwidth layers. Every layer of the second
each. Both links have one unit of bandwidth each. session consumes 2 units of bandwidth. Let the capacity of the

link be 9 units. A bandwidth allocation allocating 5 units of
vector 7 is proportionally fair, if for any other feasible ratebandW|dth to the first session and 4 units to the second one is in-

vector2, the aggregate of proportional changes is nonpositi\}éjitively fair (discrete bandwidth layers do not allow allocation
i-e-,EA£1(7’§—7’i)/(7’i) < 0. Consider the network in Fig. 1 asof 4.5 units each). However, this allocation gives session 1, 5

a distinguishing example. Maxmin fair allocation allocates 0.I yers gnd session 2, 2 Iaygrs. Intumvgly, (3.3) Isa fairer” layer
. . . . . allocation. The corresponding bandwidth allocation, (3, 6) does
units to all sessions. Proportionally fair allocation allocadtés

. ) . . k not seem fair. So, fair allocation of layers and bandwidth are dif-
unit of bandW|dth_to the long session &) units of bandwidth ferent objectives. The fairness objective depends on the specific
to the_short Sessions eiic*_‘- Soitis a_pparent that the prOport'roenduirements of particular networks, and can be decided on a
ally fair allocation discriminates against long sessions. The Yise by case basis. However, these different fairness objectives
gument in favor of this discrimination is that the long sessioq '

h he sh dh hElllI nder the same framework, if we consider the fair allocation
consume more resources than the short ones, and hence sholifiisies, where utility of a bandwidth can be the bandwidth

not be treatgd in the samg manngr as the short' segs!ons. Egéﬁf, or the number of layers obtained from the bandwidth. The
argument raises the question that if we need to discriminate Rgsner would lead to the rate fairness problem, and the latter to

tween sessions, then how should the amount of discriminatigpy tair jayer allocation problem. Likewise, utility can be any
be determined. In our opinion, this should depend on several {sper function of bandwidth as well.

sues like the bandwidth requirements, revenues earned, etc. FQKe review the related work in this area. Well known net-

example, a video source requires more bandwidth than an aughig protocols for layered transmission, receiver-driven layered
source, and these two should not be allocated equal resourggsiicast (RLM) [11] and layered video multicast with retrans-
Also, certain users may be willing to pay higher revenues, aptssions (LVMR) [8] do not handle fairess among sessions
then it is fair that t.hey get bgtter quali.ty service. Thus, itis i”\iery well, when there are multiple sessions competing for band-
portant to generalize the notions of fairness so that one can sijjf, [9]. Fair allocation of utilities have not been investigated
ably differentiate among users within the framework of faimess genth in either unicast or multicast networks. Algorithms for
depending upon user requirements and network objectives. Wen 5 tation of fair bandwidth have been proposed in [12], [15],
generalize the concept of maxmin faimess, using the notion§f; These papers consider special cases of the utility functions
utilities, o _ _ ~ only, e.g.U(x) = « [12], [15] andU(z) = blc/b] [16] for all
Utility of a receiver is a function connecting the bandwidthe ejvers. Caet al. have presented an algorithm for maxmin

granted to the receiver and the “value” associated with the bang. ) 0cation of utilities in the unicast case [4]. This paper con-
width. The term “value”

id by th A ible fai biecti be to all U{&hs algorithms [4], [15], [16] attain fair allocations for more
paid Dy the USEr. AA pOSSILIE faless objective can be 1o allocqig, o | utility functions [14] evenin the unicast case. As we dis-

bandwidth so that the utilities are distributed fairly. We woul . o - .
. . . e . . __cuss later, in many cases of practical interest utility functions do
consider fair allocation of utilities in the multirate, multicast

scenario. Users need to announce their utility functions. The ng?-t increase strictly and are more general than the functions con-

work would charge the users in accordance with their utilitie?,der_(Ed before. Faimess issues differ significantly when utility
ctions are more general.

and at the same time, allocate the resources so that the cort hi ) ed as foll We di
sponding utility allocation is fair. Consider a simple one link IS paper s organized as Ioflows. YVe dISCUSS our assump-

example to clarify this concept. A user who needs a high barfi"S on the utility functions and motivate the study for more
width, and is willing to pay high revenues will declare a slowig€neral utility functions in Section Il. We present our network
increasing utility function, whereas a user who is satisfied wiffode! in Section Ill. We also introduce our fairness notion in
a low bandwidth and does not want to pay high revenue, wodf}S section. We show that if the utility functions do not increase
declare a rapidly increasing utility function. The fair allocatio§trictly then usual fairness notions are not applicable. For ex-
of utilities in this case is to equalize the utilities of the two user@mple, maxmin fair allocation of utilities may not exist and the
and the former would receive a higher bandwidth than the late@mputation of a lexicographically optimal allocation turns out
at this fair operating point. to be NP-hard in this case. We introduce a weaker notion of fair-

Utility fairness provides a unified framework for diverse fairness, maximal fairness, and show that it has several intuitively
ness objectives. We study a concrete example to argue this paipealing fairness properties. We present an algorithm for com-
We have studied fair allocations of discrete bandwidth layerspuiting maximally fair allocation of utilities in Section IV. The
[16] under the assumption that the layer structure is the saalgorithm does not use network specific properties, and is hence
for different sessions. More precisely, layers for different sea-fairly general purpose one. We prove that the algorithm yields
sions have the same bandwidth. Under this assumption, fairnadair allocation of utilities in polynomial number of iterations
of layer allocation is equivalent to the fairness of rate allocin Section V. We conclude this paper in Section VI.
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Fig. 2. Three utility functions. For utility functions 1 and 3, utility of Fig, 3. This figure shows three unacceptable utility functions. The utility
bandwidthz is the actual bandwidth which can be allocated whemmits of  fynctions are not acceptable with data point “0.” In each case, the utility
bandwidth are available and layered encoding is used. Utility function 1 modelgction becomes acceptable if the data point ‘0’ is replaced by the one marked

the case when the layer structure is completely flexible and any bandwidth egm The utility sets violate property 2) for functions 1 and 3, and property 3
be allocated, if it is available. The utility function is linear and the utility setor function 2.

(set of allowable utilities) is the nonnegative real line. Utility function 3 models
the case when the layer structure is completely predetermined. Only a discrete

set of rates can be allocated and the utility function is stair-case. Utility set is . o . L.
the set of nonnegative integers. Utility function 2 models the case when the 3) Given any utllltyx, there always exists a minimum band-

layer structure is flexible in certain ranges of bandwidth and predetermined in ~ Width required for sessioito attain utility«, i.e., the set
other ranges. Here, the utility is the qualitative gain from the bandwidth. In {y : U;(y) = z} has a minimum, wher&’;(y) is the

the flexible region, the function increases strictly, linearly or sublinearly. In T . . .
the predetermined region, it is a stair-case function. Note that the step lengths session utility corresponding to bandwidth. The min-

are unequal, indicating that different layers of the same source have different  imum bandwidth for utilityz is denotedX;(z). Refer to

bandwidth. The utility set consists of closed intervals and some discrete points. Fig. 4 for some example minimum bandwidth functions,

4) The minimum bandwidth functioif; is right continuous
and strictly increasing.

