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Fair Allocation of Utilities in Multirate
Multicast Networks: A Framework for
Unifying Diverse Fairness Objectives

Saswati Sarkar and Leandros Tassiulas

Abstract—We study fairness in a multicast network. We assume
that different receivers of the same session can receive information
at different rates. We study fair allocation of utilities, where utility
of a bandwidth is an arbitrary function of the bandwidth. The
utility function is not strictly increasing, nor continuous in general.
We discuss fairness issues in this general context. Fair allocation of
utilities can be modeled as a nonlinear optimization problem. How-
ever, nonlinear optimization techniques do not terminate in a finite
number of iterations in general. We present an algorithm for com-
puting a fair utility allocation. Using specific fairness properties,
we show that this algorithm attains global convergence and yields
a fair allocation in polynomial number of iterations.

I. INTRODUCTION

WE WILL STUDY resource allocation and congestion
control in real time multicast networks in this paper.

Multicast is communication between a single source and a
group of destinations. The source sends one copy of a message
and this copy is replicated only at the branching points of
the multicast route. More traditional forms of communication
like unicast with a single source and a single destination, and
broadcast with a single source communicating to all other
nodes in the network are special cases of multicast. Real time
multicast applications are increasing all the time. Examples are
collaborative applications like audio or video teleconferencing,
video-on-demand services, distance learning, etc. Resource
allocation in multicast networks is more complex than that in
unicast and broadcast networks. This calls for a separate study
of these problems in the multicast scenario.

Multicast congestion control is more challenging than usual
unicast congestion control on account of network heterogeneity.
A multicast application may have many destinations, and end
systems can have widely varying bandwidth requirements. The
paths to different destinations may have different bandwidth ca-
pacities, e.g., one may consist of multimegabit links, such as T3
(45 Mb/s), and another may have a 128 kb/s ISDN line. A single
rate of transmission per session is likely to either overwhelm the
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slow receivers or starve the fast ones, in absence of additional
provisions. This is not an issue in unicast networks because there
is only one receiver per application. This can be countered in
real time multicast applications using multirate transmission.
Here, different receivers of the same application are allowed
to receive information at different rates. For this purpose, the
source signal is encoded into a number of layers that can be in-
crementally combined to provide progressive refinement. The
source transmits all the layers. The receivers adapt to the indi-
vidual bandwidth requirements and capabilities by adding and
dropping layers. As each layer is added, there is an improve-
ment of quality of the received signal and additional bandwidth
is needed to transport the combined stream. When a layer is
dropped, there is graceful degradation in the reception quality.
This layered transmission scheme has been used for both video
[19] and audio [3] transmissions over the Internet and has poten-
tials for use in ATM networks as well [6]. Multirate transmis-
sion introduces its own challenges though. At every link, the
transmission rate of a session is equal to that of the fastest ses-
sion receiver downstream of the link. So the transmission rate of
the same session may be different in different links depending
on the configuration of the receivers downstream. Thus, unlike
unicast networks, there is no concept of session rates as such.
One needs to consider receiver rates separately, and congestion
control schemes need to be modified suitably so as to consider
the receivers separately.

Every receiver would like to receive as many layers as pos-
sible. However, networks have resource limitations, and deliv-
ering a large number of layers would cause acute congestion.
Resource allocation strategies become important in this situa-
tion. Resource sharing objectives determine the individual al-
locations. We adopt fairness as our resource sharing objective.
There are several possible notions of fairness. A simplistic no-
tion is to serve all users at the same rate. However, some users
may receive information through low bandwidth links, while
some others may receive information through high bandwidth
links. Serving all users at the same rate would tie all users down
to the low quality service in this case. So this notion of fairness
is not useful. We describe a few more sophisticated notions of
fairness here, e.g., maxmin fairness [2], proportional fairness
[7]. A bandwidth allocation is maxmin fair if it is not possible
to respect the resource constraints and increase the bandwidth
of a receiver without decreasing that of any other receiver which
has equal or lower rate. Recently, [7] has advocated a new no-
tion of fairness, namely proportional fairness. A feasible rate
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Fig. 1. Session 2 traverses both links, and sessions 1 and 3 traverse one link
each. Both links have one unit of bandwidth each.

vector is proportionally fair, if for any other feasible rate
vector , the aggregate of proportional changes is nonpositive,
i.e., . Consider the network in Fig. 1 as
a distinguishing example. Maxmin fair allocation allocates 0.5
units to all sessions. Proportionally fair allocation allocates
unit of bandwidth to the long session and units of bandwidth
to the short sessions each. So it is apparent that the proportion-
ally fair allocation discriminates against long sessions. The ar-
gument in favor of this discrimination is that the long sessions
consume more resources than the short ones, and hence should
not be treated in the same manner as the short sessions. This
argument raises the question that if we need to discriminate be-
tween sessions, then how should the amount of discrimination
be determined. In our opinion, this should depend on several is-
sues like the bandwidth requirements, revenues earned, etc. For
example, a video source requires more bandwidth than an audio
source, and these two should not be allocated equal resources.
Also, certain users may be willing to pay higher revenues, and
then it is fair that they get better quality service. Thus, it is im-
portant to generalize the notions of fairness so that one can suit-
ably differentiate among users within the framework of fairness
depending upon user requirements and network objectives. We
generalize the concept of maxmin fairness, using the notion of
utilities.