Il. ALLOCATION OF UTILITIES

We first discuss some possible utility functions and our agig. 2 shows some sample utility sets.

sumptions on the utility functions. Utility of a bandwidth can  The first assumption indicates that the utility set is not upper
be a measure of the reception quality a receiver obtains at {3gfnged. If necessary, we can impose maximum utility con-
bandwidth. This measure can be objective as well as subjectiygaints separately. The other assumptions are more technical. In
Objective measure can be quantities like information theoreti¢s |ast assumption [Assumption 4)], continuity is intuitive be-
rate distortion, or the signal to noise ratio, where noise consiglyse if the valid utilities in the utility set are very close, then the
of the quantization noise. Obviously, these measures depen¢QRimum bandwidth required for attaining them should also be
the coding used, and hence it is important to allow different S&fsry close. Strictly increasing property of the minimum band-
sions to have different utility function, because different segigth s also intuitive. However, the utility function may not
sions may use different coding schemes. Other measures cajhpfease strictly and the same utility can correspond to a range
the number of layers obtained from a particular bandwidth. Sugr bandwidth. Only, the minimum bandwidth required to attain
jective measures can be perceptual quality. any particular utility needs to increase strictly. This property im-

We define our assumptions on the utility functions now. Thesglies that the utility functions must be nondecreasing. Hence, we
assumptions are mild, and a large number of utility functiongp not make this assumption explicitly. The last three assump-
satisfy these assumptions. Subsequently, we will present sofi@s exclude some functions from being valid utility functions.
sample utility functions, and motivate the requirement for aRefer to Fig. 3 for examples of unacceptable utility functions.
suming such general properties. Formally, “utility” is a functiomny utility function satisfying properties 1)-4) is acceptable.
of the bandwidth. We assume that the receivers of the same segryg assumptions on the utility structure are mild and most of
sion have the same utility function. “Utility set” of sessionl;  he yility functions encountered in the networking context sat-
is the range of the utility function of sessiénReceivers of a isfy these assumptions. At the same time such general assump-
session can possibly receive a utility if it belongs to the utilityjong are needed for modeling several utility functions of prac-
set of the session. For example, if utility of a bandwidth is thg o importance. Consider a specific example to motivate the
number of layers assigned out of the bandwidth, then the utlllé)énerm assumptions. Let utility of a bandwidth’;(x) be the
set is the set of nonnegative integers. If utility of a bandwidth S+ ,51 handwidth obtained by a receivevhenz units of band-
the bandwidth itself, then the utility set is the nonnegative regiq, are available for the receiver. Note that for layered trans-
line. Refer to Fig. 2 for some example utility functions. We asyissjon of signal#/; () may not equat as receivers subscribe
sume thqt the utility function satisfies the following technicgl, layers. Often times receivers can not receive a layer partially
assumptions for every and hence the allowed bandwidth allocations form a discrete

1) A, N (x,0) # ¢,Vz € R. set. ThuslU;(x) < z in this case. Utility functions of Fig. 2

2) Utility set, 4; is a closed set. give a pictorial representation. Relation between the layers and
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the bandwidth determine the nature of the utility functions in @ €@
this case, and the former depends on the encoding mechanis :
used. Depending on the coding mechanism, in certain bandv
width ranges, the layers can be fine tuned in accordance witt
the bandwidth requirements. This means that given the desire . - 2}‘\
rates of various receivers, the source generates as many laye ;. -3
as distinct receiver rates and adjusts the layer bandwidth so as
match the receiver rates. The layer structure is said to be “flex-
ible” in these ranges. The utility function representing the actugl, 4. The numbers in the brackets, denote the capacities of the respective
bandwidth obtained from a given available bandwidth will inkinks, e.g., capacity of link, is 7 units. Letl, (x) = [& — 1, Uz(x) = a. It
crease strictly, either linearly or sublinearly, for these bandwidgi’i'ox"S that s (#) = » + 1, and Y, (x) = , forz > 0, T,(0) = T2(0) =
. . . The capacity constraint for link; is max(ri,r2) + 1+ r2 < 7, where

ranges. The layer structure may be predetermined in other bands the utility allocated to virtual session Also, Ao, = max(ri,3) and
width ranges, i.e., layer bandwidth cannot be tuned to match &ll, = r-..
the desired receiver rates and receivers can not partially sub-
e e sl newor Aty slocation vector s ana-cimensiona
ferent layers Différent layers may have different bandwidth éctor_, .Wlth components; (|.e.,_ autility aII_ocatI(_)n vectorgives

' . : e utility allocations for all virtual sessions in the network).
e.g., the codec Of [10] generates nonumform_bandmdth Igye r simplicity, we will use only one set of indexes for the vir-
e s s s LSS50, 8.1 ity alocaton et A
increasing and will have different shapes in different bandwid dimensional vector = (ry, ..., m) is a feasible utiity al-

. o . cation if the following hold true.
ranges. Fairness under these assumptions is vastly different from g

the case in which the utility functions are strictly increasing. 1 The.utility allocated to every receiver belongs to t-he utility
Thus it would be interesting from a mathematical as well as a set, 1.€.7s E_Ax(s)’vs € {L,..., M}, wherex(s) is the
practical standpoint to study this more general case. session of virtual Session )
Different sessions may have different encoding mechanisms,2) /i < 7i < pi ¥i, wherey; andp; are respectively
and hence, different layer structures. This leads to different t,he minimum and maximum utilities of virtual session
utility functions for different sessions in the previous example. _ “Pi Z #i 2 0. _ L
Thus utility functions will be different for different sessions 3) Total bandwidth cpnsumed'ln every Imk is less than or
in general. However, we assume that the receivers of the same eqpal Fo the capacity of the I|nI§. Bandwidth consumed n
session have the same utility functions. This assumption is alink is the_ sum of the_bandwu_dth CO”S“”?ed by the dif-
reasonable, because utility structure (e.g., layer structure) often ferent Sessions tra_vergmg the I|n!<. Bandwidth consu_med
depends on source and there is only one source per session. by a session in a I|_nk s the maximum of the_ bandW|dt_h
Note that we only assume same utility functions for different con;umgd by the virtual sessions of the session traversing
receivers of the same session, but utilities allocated to different the link, i.e.,
receivers of the same session can be different.

——=session 1 (v, {u; , u})
------>session2 (v, {uy })

U, Virtual Session 1 (v, u)
Virtual Session 2 (v,u,)

u . .
3 Virtual Session 3 (v,u3)

Z max T;(r;) < C;or equivalently

ienth) jcm(s,l)
I1l. NETWORK MODEL AND FAIRNESSNOTIONS y Z T:(at) < €y (capacity condition)
We describe our network model in this section. We consider ien(l)

an arbitrary topology network witllV multicast sessions. A
multicast session is identified by the péir, ), wherev is the whereX;; = max;e,.(i,1) 75, 7(l) denotes the set of ses-
source node of the session afids the group of intended des- sions traversing link, m(k,) denotes the set of virtual
tination nodes. We assume that the traffic from nodetrans- sessions of sessionpassing through link, C; denotes
ported across a predefined multicast tree to nodés ifhe tree the capacity of linkl and T;(x) denotes the minimum

can be established during connection establishment phase if the bandwidth required by sessiarto attain utility z. The

network is connection oriented or can be established by some quantity A; will be called thesession link utility where

well known multicast routing protocol like DVMRP [5], CBT session link utility is the maximum utility allocated to vir-

[1], etc., in an Internet-type network. tual sessions of the same session traversing the link. Fig. 4
We call every source destination pair of a session a virtual ~ Presents some example capacity constraints.

session. For example, if a sessiorhas sources,, and desti-

nation setl/,,, wherel,, = {un1,...,un }, then this session  We define the fairness notions for the utility allocations. A

would correspond tovirtual sessionsv,,, tn1), - - -, (U, st ).  feasible utility allocation is maxmin fair if it is not possible to

To ensure fairness in a multirate network, we need to consideaintain feasibility and increase the utility of a virtual session

fair utility allocation for the virtual sessions separately, insteadithout decreasing that of any other virtual session which has

of those for the overall sessions. equal or lower utility. More formally, a feasible utility allocation
Let r;; denote the utility allocated to thgh virtual session vector is maxmin fair if it satisfies the following property

of the ith session. Let there b&f virtual sessions in the en- with respect to any other feasible utility allocation vector if
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Session 1 Session 3 function arises in practice when the utility of the bandwidth is
the number of layers corresponding to the bandwidth, and the
° € (lﬁ. €,4) ° €3 (6) ° bandwidth of each layer is 1 unit.

So we revert to a weaker definition for fairness, maximal fair-
ness. We first define the concept efative fairnessof utility
Session 2 ) vectors. This concept has been introduced in [13]. A utility al-
Session 4 location vector™ is fairer than another utility allocation vector
72, if for every virtual session which has greater utility under

Fig. 5. This figure shows an example network which does not have a maxn?:z than under. there is some other virtual sessigiwhose
fair utility allocation. The numbers in the brackets denote the capacities of t (? . ' . 4 X

corresponding links as in Fig. 4. Herg, (z) = || for all i. This utiity ~ Utility was already no more than thatofinder/~, and has been
function arises in practice when the utility of bandwidth is the number of layedecreased further by. A more formal definition of relative

corresponding to the bandwidth, and the bandwidth of each layer is 1 unit. Thfé‘?rness follows. A utiIity allocation vectot! is fairer than an-
are only a finite number of feasible utility allocations. None of these are maxmi )

fair. For each of these vectors, it is possible to maintain feasibility and incree@rther utility allocation vectof® if

the utility of one session, possibly decreasing the utility of another session with | 2.

a higher utility. For example, consider the feasible utility allocation (1, 0,3,3).1t 7 F ] ) .
is possible to increase the utility of session 2, by decreasing the utility of session * there exists an such that} < r2, then there exists

1. However session 1 has higher utility than session 2 in this allocation. such thatr} < Tzl andT]?, < 7} (72 is thekth component
of .1 = 1,2).

there exists such that théth component of? is strictly greater A utility allocation vector is maximally fair if it is feasible and
than that of™ (r7 > r}), then there existg such that thejth  if no other feasible utility allocation vector is fairer than
component of*, r; is less than or equal to thith componentof  As we show later, maximally fair utility allocation exists and
7, r} (r; < r})andthejth component of” (v7) is strictly Iess  can be computed in polynomial complexity. However, first we
than thejth component of* (+3 < }). A maxmin fair utility ~argue that maximal fairness is a good notion of faimess. Note
allocation may not exist in general for non strictly increasinghat from the definition of maximal fairness, it is clear that if
utility functions. Refer to Fig. 5 for an example. a utility allocation is maximally fair, then we can increase the
We will consider the notion of lexicographic optimality.utility of a receivers, only by decreasing that of another receiver
Given an M-dimensional vectorv’, define its lexicographi- to a value below that of the new utility value of receigefhus
cally ordered versiorV" as follows:; = v, for somek and we can increase the utility of only by being unfair to some
#1 < 0y < -9y In other words, components &f are an other receiver. In other words, if is a maximally fair utility al-
ordered version of those df. A vector #* is lexicographi- location andB is a feasible utility allocation different from,
cally greater than another vectd? if there existsi such that then? is “unfair’ to some component as compared&oMore
8} > 9% and ot = 92 if j < i. Vectors# and #* are lexi- formally, B is not fairer thand. Also, if maxmin fair utility al-
cographically equal if* = %2. Vector#? is lexicographically location exists, then it is the only maximally fair utility alloca-
less thani? if 4?2 is lexicographically greater tha#t. A fea- tion. This follows because by definition of relative fairness, the
sible utility allocation# is lexicographically optimal if every maxmin fair utility allocation (if one exists) is fairer than any
feasible utility allocation vector is lexicographically less thaother feasible utility allocation. We have proved this in [17]. So
or equal to#. Informally, a utility allocation is lexicographi- any algorithm for computation of a maximally fair utility alloca-
cally optimal, if its smallest component is the largest amongsbn will yield a maxmin fair utility allocation, if one exists. Be-
the smallest components of all feasible vectors, subject to tBisles, any lexicographically optimal vector is maximally fair in
it has the largest second smallest component and so on. &oy feasible set (refer to [14] for proof) and hence lexicograph-
example, (1, 0, 3, 3) is a lexicographically optimal utility alically optimal utility allocation belongs to the set of maximally
location in Fig. 5. fair ones. Thus, maximal fairness is a good notion of fairness.
Lexicographic optimality and maxmin fairness are dif- We would like to point out that it is not obvious that a max-
ferent concepts, though several researchers have used tlsdly fair utility allocation can be computed in polynomial
interchangeably. Fig. 5 illustrates the difference. Maxmin fagomplexity. Consider the simple case of strictly concave utility
utility allocation does not exist in the network of Fig. 5, bufunctions. Maxmin fair allocation exists in this case, and hence
lexicographically optimal allocation exists, and is equal to (s observed before any algorithm for computing a maximally
0, 3, 3). We have shown in [14] that if a vector is maxmin faifair allocation will compute a maxmin fair allocation. Note that
in a feasible set, then it is lexicographically optimal. The immaxmin fair utility allocation can be computed by a series of
portant difference is that a lexicographically optimal allocationoncave optimizations with nonlinear feasible sets [14]. Stan-
always exists in any closed, bounded set, but a maxmin fdiard nonlinear optimization theory does not guarantee compu-
allocation may not exist in such a set. The feasible set of utilitation of the optimum in a finite number of steps. The situation
allocations is closed [property 2)] and bounded (from capacibhecomes more complicated when the utility functions are more
constraint). Thus a lexicographically optimal utility allocatiorgeneral, as we are considering here (note that in our case utility
vector always exists. However, its computation is NP-hard fanctions need not be continuous and can have discrete jumps)
general. It has been shown in [16] and [17] that the computatiand thus it is not obvious that a maximally fair utility alloca-
of lexicographic optimal utility allocation is NP-hard if thetion can be computed in polynomial complexity. However, we
utility function is U;(z) = |z| for each session This utility  will exploit the specific properties of these optimizations and the
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nature of the feasible sets to develop a polynomial complexity The maximally fair utilities are computed via an iterative
algorithm. procedure. The algorithm classifies every virtual session as
We conclude this section with a few observations. either saturated or unsaturated. Initially, all virtual sessions
There exists a necessary and sufficient condition for a utiligre unsaturated, and their status progressively change from
allocation to be maximally fair. A utility allocation is maximally unsaturation to saturation. A virtual session is saturated when
fair iff every virtual session has a “generalized bottleneck linkt satisfies certain saturation conditions described later. It
on its path. We will introduce the notion of a “generalized boturns out that when a virtual session satisfies these satura-
tleneck” link later in this paper. There are similar concepts @fon conditions, its utility allocation is maximally fair. The
bottleneck links for the special cases studied in [I5]z) = ) utility allocation does not change after the virtual session
and [16](U(x) = b|z/b]). However, the bottleneck conditionsaturates. The algorithm terminates when all virtual sessions
is more complicated in this general case. We use the term “gé@fie saturated.
eralized bottleneck” in order to distinguish with the different At every iterationk, the algorithm computes a fair utility for
bottleneck conditions for the special cases. every virtual session progressively. At the beginning of an iter-
This observation will illustrate the scope of fair allocation ofition, every linki computes a “fair share” for every sessiobn
utilities. In general, all bandwidth allocations which satisfy thifaversing the link (“session link parameter;;(k)), ignoring
capacity constraints in the links are not interesting. The intdfie constraintimposed by the utility structure and the bandwidth
esting ones are those in which no component can be increakgsirictions of other links on the path of the session. These con-
without decreasing another comporte(gimilar to the notion straints are imposed progressively. For the fair share computa-
of pareto optimality). We denote these as the “boundary alition, the link first computes a quantity called the link control
cations.” We have shown in [18] that given any boundary all®arametetn;(k)) as per step (3) of the algorithm, and then com-
cation there exists a choice of linear utility functions such thttes the session link parametgi(+) as the maximum of the
the boundary allocation corresponds to the maxmin fair utilifi’k control parameter and the utility allocated to sessian
allocation for the chosen utility functions. The important poirft"K { in the previous iterationh;; (k —1). Next, the utility struc-
is that the system can be tuned to any operating point in the fE&4© Of sessior is considered. Since receivers of sessican
sible region by choosing the utility functions appropriately, angly receive utilities in utility setl;, utility @;(n;i(k)) is offered
the operating point can be allocations which satisfy other fai all virtual sessions of sgssmﬂraversmg the link. Note that
ness notions like proportional fairness for example. ©i(na(k)) < nu(k), forallz, I, k. Subsequently, the bandwidth

Maximum utility constraints can be incorporated by addingestrictions of other links are considered as follows. A virtual
artificial links between receivers with maximum utility con- isizopr);i allocated utility.; (£), the minimum utility offered

straints and the rest of the network. Capacity of such an arftl" . . o
pactty The algorithm subsequently checks the saturation condition

ficial link is equal to the bandwidth consumed by the maximum i . - .
- . . . or each unsaturated virtual session under the utility allocation
utility of the respective receiver. So, henceforth, we shall |gno§

the maximum utility constraints. (k). If.no virtual se'ssio.n saturates in the current itt'e.ration, then
the residual bandwidth is used to increment the utility of some

virtual sessiors traversing this link and satisfying certain prop-
erties mentioned in step 8) of the algorithm. The utility of such
a virtual sessiom, w,(k) is increased to the next higher value