Utility of a receiver is a function connecting the bandwidth
granted to the receiver and the “value” associated with the band-
width. The term “value” is an abstract notion. It simply indicates
a measure of the satisfaction of the user, or even the amount
paid by the user. A possible fairness objective can be to allocate
bandwidth so that the utilities are distributed fairly. We would
consider fair allocation of utilities in the multirate, multicast
scenario. Users need to announce their utility functions. The net-
work would charge the users in accordance with their utilities,
and at the same time, allocate the resources so that the corre-
sponding utility allocation is fair. Consider a simple one link
example to clarify this concept. A user who needs a high band-
width, and is willing to pay high revenues will declare a slowly
increasing utility function, whereas a user who is satisfied with
a low bandwidth and does not want to pay high revenue, would
declare a rapidly increasing utility function. The fair allocation
of utilities in this case is to equalize the utilities of the two users,
and the former would receive a higher bandwidth than the latter
at this fair operating point.

Utility fairness provides a unified framework for diverse fair-
ness objectives. We study a concrete example to argue this point.
We have studied fair allocations of discrete bandwidth layers in
[16] under the assumption that the layer structure is the same
for different sessions. More precisely, layers for different ses-
sions have the same bandwidth. Under this assumption, fairness
of layer allocation is equivalent to the fairness of rate alloca-

tion, and the two need not be investigated separately. This does
not hold any longer when different sessions have different layer
bandwidth. Consider a specific example. Consider a single link
network. Two sessions traverse the link. Source of the first ses-
sion transmits unit bandwidth layers. Every layer of the second
session consumes 2 units of bandwidth. Let the capacity of the
link be 9 units. A bandwidth allocation allocating 5 units of
bandwidth to the first session and 4 units to the second one is in-
tuitively fair (discrete bandwidth layers do not allow allocation
of 4.5 units each). However, this allocation gives session 1, 5
layers and session 2, 2 layers. Intuitively, (3, 3) is a “fairer” layer
allocation. The corresponding bandwidth allocation, (3, 6) does
not seem fair. So, fair allocation of layers and bandwidth are dif-
ferent objectives. The fairness objective depends on the specific
requirements of particular networks, and can be decided on a
case by case basis. However, these different fairness objectives
fall under the same framework, if we consider the fair allocation
of utilities, where utility of a bandwidth can be the bandwidth
itself, or the number of layers obtained from the bandwidth. The
former would lead to the rate fairness problem, and the latter to
the fair layer allocation problem. Likewise, utility can be any
other function of bandwidth as well.

We review the related work in this area. Well known net-
work protocols for layered transmission, receiver-driven layered
multicast (RLM) [11] and layered video multicast with retrans-
missions (LVMR) [8] do not handle fairness among sessions
very well, when there are multiple sessions competing for band-
width [9]. Fair allocation of utilities have not been investigated
in depth in either unicast or multicast networks. Algorithms for
computation of fair bandwidth have been proposed in [12], [15],
[16]. These papers consider special cases of the utility functions
only, e.g., [12], [15] and [16] for all
receivers. Caoet al. have presented an algorithm for maxmin
fair allocation of utilities in the unicast case [4]. This paper con-
siders strictly increasing utility functions only. None of the pre-
vious algorithms [4], [15], [16] attain fair allocations for more
general utility functions [14] even in the unicast case. As we dis-
cuss later, in many cases of practical interest utility functions do
not increase strictly and are more general than the functions con-
sidered before. Fairness issues differ significantly when utility
functions are more general.

This paper is organized as follows. We discuss our assump-
tions on the utility functions and motivate the study for more
general utility functions in Section II. We present our network
model in Section III. We also introduce our fairness notion in
this section. We show that if the utility functions do not increase
strictly then usual fairness notions are not applicable. For ex-
ample, maxmin fair allocation of utilities may not exist and the
computation of a lexicographically optimal allocation turns out
to be NP-hard in this case. We introduce a weaker notion of fair-
ness, maximal fairness, and show that it has several intuitively
appealing fairness properties. We present an algorithm for com-
puting maximally fair allocation of utilities in Section IV. The
algorithm does not use network specific properties, and is hence
a fairly general purpose one. We prove that the algorithm yields
a fair allocation of utilities in polynomial number of iterations
in Section V. We conclude this paper in Section VI.