We present an algorithm for computing a maximally fai¥(.)(ws(k)). This is done because otherwise, the algorithm
utility allocation in this section. First, we will briefly describecan continue forever. This is because in the next iteration, the
the essential idea behind the algorithm, and then present gane link control parameter will be computed and the process
details. Subsequently we will present an example to illugepeats again and again. The new utility allocation of virtual ses-
trate the functioning of the algorithm. We conclude this sesion s is 7,(k).
tion with analytical performance results. We first define two The algorithm terminates if all the virtual sessions are sat-
functions. urated under the utility allocatiofi(k), otherwise, there must

U; is a real valued function defined a¥;(x) = be atleast one more iteration. In the latter case, the algorithm
inf,c4.n(z,00) ¥, Vi. LOOSEly speaking¥;(z) is the smallest makes computations which are used in the next iteration. We de-
session utility greater thane. If the utility set of session, is ~ SCribe them now. A session is saturated if all its virtual sessions
a set of integers, thew,(x) = |x| + 1. This function is well are saturated. The bandwidth consumed by the saturated ses-
defined by property 1) of the utility set. sions, if any, are computed. This bandwidth is subtracted from

®;(z) is a real valued function defined a®;(z) = the link capacity, and the link control parameters are recomputed

maxye 4;n(0.2] Y- ThUs,®;(z) is the largest sessiarutility not in the ne>_<t iteratioh using this residual c_apacity as per step 3) of
exceedingz. If the utility set of session, is a set of integers, the algorithm. We introduce some notations next. Subsequently,

then®;(z) = |z]. This function is well defined by property the algorithm will be described formally. _
2) of the utility set. The minimum session link utility,;; is the maximum of the

minimum utilities of sessionm virtual sessions traversifgi.e.,

IV. ALGORITHM FOR COMPUTATION OF MAXIMALLY FAIR
UTILITY ALLOCATION

IThe component decreased may have a value greater than, equal to, orlféiés:. MaXscm(a,b) lie . )
than the component increased. L, is the set of links traversed by virtual session
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(Saturation conditions) A virtual sessiors is saturated w.r.t.
a utility vector# if it traverses a link in which

Ts = Ax(s)l

If Ts — \I/X(S)(TS), Z Tz()\zl) = Cl

sCn(l)

Z Ti(Xir)

sCn(l)
> CI - (TX(S) (\PX(S)(TS)) - Tx(s)(Ts)) .

A session isaturatedin a link  if all the virtual sessions of
the session traversing the lidlare saturated.

m(k) denotes the link control parameter of lihlat the end
of the kth iteration.

nu(k) denotes the session link parameter of session
traversing linki.

w; (k) is the utility assigned to virtual sessierin step 4) of
the algorithm. It is the minimum utility offered on the path of
virtual sessiors.

Q,:(k) is the utility allocated to sessiarin link I, under the
utility vector &i(k). Qi (k) = max;epme,iyw; (k).

r5(k) is the utility allocated to virtual sessionat the end of
the kth iteration. The value of.(k) can either be equal to or
greater tham, (k). Allocation#(k) denotes the utility vector at
the end of thé:th iteration, with components, (%).

Aqa (k) is the utility allocated to the sessiom link [ at the end
of the kth iteration. It is actually the maximum of the utilities
allocated to the virtual sessions+in(¢,!) at the end of théth
iteration.

If r, < \I/X(S)(TS),

S(k) denotes the set of unsaturated virtual sessions at the end

of the kth iteration.

937

chosen s.ty (k) < eq(k), andn (k) satisfies the fol-
lowing conditions:
a) m(k) = max(m(k—1), mingez, k—1) Aa(k—1));
b) if sessior¥ € =;(k — 1) and
limgqq, (x) max(®;(6), Au(k — 1)) <
max(®; (cu(k)), Aa(k—1)), thenmp(k) = A(k—
1) and(m(k), Oél(/f)) NA; = (/)
For all unsaturated sessiongassing through link (¢ €
Eu(k = 1)), mu(k) = max(m(k), Au(k — 1)).

4) Computew(k) for all virtual sessions € S, where
ws(/{}) = @X(S)(minleLS nx(s)l(k))r if s € S(k‘ - 1),
elsew, (k) = r,(k — 1).

5) Forevery link in the network, comput®;;(%) for every
session in n(l) asQ (k) = max,cm(i,p ws(k).

6) Compute the set of virtual sessionsStk — 1) which
saturate during théth iteration under utility vector
3(k), A(k). (refer later in the paper for saturation
conditions).

7) If A(k) # ¢, compute the utilities allocated to the virtual
sessions after thith iteration, via,rs(k) = ws(k),Vs
and go to step 9).

8) If possible, find a virtual sessione S(k — 1) such that

ws(k) = (s <IHC11L1: m(@) ;
Vo(ws(k)) > ws(k)

for somel

(Px(s)(nl(k))
ws (k) = Qyan(k) and
Ran(q)x(s)) n (nl(k)’ Oél(k')) = d)

€ L, st &y y(ming er, m (k) =

=.(k) denotes the set of unsaturated sessions traversing link

{ at the end of théth iteration.

L (k) denotes the total bandwidth consumed by the saturated

sessions traversing linkat the end of théth iteration.
A(k) is the set of virtual sessions B(%k — 1) which are sat-
urated w.r.t. utility allocatiord(k) (the set of virtual sessions

which were unsaturated earlier but saturates w.r.t. utility alloca-

tion J(k))
The algorithm follows.
1k = 0m(0) = 0,F(0) = 0,5(0) = n(l) V
link 7,5(00) = {1,...,M},r;(0) = p;,Vji €
5(0), Air(0) = max;em (i 75(0).
2) k— k+1.
3) For every linkl in the network compute the link control
parameter. For this, first compute a variablgk). If
Zi(k — 1) # ¢, thenoy (k) is computed as follows:

a(k) = sgp{H : Fy(k—1)

+ > Ti(max(24(6), u(k — 1)) < Ci}
1€ (k—1)

(It can be shown that the above set is nonempty for all

k.)

If Fy(k—1)+ Zie_El(k—l) Ti(max(®i(cu(k)), )‘il_(k -
1))) < ¢, then link control parameter for a linkis
m(k) = k), else link control parametery (k) is

and for alll € L, s.t. @, (ming, ey, n, (k)
P () (m(k))

Qzl(k) = Inax(@i(m(k)), )\zl(k — 1)) Vi e El(/{; — 1).

If no suchs is found inS(k — 1), againr; (k) = w;(k)
for all virtual sessionsj, otherwise compute; (%) for
all virtual sessiong as

oy Jwi(k)
rith) = {\wka»

9) For every linkl in the network compute the session link
utility in link I, for every session im(l) as \;(k) =
MaX,cm(i,)) s (k).

10) Compute the set of virtual sessionsSitk — 1) which
saturate w.r.t. utility allocation{k). Remove these ses-
sions fromS(k —1), and the resulting set &(k). (Refer
to later in the paper for saturation conditions).

11) If S(k) = ¢, i.e., all virtual sessions are saturated, the
algorithm terminates, else go to the next step.

12) For every link, compute the set of unsaturated sessions
passing through link at the end of thekth iteration,
=i(k).

13) For every linkl, for which Z;(k) # ¢, compute the
bandwidth consumed by the saturated sessions passing
through linkl, Fi(k) = 32z, Ti(Au(k)).

i#s

otherwise.
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14) Go to step 2). algorithm must terminate id/ + |£|M? iterations. Thus, the

We first present an illustrative example. Consider the netwogikerall complexity of this algorithm i©)(|£|?A7%). The con-
of Fig. 5. All sessions are unicast, and hence, we will considgiants will depend on the computation of the limits for the utility
utilities of the sessions instead of the virtual sessions (virtuinctions. We conclude this section with a description of certain
sessions and sessions are equivalent in this case). Assumegalgnt features of this algorithm.
the utility function of session 11 (z) = =,z < 0.5,U1(x) = This algorithm is amenable to distributed implementation.
0.1[10z ], > 0.5. Also, Ux(z) = 0.2|5z ], Us(x) = Uy(x) = The criteria for determination of utility of a virtual session uses
|z|. The sessions do not have minimum utility requirementiiformation along the path of the virtual session mainly. The
Now, c;(1) is 0.6, 2, 3 forl = ¢y, e2, e3 respectively. Following only place where the algorithm uses global information is in
the steps in the computationgf{ 1) from o, (1), (1) = ay(1)  step 8), where,(k) = W, (w,(k)), for at most one virtual
forl € {es, e3}. Howevern., (1) < a, (1). Note that step (3) session,s. This feature of the algorithm is not crucial to the
allows any choice ofj., (1) in the interval [0.5, 0.6). We chooseproof of the maximal fairness of the output and is a matter of
e, (1) = 0.5. It follows thatai(1) = (0.5,0.4, 2, 3). None of the convenience. This increase in utility can be carried out for mul-
sessions are saturated under the allocalidn. Both sessions 1 tiple virtual sessions, subject to feasibility and as long as they
and 2 satisfy conditions for incrementation in step 8). We choosatisfy the criteria of step 8) and the algorithm will still output
session 2 arbitrarily. Thug,(1) = 0.6,7;(1) = w;(1), € amaximally fair utility allocation.
{1,3,4}. Sessions 1 and 2 saturate under the allocatjoh = We compare and contrast this algorithm to those for com-
(0.5,0.6,2,3). Note thatF',,, (1) = 0.6. Initeration 2,.,(2) = puting the fair allocations for the special cases addressed in [15],
4, ., (2) = 3. It follows thatn;(2) = 3 for I € {e2,e3}. Note [16]. The algorithms presented in these are special cases of the
that.,(2) can be selected arbitrarily in the interval 3, 4), weurrent algorithm and follow the same general structure. There
choose 3. It follows that;(2) = 3,4 = 2,3. Sessions 3 and 4 are several important differences though. We point them out
saturate now. All sessions are now saturated under the allocatiomw. We first consider the case for the utility functidifz) =
@(2) = (0.5,0.6, 3, 3). Thus, the algorithm terminates with theb| /6] treated in [16]. The computation of the link control pa-
utility allocation#(2) = (0.5,0.6, 3, 3). rameters differs from [16]. To accommodate the general nature

Next we present analytical results which show that the algofthe problem, we need an additional quantifyk) to compute
rithm generates a maximally fair utility allocation in a polynothe link control parametey; (k) of link / in this case. There is no

mial number of iterations. unique choice of the link control parameter, and among the pos-
Theorem 1 (Maximal Fairness)The output utility allocation sible choices, we need to choose a value which is at least as large
vector is as that of the previous iteration. There is a unique choice for the

link control parameter in the algorithm of [16], and this choice
ensures that the link control parameter does not decrease with
subsequent iterations. The saturation conditions differ in the two

Theorem 2 (Finite-Termination TheoremThe algorithm algorithms. Also, selection of the virtual session for utility in-
terminates in at most/ + |£|M? number of iterations, where crementation differs in the two algorithms. All these distinctions
L is the set of links and/ is the number of virtual sessions. also apply to another special cd$ér) = z, studied in [15]. In

We prove these in the next section. We would like to point oaiddition, every receiver just receives the minimum session link
that the termination result holds independent of the nature of tbentrol parameter on its path in [15], and the utility incremen-
utility functions. The utility functions can have step jumps, anthtion step is not required there. The utility incrementation step
the size of the step jumps are allowed to be arbitrarily small. Tieecrucial for convergence here.
number of iterations required in this case is still upper boundedThis algorithm terminates in fewer iterations in some special
by M + |£|M?2. Thus the upper bound increases polynomiallgases. For example, if the utility function&(z) = z for all
with the number of links and virtual sessions. This is somewhsg¢ssions then the algorithm needs at midstterations. If the
surprising as it appears from the algorithm that the utility of atility functions are such that the ratio between the maximum
virtual session may increase one step at a time, and as suamil minimum step jumps are bounded by a constattten the
is not even clear that the algorithm terminates in finite numbalgorithm needs at mos{£| M iterations. The utility function
of iterations as the utility functions may have arbitrarily largé&(x) = b|«/b| falls under this category. We have not made any
number of step jumps in any bandwidth range. However, the iassumptions on the step jump sizes of the utility functions here.
tuition behind the result is that the utility of a virtual session
can also increase by several steps depending on its utility func-
tion and the utility functions of the other sessions sharing links
with virtual sessions, and this is the case when utility func- We prove that the algorithm presented in Section IV outputs a
tions may have arbitrarily large number of step jumps in anyiaximally fair utility allocation in a finite number of iterations
bandwidth range. Hence, the number of iterations is finite, al(ﬂjheorems 1 and 2). At first, we present some properties of the
actually, the polynomial in the number of links and the virtughtermediate utility allocations of this algorithm. We will use
sessions. We prove this more formally later. these in proving both the theorems. The second subsection will

Every step of this algorithm has a complexity®@fx|£|A), prove Theorem 1 and the last will prove Theorem 2. On account
wherer depends on the utility functions. If we assuméo be of space constraints, we will omit some of the proofs. Refer to
a constant, then the complexity of every ste@i{g£|M). The [14] and [18] for details.

1) maximally fair;
2) maxmin fair, if a maxmin fair utility allocation exists.

V. PROOF OFTHEOREMS1 AND 2
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A. General Assumptions and Properties of the Algorithm The result follows from the operation of the algorithm and
has been proved in details in [18].

We will present some properties of the intermediate utility Next, we state another result without proof.
allocations in this subsection. We first present some proper-
ties of the® and the¥ functions. Recalling the definitions, 0.
®;(z) andW;(x) are real valued functions defined &g(z) = 2 Ti@u(k) < € @
maxyc 4,n[0,2] ¥ Yi(2) = infyca,n(z 00) ¥, fOr session. In-
tuitively, ®,(x) is the largest sessianutility not exceedinge,
andVW;(x) is the smallest sessiarutility greater thane. If the
utility set of session, is a set of integers, theb,(z) = |z],
then¥,(x) = |x] + 1. Functions®; and ¥, satisfy the fol-
lowing properties:

scn(l)

This result follows from the computation af(%) in step (4)
of the algorithm, and relation (1). This result can be further
strengthened in the special case/dk) = ¢, (i.e., if no new
virtual session saturates in step (6) of the algorithm in iteration
k). Lemma 3 proves that in this case the utility of any one unsat-

1) ¢; and¥; are nondecreasing functions for 4ll urated virtual sessiofcan be increased from; (k) to the next
2) ¢i(z) < z,¥i(z) 2 higher level, if all other virtual sessions have utilities assigned
3) Ran(®;) N (P4(x), 2] = ¢. by the utility vector(k). The proof follows from the saturation

We will use these properties in our proofs. condition for a virtual session. . .
Now we present Lemma 1 which we will use in proving Lemma 3:If & > 1,A(k) = ¢, then for all virtual sessions
Theorems 1 and 2. More precisely, we will use this result ihe S(k—1)
proving that all intermediate utility allocations are feasible
(Lemma 4) and a termination result (Lemma 8). Lemm, ;) (max(Q2yi(k), ¥y (w;(k))))
1 shows that the utilities assigned by the maximal fairness e ,
algorithm can not decrease in subsequent iterations. The result + ‘ Z , Tiluk) = Gy VIE L.
follows from the steps of the algorithm. ien(,i#Ex )
Lemma 1: For all iterationsk > 0, and virtual sessions
s,r5(k+1) > ry(k) andws(k + 1) > r5(k). For all sessions
and Iinksl,)\il(k + 1) > )\zl(k) if £ > 0.
Finally, we present a relation which we will use repeatedly

Lemma 4 (feasibility lemma) shows that the utility allocation
at the end of every iteration is feasible. This is argued as fol-
lows. Virtual session utilities belong to the respective utility sets
(Lemma 2). Utility of a virtual session at the Oth iteration is its
minimum utility. Utility of a virtual session does not decrease
Ek—1)+ Z T (max(®;(m(k)), Au(k — 1))) < C;  in subsequent iterations (Lemma 1). Thus minimum utility con-

iCE (k—1) straints are satisfied. We show that the capacity constraints hold
) using Lemma 3 and (2). The formal proof follows. We will use
this feasibility result in the proof of Theorem 1.