SARKAR AND TASSIULAS: FAIR ALLOCATION OF UTILITIES IN MULTIRATE MULTICAST NETWORKS 933

Fig. 2. Three utility functions. For utility functions 1 and 3, utility of
bandwidthx is the actual bandwidth which can be allocated whenx units of
bandwidth are available and layered encoding is used. Utility function 1 models
the case when the layer structure is completely flexible and any bandwidth can
be allocated, if it is available. The utility function is linear and the utility set
(set of allowable utilities) is the nonnegative real line. Utility function 3 models
the case when the layer structure is completely predetermined. Only a discrete
set of rates can be allocated and the utility function is stair-case. Utility set is
the set of nonnegative integers. Utility function 2 models the case when the
layer structure is flexible in certain ranges of bandwidth and predetermined in
other ranges. Here, the utility is the qualitative gain from the bandwidth. In
the flexible region, the function increases strictly, linearly or sublinearly. In
the predetermined region, it is a stair-case function. Note that the step lengths
are unequal, indicating that different layers of the same source have different
bandwidth. The utility set consists of closed intervals and some discrete points.

II. A LLOCATION OF UTILITIES

We first discuss some possible utility functions and our as-
sumptions on the utility functions. Utility of a bandwidth can
be a measure of the reception quality a receiver obtains at that
bandwidth. This measure can be objective as well as subjective.
Objective measure can be quantities like information theoretic
rate distortion, or the signal to noise ratio, where noise consists
of the quantization noise. Obviously, these measures depend on
the coding used, and hence it is important to allow different ses-
sions to have different utility function, because different ses-
sions may use different coding schemes. Other measures can be
the number of layers obtained from a particular bandwidth. Sub-
jective measures can be perceptual quality.

We define our assumptions on the utility functions now. These
assumptions are mild, and a large number of utility functions
satisfy these assumptions. Subsequently, we will present some
sample utility functions, and motivate the requirement for as-
suming such general properties. Formally, “utility” is a function
of the bandwidth. We assume that the receivers of the same ses-
sion have the same utility function. “Utility set” of session
is the range of the utility function of session. Receivers of a
session can possibly receive a utility if it belongs to the utility
set of the session. For example, if utility of a bandwidth is the
number of layers assigned out of the bandwidth, then the utility
set is the set of nonnegative integers. If utility of a bandwidth is
the bandwidth itself, then the utility set is the nonnegative real
line. Refer to Fig. 2 for some example utility functions. We as-
sume that the utility function satisfies the following technical
assumptions for every.

1) .
2) Utility set, is a closed set.

Fig. 3. This figure shows three unacceptable utility functions. The utility
functions are not acceptable with data point “o.” In each case, the utility
function becomes acceptable if the data point ‘o’ is replaced by the one marked
“x.” The utility sets violate property 2) for functions 1 and 3, and property 3
for function 2.

3) Given any utility , there always exists a minimum band-
width required for sessionto attain utility , i.e., the set

has a minimum, where is the
session utility corresponding to bandwidth. The min-
imum bandwidth for utility is denoted . Refer to
Fig. 4 for some example minimum bandwidth functions,

.
4) The minimum bandwidth function is right continuous

and strictly increasing.

Fig. 2 shows some sample utility sets.
The first assumption indicates that the utility set is not upper

bounded. If necessary, we can impose maximum utility con-
straints separately. The other assumptions are more technical. In
the last assumption [Assumption 4)], continuity is intuitive be-
cause if the valid utilities in the utility set are very close, then the
minimum bandwidth required for attaining them should also be
very close. Strictly increasing property of the minimum band-
width is also intuitive. However, the utility function may not
increase strictly and the same utility can correspond to a range
of bandwidth. Only, the minimum bandwidth required to attain
any particular utility needs to increase strictly. This property im-
plies that the utility functions must be nondecreasing. Hence, we
do not make this assumption explicitly. The last three assump-
tions exclude some functions from being valid utility functions.
Refer to Fig. 3 for examples of unacceptable utility functions.
Any utility function satisfying properties 1)–4) is acceptable.

The assumptions on the utility structure are mild and most of
the utility functions encountered in the networking context sat-
isfy these assumptions. At the same time such general assump-
tions are needed for modeling several utility functions of prac-
tical importance. Consider a specific example to motivate the
general assumptions. Let utility of a bandwidth be the
actual bandwidth obtained by a receiverwhen units of band-
width are available for the receiver. Note that for layered trans-
mission of signals may not equal as receivers subscribe
to layers. Often times receivers can not receive a layer partially
and hence the allowed bandwidth allocations form a discrete
set. Thus, in this case. Utility functions of Fig. 2
give a pictorial representation. Relation between the layers and
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the bandwidth determine the nature of the utility functions in
this case, and the former depends on the encoding mechanism
used. Depending on the coding mechanism, in certain band-
width ranges, the layers can be fine tuned in accordance with
the bandwidth requirements. This means that given the desired
rates of various receivers, the source generates as many layers
as distinct receiver rates and adjusts the layer bandwidth so as to
match the receiver rates. The layer structure is said to be “flex-
ible” in these ranges. The utility function representing the actual
bandwidth obtained from a given available bandwidth will in-
crease strictly, either linearly or sublinearly, for these bandwidth
ranges. The layer structure may be predetermined in other band-
width ranges, i.e., layer bandwidth cannot be tuned to match all
the desired receiver rates and receivers can not partially sub-
scribe to layers. The utility function will be stair case in these
bandwidth ranges. The step sizes represent the bandwidth of dif-
ferent layers. Different layers may have different bandwidths,
e.g., the codec of [10] generates nonuniform bandwidth layers.
Hence, the step jumps may have unequal sizes. Thus, in gen-
eral, the utility functions will neither be continuous nor strictly
increasing and will have different shapes in different bandwidth
ranges. Fairness under these assumptions is vastly different from
the case in which the utility functions are strictly increasing.
Thus it would be interesting from a mathematical as well as a
practical standpoint to study this more general case.

Different sessions may have different encoding mechanisms,
and hence, different layer structures. This leads to different
utility functions for different sessions in the previous example.
Thus utility functions will be different for different sessions
in general. However, we assume that the receivers of the same
session have the same utility functions. This assumption is
reasonable, because utility structure (e.g., layer structure) often
depends on source and there is only one source per session.
Note that we only assume same utility functions for different
receivers of the same session, but utilities allocated to different
receivers of the same session can be different.

III. N ETWORK MODEL AND FAIRNESSNOTIONS

We describe our network model in this section. We consider
an arbitrary topology network with multicast sessions. A
multicast session is identified by the pair , where is the
source node of the session andis the group of intended des-
tination nodes. We assume that the traffic from nodeis trans-
ported across a predefined multicast tree to nodes in. The tree
can be established during connection establishment phase if the
network is connection oriented or can be established by some
well known multicast routing protocol like DVMRP [5], CBT
[1], etc., in an Internet-type network.

We call every source destination pair of a session a virtual
session. For example, if a sessionhas source and desti-
nation set , where , then this session
would correspond tovirtual sessions, .
To ensure fairness in a multirate network, we need to consider
fair utility allocation for the virtual sessions separately, instead
of those for the overall sessions.

Let denote the utility allocated to theth virtual session
of the th session. Let there be virtual sessions in the en-

Fig. 4. The numbers in the brackets,( ) denote the capacities of the respective
links, e.g., capacity of linke is 7 units. LetU (x) = bx� 1c; U (x) = x. It
follows that� (x) = x + 1, and� (x) = x, for x > 0;� (0) = � (0) =
0. The capacity constraint for linke is max(r ; r ) + 1 + r � 7, where
r is the utility allocated to virtual sessioni. Also, � = max(r ; r ) and
� = r :.

tire network. A utility allocation vector is an -dimensional
vector, with components (i.e., a utility allocation vector gives
the utility allocations for all virtual sessions in the network).
For simplicity, we will use only one set of indexes for the vir-
tual sessions, i.e., is a utility allocation vector. An

-dimensional vector is a feasible utility al-
location if the following hold true.

1) The utility allocated to every receiver belongs to the utility
set, i.e., , where is the
session of virtual session.

2) , where and are respectively
the minimum and maximum utiliities of virtual session

.
3) Total bandwidth consumed in every link is less than or

equal to the capacity of the link. Bandwidth consumed in
a link is the sum of the bandwidth consumed by the dif-
ferent sessions traversing the link. Bandwidth consumed
by a session in a link is the maximum of the bandwidth
consumed by the virtual sessions of the session traversing
the link, i.e.,

or equivalently

(capacity condition)

where denotes the set of ses-
sions traversing link denotes the set of virtual
sessions of sessionpassing through link denotes
the capacity of link and denotes the minimum
bandwidth required by sessionto attain utility . The
quantity will be called thesession link utility, where
session link utility is the maximum utility allocated to vir-
tual sessions of the same session traversing the link. Fig. 4
presents some example capacity constraints.

We define the fairness notions for the utility allocations. A
feasible utility allocation is maxmin fair if it is not possible to
maintain feasibility and increase the utility of a virtual session
without decreasing that of any other virtual session which has
equal or lower utility. More formally, a feasible utility allocation
vector is maxmin fair if it satisfies the following property
with respect to any other feasible utility allocation vector: if
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Fig. 5. This figure shows an example network which does not have a maxmin
fair utility allocation. The numbers in the brackets denote the capacities of the
corresponding links as in Fig. 4. Here,U (x) = bxc for all i. This utility
function arises in practice when the utility of bandwidth is the number of layers
corresponding to the bandwidth, and the bandwidth of each layer is 1 unit. There
are only a finite number of feasible utility allocations. None of these are maxmin
fair. For each of these vectors, it is possible to maintain feasibility and increase
the utility of one session, possibly decreasing the utility of another session with
a higher utility. For example, consider the feasible utility allocation (1, 0, 3, 3). It
is possible to increase the utility of session 2, by decreasing the utility of session
1. However session 1 has higher utility than session 2 in this allocation.

there exists such that theth component of is strictly greater
than that of , then there exists such that the th
component of is less than or equal to theth component of

and the th component of is strictly less
than the th component of . A maxmin fair utility
allocation may not exist in general for non strictly increasing
utility functions. Refer to Fig. 5 for an example.