Lemma 4: The utility allocationi(%) at the end of thesth

iteration is feasiblek > 0.

. . . . Proof of Lemma 4:We prove by induction. Note that
We will prove that the output of the algorithm is maximally . : - -
. ; : ; r5(0) = pus, for any virtual session. Thusi(0) satisfies the
fair (Theorem 1). We will use Lemma 1 stated in the first sub-" " - . .
. - minimum utility requirements. Alsqy; € A, (; by assumption
section and some additional lemmas stated below. We sum Fall virtual sessiong. Note that\(0) X for all sessions
rize the proof as follows. First, we will show that the output o 3 i Hits

every iteration is a feasible utility vector (Lemma 4). Next, wé € n(l) and all links!. Since the set of feasible rate allocation

will introduce the notion of a generalized bottlenecklink.Afea\i’_iztgrf(g igoan]?e”;g%’%ijtﬁ%é§£;(§gz < (, for any link 1.
s .

sible utility allocation is maximally fair if and only if every vir- N ) . ) )
tual session has a generalized bottleneck link. We prove the suf-et 7(k) be feasible. Let the algorithm not terminate in
ficiency in the generalized-bottleneck lemma (Lemma 5). THe iterations, i.e.,5(k) # ¢. We will prove that7(k + 1)
last step is to show that whenever a virtual session saturate& ifeasible. For all virtual sessiong,r;(k +1) € Ay(;) by
has a generalized bottleneck link in every subsequent iteratigpmma 2. For all virtual sessions, r, (k + 1) 2 r(k) 2 .
(Lemma 6). The maximal fairness of the output follows. The first inequality follows from Lemma 1 and the last from
Now we show the feasibility result (Lemma 4). First, we staté feasibility of (k). Thus,(k + 1) satisfies the minimum
Lemmas 2 and 3, which we will use in the proof of Lemma 4ltility requirements.
Lemma 2 establishes an intuitive property, i.e., the utilities allo- Now, we prove thaf(% 4 1) satisfies the capacity constraint.
cated to the virtual sessions at the end of every iteration beldfig; (k + 1) = w;(k + 1), for all virtual sessiong, traversing

B. Proof of the Maximal-Fairness Theorem

to the respective utility sets. through linkl, thenX;;(k + 1) = Q;;(k + 1), for all sessiong
Lemma 2:For all virtual sessionss and iterations traversing linkn(l). Thus, (k+ 1) satisfies the capacity condi-

k,@ooy(rs(k)) = ro(k), ®ysy(ws(k)) = ws(k). For tionfrom (2).fr;(k+1) # w;(k+ 1), for one or more virtual

all sessionsi, link [ and iterations k, ®;(\;(k)) = sessiong traversing through link thenr,(k+1) > wy(k+1)

Ai(k), @, (2 (k)) = Qu(k). It follows thatr(k),ws(k) € for some virtual sessios traversing through link andr; (k +
Ax(s)v andQﬂ(lﬂ), )\zl(k) € A;. 1) = w]'(/{}—i-l),j 75 S. ThUS,)\il(/{J—F 1) = Qil(/{}—i-l),i 75 X(S)
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and A sy (k + 1) = max(¥, () (wa(k 4 1)),2 (k4 1)). case. Condition 3) applies when < W, ,(r,). Again, this
Note thats € S(k) andA(k+1) = pasrs(k+1) > ws(k+1). happens when the utility function for receiverdoes not in-

Thus, Lemma 3 applies for virtual session crease strictly in a right neighborhood af. Condition 3) can
T (k4 1 be explained as follows. The first summation in the left-hand
Z ik +1)) side of the expression in condition 8 — 3=,y Ti(Air))
ient) is the available bandwidth in the link. Consider a session
= Z T, (Quk+ 1)) whose session link utility in link is higher than bothu,,
ien(l),iz#x(s) and W, .)(rs) (recall thaty;(\W,(,)(rs)) is the least utility
+ T (o) (max (W oy (ws (k + 1)), Qi (k +1))) vaIue_ for session not lower thanW,(,)(r,)). The second
< ¢ (from Lemma 3) term in the left hand sidé> N z>mx<uiz€73(f<>w o (T (Nar)—

i(max(pua, Yi(Vy(5)(75)))))) is the addltlonal bandwidth
Thllis_lfrsk;r 1);?:5;'6”5 the capacity condition in this case a(');btamed by reducing the session link utility of any such ses-
weN € ea? Itl ydo Oviﬁ‘ i ¢ lized botl ksmm to eitherp;; or 1; (W, (,)(rs)), whichever is higher. The
ow we will introduce the notion of generalized bottleneck .5 "o right hand SIIEY (o) (U (o) (7)) — Toge) () iS

l'.nk' LJ tility aIIocatieng It? |;rt1|aX|m?(II|y i(aw ';f S\\I/ery'l\lnrtual Stﬁs' the bandwidth required to increase the utility of virtual session
sion has a generalized bottleneck link, wit.WWe will prove the ., = "o higher IeveIﬁ/Y(S)( ). Note that\IfY(S (r.) is

SltJ:'C'fenC%Ofth'S conLdTon In II)en:;naS First, Wet introdiji:e an a utility value which is one level higher than in this case,
?h er ul\r/ic '0?1/’1( )" e‘z/)Z(_) ef etm'ngn?mg"wfnﬁ es. i.e., W (,)(rs) is greater tham, but there is no valid utility
anx. More formally,3;(x) is & function defined as follows: | /1 for the session of receiverbetweenr, and ¥, (,)(rs).

Pi(x) = inf {y: & < y = ®,(2), for somez € R}. Condition 3) states that the total bandwidth obtained after
veR such reduction (the sum of the available bandwidth and the
For example, if U;(z) = blz/b], then the utility set additional bandwidth released after reduction) is not sufficient

consists of nonnegative integral multiples df, and to increase the utility of receiver to the next higher value,
Pi(x) = blz/b],i(x) = blz/b]. Since®; is a nonde- ¥, (r,). Thus, the utility of receivers can be increased,

creasing functiony; is a nondecreasing function for ail only by decreasing the session link utility of one or more ses-
Alink [ is a generalized bottleneck link for a virtual sessiosions to a value below,.

s w.r.t. a utility allocationy” if The following lemma shows that if every virtual session has
1) 75 = Aysy, (recall thath;; = max;c g 75)- a generalized bottleneck link, then the utility allocation is max-

2) If 7, = W (y(rs), then EiEn(l) Y;(M\i1) = C;. Also, imally fair. We sketch the proof for the forward part here. We
if X\;; > py for any sessiorn traversing the link, then will use this lemma in proving Theorem 1.

it < i(rs). Lemma 5: A feasible utility allocation vector is maximally
3) If ry < Wy)(rs), then fair if every virtual sessior has a generalized bottleneck link.
Sketch of Proof for Lemma SLet be a feasible utility al-
- Z Ti(Aa) + Z (Ti(Xar) location. Let every virtual session have a generalized bottleneck
ien(l) ent), link under7. Let#* not be a maximally fair utility allocation.
sz vi (¥ 0)) Thus, from the definition of maximal fairness, there must exist
— Yi(max(pir, Pi( Py ()(rs))))) a feasible utility allocation;? fairer than#*. Define the setr
<Yy (Ts)(7:)) = Ty (75)- of virtual sessions as follows, = {j: 7} # r3} (7 is the set of

virtual sessions which have different utilities under allocations
and?). Sincei” is fairer thanr!, there exists a virtual ses-
SioN s.i, SUCh thas,,;, has the minimum utility in- underi?,

We follow the conventionthagt__ , » = 0, if setA = ¢.
We briefly explain the bottleneck conditions here. The f|r§t
condition states that virtual sessierhas the maximum utility

2 —_
among all other virtual sessions of its session traversing ﬂse P ain mm’&” 2 and the utility ofsyin IS even lower
nder/ (i.e.,rZ > 7L ). This follows from a necessary

lized bottl k link Conditi 2 d 3) deal with Y
generalized bottieneck fink Conditions 2) and 3) deal wi and sufficient condltlon for relative fairness stated in [13]. The

the two possible cases; = V¥ (\(r;) andr, < ¥, ,y(rs). " ) . . . h )
POSSI A7) rs < Wy () condition applies for the relative fairness in any feasible set in

The first happens when the utility set of receivercon- Y . , -
tains a right neighborhoodr,,r, + &), for somes > 0. iinsa;\;jvr\iglrlme holds for the relative fairness of utility alloca-

Again, this happens when the utility function for receive
s increases strictly in a right neighborhood ef. In this ~ Now we state a property of utility allocatioft, which fol-
case, the bottleneck conditions require that the total barl@ws from the fact that every virtual sessighas a generalized
width of the link I be fully utilized under the utility allo- bottleneck link undef™. If the utility allocation of a component
Catlonu(Ezen(z)T (Ai) = C)). Also, consider a session jin7tisincreased, then the utility allocation of one or more vir-

traversing link! with session link utility A;; higher than its tual sessions must be decreased to values bejow order to
minimum required Ut|||ty[,Lzl The utiiity a”ocation Of any ma|nta|n feaSIblllty The |ntu|t|0n |S S|m||ar to the eXpIanat|0n

such session is upper bounded bys;(r,) (if Ay > pi then for the bottleneck conditions stated before this lemma, and the
Air < ¥i(rs)). Recall thaty;(z) is the minimum utility of Precise argument has been stated in [18].

session not lower thane. Thus a virtual session has “almost Note that the utility of component,,;,, is higher in7? than
maximum” utility in its generalized bottleneck link in thisin 7* (r1 < 72 ) andi? is feasible by assumption. There

Smin Smin
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exists at least one compongnwhose utility allocation is lower a nondecreasing function. Next, we argue thaft + 1) <
underiZ, (i.e.,rf < r}) and also the utility allocation qfunder »i(m(t + 1)), for all sessions, if A;(t + 1) > py. Thus, it

7 is less than'! | i.e., (rf < ri ). Thus,»? < rl < follows thatAy(t + 1) < vi(rs(t + 1)) for all sessiong, if
7§ andj € 7 a37 J However this contradicts the A;;(t + 1) > ;. The second part of condition 2) follows since
definition ofsmm,rgm = min;c, r?. The result follows. O 75(k) = rs(t + 1) and A\ (t + 1) = A\;y(k) for all sessions

Now we show that if a virtual sessmn saturates in an iteratidraversing linkl.

k, it has a generalized bottleneck link in all subsequent itera-Now letr,(k) < ¥, (.)(rs(k)). We need to show that there
tions. Since the computation algorithm terminates only whexists a link! which satisfies the generalized bottleneck con-

all virtual sessions saturate, the maximal fairness of the outplitions 1) and 3) for virtual sessiosn w.r.t. utility allocation

utility allocation follows from Lemma 5. 7(k). Sincers(k) = r,(t + 1) as observed before,(t + 1) <
Lemma 6:1f s ¢ S(k),k > 0, then virtual sessiom has a W, )(r.(t + 1)). Sinces € 5(t) \ 5(t + 1), there exists a link
generalized bottleneck link w.r.t. utility vectm(k) lelL,st

Proof of Lemma 6:SinceS(0) = {1,...,M},s € S(0)
for all virtual sessions. Thus the lemma holds by vacuity for
k = 0. Considerk > 0. Lets ¢ S(k). We need to show that and
virtual sessiors has a generalized bottleneck link w.r.t. utility Z Ti(Au(t+ 1)) > Cr— (T ois) (Tyo)(rs(t+ 1))

rs(t+1) = Aeu(t+1) (7)

allocation vectorr(7c). Sinces ¢ S(k), s saturates in théth ien(l)

iteration or earlier. Lek saturate in the+ 1th iterationt 4+ 1 < — Yy (o)(rs(t+1))). (8)

k. Thuss € S(t) \ S(t +1),t + 1 < k. Thus step (4) of the o o _ _
algorithm implies that,(k+1) = w,(k+1) = r4(k) = --- = Wenext show that this link satisfies the required generalized

r,(t+1) (Note that the computation algorithm does not chang@ttleneck conditions 1) and 3)

the utility of a virtual session once it saturates). We conS|d%r (¢ 1 Tyt + 1)
the cases (k) = W) (rs(k)) andrs(k) < Wy )(rs(k)) xo) (Uxie) Aot + ;) Aa(t+1))
separately itx(s)

> (7 (using (7) and (8)) (9)

Firstletr (k) = U, (rs(k)). 3 -
75 (k) x(s)(rs(k)) 3) T:(Aa(k)) < C; from feasibility of (k)

Note that}_

i€n(l)
We need to prove the general bottleneck conditions 1) and 2) fbemma 4). Thus, from (9) and since(t + 1) < Ay(k)
some linkl € L, (Lemma D) A, (k) < Wyis)(Axsnlt+1)). Also, Ay syt +
1) < Ay(syi(k). From the definition of thel, (, function, and
st +1) = Wy (ra(t + 1)) since A, sy (k) is in the range of®,(, function (Lemma 2),

(from (3) and since,(t + 1) = 7,(k)). (4) Axaui(k) = Ayt +1). Asry(t + 1) = r4(k), bottleneck
_ N o _ condition 1) of the lemma follows from (7).
From (4) and the saturation conditions in iteratios 1, there  \ve sketch the proof of bottleneck condition 3). We have ar-

existsa linkl € L, s.t. gued in [18] that
Ts(t + 1) = )‘X(s)l(t + 1) (5) If it = 1/)Z (\I/X(S) (7‘5 (t + 1))) ,
Z Tz()\zl(t + 1)) = (6) then)\il(t + 1) = Wi
ien(l) If pir < i (W) (rs(E+1)))
We will show that this linki satisfies the general bottleneck then (t 4+ 1) < ¢ (U () (rs(t+ 1))

conditions 1) and 2) for virtual sessienw.r.t. utility allocation
r(k). From Lemma 1), (k) > X;(t + 1), for all sessions
traversing/, sincet < k. Thus (6) shows thaX;;(k) = Xu(t +  Xa(t + 1) < max (i, ¥i (Uy(o)(rs(k)))) foralli € n(l)

1), for all sessions traversing/, otherwise)_; -, ;, Ti(Au(t + (10)

1)) > Cj, which violates the feasibility condition fof(k). We

know from Lemma 4 thaf(k) is a feasible utility allocation. ~ Using (10), we can upper bound the second summation in the

Usingrs(k) = r,(t + 1), it follows that:

Two conditions follow. First), (. (k) = A y(t + 1) = left-hand side of (3)
rs(t + 1) = ry(k). Thus general bottleneck condition 1) iy
holds The second condition is that,,, ) Ti(Xu(k)) = ig(:l)’ (Tilhulk))
chw) T;(Miu(t+1)) = Ci. Thus, the flrst part of the general Ny mae (s (W oy (ra(6)))
bottleneck condition 2) holds. _ . (Imx( s ( ) ))
We sketch the proof for the second part of the general bottle- i (max (g, s (Vo) (7
neck condition 2). We show thai(t + 1) > () (mi(t + 1)). < > (T (A (k)
Note that®;(z) is the largest sessianutility not greater than ien),
«. Now using certain technical properties of thdunction and Rz max (it s (B (e (0))
the fact that, (t + 1) = U, (,)(r.(t + 1)) [see (4)], we show - Ti(Aa(t +1)))
that furthermorer,(t + 1) > (¢t + 1) in this case. Thus, < Z (T (k) — Ti( At + 1))). (11)

i(rs(t+ 1)) > ¢;(m(t + 1)), for all sessiong, sincey; is ien(d)
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The last inequality follows sinc&; is an increasing function For somd € L, s.t. @,y (ming, ez, m, (k) = @) (m(k))
andA;; (k) > A (t + 1) for all 4.