We will consider the notion of lexicographic optimality.
Given an -dimensional vector , define its lexicographi-
cally ordered version as follows: for some and

. In other words, components of are an
ordered version of those of . A vector is lexicographi-
cally greater than another vector if there exists such that

and if . Vectors and are lexi-
cographically equal if . Vector is lexicographically
less than if is lexicographically greater than . A fea-
sible utility allocation is lexicographically optimal if every
feasible utility allocation vector is lexicographically less than
or equal to . Informally, a utility allocation is lexicographi-
cally optimal, if its smallest component is the largest amongst
the smallest components of all feasible vectors, subject to this
it has the largest second smallest component and so on. For
example, (1, 0, 3, 3) is a lexicographically optimal utility al-
location in Fig. 5.

Lexicographic optimality and maxmin fairness are dif-
ferent concepts, though several researchers have used these
interchangeably. Fig. 5 illustrates the difference. Maxmin fair
utility allocation does not exist in the network of Fig. 5, but
lexicographically optimal allocation exists, and is equal to (1,
0, 3, 3). We have shown in [14] that if a vector is maxmin fair
in a feasible set, then it is lexicographically optimal. The im-
portant difference is that a lexicographically optimal allocation
always exists in any closed, bounded set, but a maxmin fair
allocation may not exist in such a set. The feasible set of utility
allocations is closed [property 2)] and bounded (from capacity
constraint). Thus a lexicographically optimal utility allocation
vector always exists. However, its computation is NP-hard in
general. It has been shown in [16] and [17] that the computation
of lexicographic optimal utility allocation is NP-hard if the
utility function is for each session. This utility

function arises in practice when the utility of the bandwidth is
the number of layers corresponding to the bandwidth, and the
bandwidth of each layer is 1 unit.

So we revert to a weaker definition for fairness, maximal fair-
ness. We first define the concept ofrelative fairnessof utility
vectors. This concept has been introduced in [13]. A utility al-
location vector is fairer than another utility allocation vector

, if for every virtual session which has greater utility under
than under , there is some other virtual sessionwhose

utility was already no more than that ofunder , and has been
decreased further by . A more formal definition of relative
fairness follows. A utility allocation vector is fairer than an-
other utility allocation vector if

• ;
• there exists an such that , then there exists a

such that and ( is the th component
of ).

A utility allocation vector is maximally fair if it is feasible and
if no other feasible utility allocation vector is fairer than.

As we show later, maximally fair utility allocation exists and
can be computed in polynomial complexity. However, first we
argue that maximal fairness is a good notion of fairness. Note
that from the definition of maximal fairness, it is clear that if
a utility allocation is maximally fair, then we can increase the
utility of a receiver , only by decreasing that of another receiver
to a value below that of the new utility value of receiver. Thus
we can increase the utility of only by being unfair to some
other receiver. In other words, if is a maximally fair utility al-
location and is a feasible utility allocation different from ,
then is “unfair” to some component as compared to. More
formally, is not fairer than . Also, if maxmin fair utility al-
location exists, then it is the only maximally fair utility alloca-
tion. This follows because by definition of relative fairness, the
maxmin fair utility allocation (if one exists) is fairer than any
other feasible utility allocation. We have proved this in [17]. So
any algorithm for computation of a maximally fair utility alloca-
tion will yield a maxmin fair utility allocation, if one exists. Be-
sides, any lexicographically optimal vector is maximally fair in
any feasible set (refer to [14] for proof) and hence lexicograph-
ically optimal utility allocation belongs to the set of maximally
fair ones. Thus, maximal fairness is a good notion of fairness.

We would like to point out that it is not obvious that a max-
imally fair utility allocation can be computed in polynomial
complexity. Consider the simple case of strictly concave utility
functions. Maxmin fair allocation exists in this case, and hence
as observed before any algorithm for computing a maximally
fair allocation will compute a maxmin fair allocation. Note that
maxmin fair utility allocation can be computed by a series of
concave optimizations with nonlinear feasible sets [14]. Stan-
dard nonlinear optimization theory does not guarantee compu-
tation of the optimum in a finite number of steps. The situation
becomes more complicated when the utility functions are more
general, as we are considering here (note that in our case utility
functions need not be continuous and can have discrete jumps)
and thus it is not obvious that a maximally fair utility alloca-
tion can be computed in polynomial complexity. However, we
will exploit the specific properties of these optimizations and the
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nature of the feasible sets to develop a polynomial complexity
algorithm.

We conclude this section with a few observations.
There exists a necessary and sufficient condition for a utility

allocation to be maximally fair. A utility allocation is maximally
fair iff every virtual session has a “generalized bottleneck link”
on its path. We will introduce the notion of a “generalized bot-
tleneck” link later in this paper. There are similar concepts of
bottleneck links for the special cases studied in [15]
and [16] . However, the bottleneck condition
is more complicated in this general case. We use the term “gen-
eralized bottleneck” in order to distinguish with the different
bottleneck conditions for the special cases.

This observation will illustrate the scope of fair allocation of
utilities. In general, all bandwidth allocations which satisfy the
capacity constraints in the links are not interesting. The inter-
esting ones are those in which no component can be increased
without decreasing another component1 (similar to the notion
of pareto optimality). We denote these as the “boundary allo-
cations.” We have shown in [18] that given any boundary allo-
cation there exists a choice of linear utility functions such that
the boundary allocation corresponds to the maxmin fair utility
allocation for the chosen utility functions. The important point
is that the system can be tuned to any operating point in the fea-
sible region by choosing the utility functions appropriately, and
the operating point can be allocations which satisfy other fair-
ness notions like proportional fairness for example.

Maximum utility constraints can be incorporated by adding
artificial links between receivers with maximum utility con-
straints and the rest of the network. Capacity of such an arti-
ficial link is equal to the bandwidth consumed by the maximum
utility of the respective receiver. So, henceforth, we shall ignore
the maximum utility constraints.

IV. A LGORITHM FOR COMPUTATION OF MAXIMALLY FAIR

UTILITY ALLOCATION

We present an algorithm for computing a maximally fair
utility allocation in this section. First, we will briefly describe
the essential idea behind the algorithm, and then present the
details. Subsequently we will present an example to illus-
trate the functioning of the algorithm. We conclude this sec-
tion with analytical performance results. We first define two
functions.

is a real valued function defined as
. Loosely speaking, is the smallest

session utility greater than . If the utility set of session, is
a set of integers, then . This function is well
defined by property 1) of the utility set.

is a real valued function defined as
. Thus, is the largest sessionutility not

exceeding . If the utility set of session, is a set of integers,
then . This function is well defined by property
2) of the utility set.

1The component decreased may have a value greater than, equal to, or less
than the component increased.

The maximally fair utilities are computed via an iterative
procedure. The algorithm classifies every virtual session as
either saturated or unsaturated. Initially, all virtual sessions
are unsaturated, and their status progressively change from
unsaturation to saturation. A virtual session is saturated when
it satisfies certain saturation conditions described later. It
turns out that when a virtual session satisfies these satura-
tion conditions, its utility allocation is maximally fair. The
utility allocation does not change after the virtual session
saturates. The algorithm terminates when all virtual sessions
are saturated.

At every iteration , the algorithm computes a fair utility for
every virtual session progressively. At the beginning of an iter-
ation, every link computes a “fair share” for every session
traversing the link (“session link parameter,” ), ignoring
the constraint imposed by the utility structure and the bandwidth
restrictions of other links on the path of the session. These con-
straints are imposed progressively. For the fair share computa-
tion, the link first computes a quantity called the link control
parameter as per step (3) of the algorithm, and then com-
putes the session link parameter as the maximum of the
link control parameter and the utility allocated to sessionin
link in the previous iteration, . Next, the utility struc-
ture of session is considered. Since receivers of sessioncan
only receive utilities in utility set , utility is offered
to all virtual sessions of sessiontraversing the link. Note that

, for all . Subsequently, the bandwidth
restrictions of other links are considered as follows. A virtual
session is allocated utility , the minimum utility offered
on its path.

The algorithm subsequently checks the saturation condition
for each unsaturated virtual session under the utility allocation

. If no virtual session saturates in the current iteration, then
the residual bandwidth is used to increment the utility of some
virtual session traversing this link and satisfying certain prop-
erties mentioned in step 8) of the algorithm. The utility of such
a virtual session is increased to the next higher value

. This is done because otherwise, the algorithm
can continue forever. This is because in the next iteration, the
same link control parameter will be computed and the process
repeats again and again. The new utility allocation of virtual ses-
sion is .

The algorithm terminates if all the virtual sessions are sat-
urated under the utility allocation , otherwise, there must
be at least one more iteration. In the latter case, the algorithm
makes computations which are used in the next iteration. We de-
scribe them now. A session is saturated if all its virtual sessions
are saturated. The bandwidth consumed by the saturated ses-
sions, if any, are computed. This bandwidth is subtracted from
the link capacity, and the link control parameters are recomputed
in the next iteration using this residual capacity as per step 3) of
the algorithm. We introduce some notations next. Subsequently,
the algorithm will be described formally.