ws(/f) = Qx(s)l(k) and

Cr— Y Tilha(k) Ran(® (o)) N (mi(k), au(k)) = ¢
tCn(l)
+ Z (Ti(Aa(k)) and foralll € L, s.t. &, (5 (ming, e, m, (k) = Loy (m(k)),
N (k>>max(ﬂfeﬁz(_l(>:1, o (k>>)) Qzl(k') = max(q)i(m(k)), )\zl(k — 1)) \V/L € El(k' — 1).
K AT The following lemma shows that the number of iterations
= T (max (pir, Pi (V) (75(K)))))) in which there is a utility incrementation in step 8) is upper-
<O — Z T:( Mt +1)) (from (11)) bounded by|£|M?2. Since Lemma 7 indicates that there is al-
ien(l) ways a utility incrementation if no virtual session saturates in

. _ . step 6), this means that the number of iterations in which no vir-
< Tato) (Va7 + 1) = Yo (rslt 1)) by (B)) tual session saturates in step 6) is at MO&t/2. The proof uses
= Yoy (T (76 (1)) = Lo (s (K)) Lemmas 1 and 7. Interestingly, this result is independent of the
(sincer,(k) =75(t+1)). nature of the utility functions.
Lemma 8: LetT = {k: A(k) = ¢}. The cardinality ofl" is
Thus, bottleneck condition 3) of the lemma holds in this d@se.at most|£|M? where. is the set of links and/ is the number
Now we prove Theorem 1. The proof follows from Lemmasf virtual sessions.
4 and 6. Proof of Lemma 8:Set1 is the set of iterations which
Proof of Theorem 1:Let the computation algorithm ter- execute step 8). From Lemma 7, for every iteration 1" there
minate ink iterations. Note thaf(k) is feasible by Lemma 4. exists at least one virtual sessioand link! pairs.tl € L;,s €
SinceS(k) = ¢, there does not exist a virtual sessidn S(k). S(k — 1) which satisfies the following properties:
Thus from Lemma 6 for every virtual sessierthere exists a

link which satisfies the properties of a generalized bottleneck )

link for virtual sessions w.r.t. utility vector#(k). Thus#(k) is O <11121£1 ”ll(k)> = Oy (m(k)) (12)

%Irllz)svxsimally fair utility allocation by Lemma 5. Thus, part 1) wa(k) = By (m(E)) (13)
If a maxmin fair utility allocation exists, then it is fairer than ws(k) = Dy (k) (14

any other utility allocation, by definition of relative and maxmin Vie Zi(k—1)

fairness [1§]. Thusitis thg qqu maxima.IIy fair gtility aIchation Qii(k) = max(®;(m(k)), \u(k — 1)) (15)

in the fea_s_lble set, b_y dgf|n|t|_0n of maX|maI falrness. Slnc_e the U, (wy (B)) > ws(k) (16)

output utility allocation,7(k) is maximally fair under all cir-

cumstances, part 2) follows. ) Ran (D)) N (mi(k), cu(k)) = - 17)

Now 7,(k) = W) (ws(k)) > ws(k) for one such virtual
sessions. We call such a virtual sessios(k) and the link
Now we will prove that the algorithm terminates in &(k). We will show that the pair(j,{;) can occur for at
finite number of iterations (Theorem 2). We prove it usingnost |n({;)| times in the sequenc§(s(k),!(k))}. There can
Lemma 1 in the first subsection and the following additiondde at most|£|M different virtual session, link pairs. Thus
lemmas. |T| < |L|M maxcc [n(l)| < |[L|MN < |£|M?, whereN is
The following lemma shows that if no virtual sessionthe total number of sessions.
saturates in step 6) of the algorithm, then at least oneNow, we show that the pair(j,1;) can occur at
virtual session meets the condition for utility incrementatiomost |n(l1)| times in the sequence(s(k),1(k))}. Let
in step 8). Thus there is either a saturation or a utilitys(k)’g(k)) = (s(t),l(t)) = (s,1),k < t. Note that the
incrementation in every iteration of the algorithm. Theaturation status of a session in a link can only change from
proof looks at the linkl,,;, which attains the minimum-link ynsaturation to saturation. Thig(t — 1) C Si(k — 1). We
control parameter, amongst all those which carry at leagfll show that=;(t — 1) C Z;(k — 1). Thus, at least one session
one unsaturated virtual session. It chooses an unsaturaigflirates in link between any two occurrences(af () in the
session iy, traversing link /i, by certain criteria, and sequence. Clearlgs, 1) can not occur in the sequence after all
argues that all the unsaturated virtual sessionsi9f, sessions saturate in link Thus,(s,) can occur at mogt (/)|
satisfy the required properties. Refer to [18] for details. times in the sequence.

Lemma 7: If A(k) = ¢, there always exists a virtual session Now we show thaE;(t— 1) C Z;(k—1). Assume otherwise,

C. Proof of the Finite-Termination Theorem

s € S(k — 1) such that e, Ei(t — 1) = Sy(k — 1). Sincer, (k) = W,y (ws(k)), it
follows from (16) and (13) that, (k) > ws(k) = @) (m(k)).

ws (k) = Dy (s) <min Ul(/f)> ’ Alsor, (k) < w,(t) = @, (s (m(t)). Thefirstinequality follows

ICLs from Lemma 1, sincé > k. The second follows from (13).

U sy (ws (k) > ws(k) It follows that ®, .,y (m(t)) > Py sy (m(k)). Sinced,, is a
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nondecreasing function, it follows thai(t) > (k). Since
E(t-1)=Z(k—-1),Ft—-1) = F(k-1):

(1]
GzFRE-1+ > Yi(max(®;(m(t), \alt — 1)) 2
€5 (t—1)
(from (1)) [3]
>Flk-1+ S Ti(max(@i(n(t), ha(k - 1))
iCE(t—1) (4]
(sinced;(k—1) < Au(t— 1) by Lemma ) [5]
=F(k-1D+ > Ti(max(®;(m(t), (k- 1))
i€8;(k—1) (6]
(sinceZ;(k — 1) ==(t —1)). (18)
(7]
Thus, from definition,cq(k) > m(¢). If a;(k) = m(¢), then
from (18), Fi(k—1)+3;cx, (1) Ti(max(Pi(au(k)), Aie(k— 8]
1))) < O This means thaty(k) = (k). Thus
mk) = ow(k) = nt). But, we have shown that

m(t) > m(k). It follows that ay(k) > n(t). Let, if pos- [9]
sible, @) (m(t) > m(k). Since@,((m() < m(t) by o
property (2) Of(by( 8)) Y(@)(nl(t)) € (Wl(k)aﬁl(t)] Since
m(t) < a(k), @y (m(t)) € (m(k), aq(k)). This contradicts

(7). Thus, <I>X(S (m(t)) < m(k). Since @, ,(m(t)) > .

() (m(R)), Pyy(m()) € (Py(oy(m(k)),m(k)]. This  [12]
contradicts property (3) of the®,. function. Thus,
El(t — 1) 75 El(k' — 1). ThUS,El(t — 1) - El(k' — 1). O [13]

Now, we prove Theorem 2. The proof uses Lemmas 7 and 8.
Proof of Theorem 2 (Finite Termination The- [14]

orem): Observe that at least one of the following holds
for every iterationt > 1:

1) A(k) = ¢

2) S5(k) C S(k — 1) (proper subset). 18]
The status of a virtual session can change from saturation to
unsaturation only. Thus§(k) C S(k— 1) forallk > 1.So (2) [17]
can hold for atmosf/ iterations, wheres(0) = {1,..., M}.
Lemma 8 shows that (1) can hold for at mpS&tA? iterations.
Thus the algorithm must terminate M + |£|M? iterations]

[15]

(18]

[19]
VI. CONCLUSION AND DISCUSSION

This paper develops a framework for studying diverse fair-
ness objectives in multirate, multicast networks. The key con-
tribution is to present an algorithm for computing the fair utility
allocations for general utility functions. The algorithm termi-
nates in polynomial number of iterations. We mention some in-
teresting topics for related future research. We pointed out that
computation of lexicographically optimal utility allocation is
NP-hard. Hence, we focused on a weaker notion of fairness,
maximal fairness which has intuitively appealing fairness proj
erties. Another direction is to develop approximation algorithrr
and heuristics for computing lexicographically optimal utility
allocation. It may also be possible to develop a lower complexi
algorithm for computing maximally fair utility allocation. An-
other promising direction is to explore the connection betwe:
the choice of utility functions and pricing mechanisms. We ho
that this study would initiate further research in these areas.
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