The minimum session link utility, is the maximum of the
minimum utilities of session virtual sessions traversing, i.e.,

.
is the set of links traversed by virtual session.
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(Saturation conditions)A virtual session is saturated w.r.t.
a utility vector if it traverses a link in which

If

If

A session issaturatedin a link if all the virtual sessions of
the session traversing the linkare saturated.

denotes the link control parameter of linkat the end
of the th iteration.

denotes the session link parameter of session
traversing link .

is the utility assigned to virtual sessionin step 4) of
the algorithm. It is the minimum utility offered on the path of
virtual session .

is the utility allocated to sessionin link , under the
utility vector . .

is the utility allocated to virtual sessionat the end of
the th iteration. The value of can either be equal to or
greater than . Allocation denotes the utility vector at
the end of the th iteration, with components .

is the utility allocated to the sessionin link at the end
of the th iteration. It is actually the maximum of the utilities
allocated to the virtual sessions in at the end of the th
iteration.

denotes the set of unsaturated virtual sessions at the end
of the th iteration.

denotes the set of unsaturated sessions traversing link
at the end of the th iteration.

denotes the total bandwidth consumed by the saturated
sessions traversing linkat the end of the th iteration.

is the set of virtual sessions in which are sat-
urated w.r.t. utility allocation (the set of virtual sessions
which were unsaturated earlier but saturates w.r.t. utility alloca-
tion )
The algorithm follows.

1)
link

.
2) .
3) For every link in the network compute the link control

parameter. For this, first compute a variable . If
, then is computed as follows:

(It can be shown that the above set is nonempty for all
.)

If
, then link control parameter for a linkis

, else link control parameter, is

chosen s.t. , and satisfies the fol-
lowing conditions:

a) ;
b) if session and

, then
and .

For all unsaturated sessionspassing through link
.

4) Compute for all virtual sessions , where
, if ,

else .
5) For every link in the network, compute for every

session in as .
6) Compute the set of virtual sessions in which

saturate during the th iteration under utility vector
. (refer later in the paper for saturation

conditions).
7) If , compute the utilities allocated to the virtual

sessions after theth iteration, via,
and go to step 9).

8) If possible, find a virtual session such that

for some s.t.

and

and for all s.t.

If no such is found in , again
for all virtual sessions,, otherwise compute for
all virtual sessions as

otherwise.

9) For every link in the network compute the session link
utility in link , for every session in as

.
10) Compute the set of virtual sessions in which

saturate w.r.t. utility allocation . Remove these ses-
sions from , and the resulting set is . (Refer
to later in the paper for saturation conditions).

11) If , i.e., all virtual sessions are saturated, the
algorithm terminates, else go to the next step.

12) For every link , compute the set of unsaturated sessions
passing through link at the end of the th iteration,

.
13) For every link , for which , compute the

bandwidth consumed by the saturated sessions passing
through link .
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14) Go to step 2).
We first present an illustrative example. Consider the network

of Fig. 5. All sessions are unicast, and hence, we will consider
utilities of the sessions instead of the virtual sessions (virtual
sessions and sessions are equivalent in this case). Assume that
the utility function of session 1 is

. Also,
. The sessions do not have minimum utility requirements.

Now, is 0.6, 2, 3 for respectively. Following
the steps in the computation of from
for . However, . Note that step (3)
allows any choice of in the interval [0.5, 0.6). We choose

. It follows that . None of the
sessions are saturated under the allocation. Both sessions 1
and 2 satisfy conditions for incrementation in step 8). We choose
session 2 arbitrarily. Thus

. Sessions 1 and 2 saturate under the allocation
. Note that . In iteration 2,
. It follows that for . Note

that can be selected arbitrarily in the interval 3, 4), we
choose 3. It follows that . Sessions 3 and 4
saturate now. All sessions are now saturated under the allocation

. Thus, the algorithm terminates with the
utility allocation .

Next we present analytical results which show that the algo-
rithm generates a maximally fair utility allocation in a polyno-
mial number of iterations.

Theorem 1 (Maximal Fairness):The output utility allocation
vector is

1) maximally fair;
2) maxmin fair, if a maxmin fair utility allocation exists.

Theorem 2 (Finite-Termination Theorem):The algorithm
terminates in at most number of iterations, where

is the set of links and is the number of virtual sessions.
We prove these in the next section. We would like to point out

that the termination result holds independent of the nature of the
utility functions. The utility functions can have step jumps, and
the size of the step jumps are allowed to be arbitrarily small. The
number of iterations required in this case is still upper bounded
by . Thus the upper bound increases polynomially
with the number of links and virtual sessions. This is somewhat
surprising as it appears from the algorithm that the utility of a
virtual session may increase one step at a time, and as such it
is not even clear that the algorithm terminates in finite number
of iterations as the utility functions may have arbitrarily large
number of step jumps in any bandwidth range. However, the in-
tuition behind the result is that the utility of a virtual session
can also increase by several steps depending on its utility func-
tion and the utility functions of the other sessions sharing links
with virtual session , and this is the case when utility func-
tions may have arbitrarily large number of step jumps in any
bandwidth range. Hence, the number of iterations is finite, and
actually, the polynomial in the number of links and the virtual
sessions. We prove this more formally later.

Every step of this algorithm has a complexity of ,
where depends on the utility functions. If we assumeto be
a constant, then the complexity of every step is . The

algorithm must terminate in iterations. Thus, the
overall complexity of this algorithm is . The con-
stants will depend on the computation of the limits for the utility
functions. We conclude this section with a description of certain
salient features of this algorithm.

This algorithm is amenable to distributed implementation.
The criteria for determination of utility of a virtual session uses
information along the path of the virtual session mainly. The
only place where the algorithm uses global information is in
step 8), where , for at most one virtual
session, . This feature of the algorithm is not crucial to the
proof of the maximal fairness of the output and is a matter of
convenience. This increase in utility can be carried out for mul-
tiple virtual sessions, subject to feasibility and as long as they
satisfy the criteria of step 8) and the algorithm will still output
a maximally fair utility allocation.

We compare and contrast this algorithm to those for com-
puting the fair allocations for the special cases addressed in [15],
[16]. The algorithms presented in these are special cases of the
current algorithm and follow the same general structure. There
are several important differences though. We point them out
now. We first consider the case for the utility function

treated in [16]. The computation of the link control pa-
rameters differs from [16]. To accommodate the general nature
of the problem, we need an additional quantity to compute
the link control parameter of link in this case. There is no
unique choice of the link control parameter, and among the pos-
sible choices, we need to choose a value which is at least as large
as that of the previous iteration. There is a unique choice for the
link control parameter in the algorithm of [16], and this choice
ensures that the link control parameter does not decrease with
subsequent iterations. The saturation conditions differ in the two
algorithms. Also, selection of the virtual session for utility in-
crementation differs in the two algorithms. All these distinctions
also apply to another special case , studied in [15]. In
addition, every receiver just receives the minimum session link
control parameter on its path in [15], and the utility incremen-
tation step is not required there. The utility incrementation step
is crucial for convergence here.

This algorithm terminates in fewer iterations in some special
cases. For example, if the utility function is for all
sessions then the algorithm needs at mostiterations. If the
utility functions are such that the ratio between the maximum
and minimum step jumps are bounded by a constant, then the
algorithm needs at most iterations. The utility function

falls under this category. We have not made any
assumptions on the step jump sizes of the utility functions here.

V. PROOF OFTHEOREMS1 AND 2

We prove that the algorithm presented in Section IV outputs a
maximally fair utility allocation in a finite number of iterations
(Theorems 1 and 2). At first, we present some properties of the
intermediate utility allocations of this algorithm. We will use
these in proving both the theorems. The second subsection will
prove Theorem 1 and the last will prove Theorem 2. On account
of space constraints, we will omit some of the proofs. Refer to
[14] and [18] for details.
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A. General Assumptions and Properties of the Algorithm

We will present some properties of the intermediate utility
allocations in this subsection. We first present some proper-
ties of the and the functions. Recalling the definitions,

and are real valued functions defined as
, for session . In-

tuitively, is the largest sessionutility not exceeding ,
and is the smallest sessionutility greater than . If the
utility set of session, is a set of integers, then ,
then . Functions and satisfy the fol-
lowing properties:

1) and are nondecreasing functions for all;
2) ;
3) .

We will use these properties in our proofs.
Now we present Lemma 1 which we will use in proving

Theorems 1 and 2. More precisely, we will use this result in
proving that all intermediate utility allocations are feasible
(Lemma 4) and a termination result (Lemma 8). Lemma
1 shows that the utilities assigned by the maximal fairness
algorithm can not decrease in subsequent iterations. The result
follows from the steps of the algorithm.

Lemma 1: For all iterations , and virtual sessions
and . For all sessions

and links if .
Finally, we present a relation which we will use repeatedly

(1)

B. Proof of the Maximal-Fairness Theorem

We will prove that the output of the algorithm is maximally
fair (Theorem 1). We will use Lemma 1 stated in the first sub-
section and some additional lemmas stated below. We summa-
rize the proof as follows. First, we will show that the output of
every iteration is a feasible utility vector (Lemma 4). Next, we
will introduce the notion of a generalized bottleneck link. A fea-
sible utility allocation is maximally fair if and only if every vir-
tual session has a generalized bottleneck link. We prove the suf-
ficiency in the generalized-bottleneck lemma (Lemma 5). The
last step is to show that whenever a virtual session saturates, it
has a generalized bottleneck link in every subsequent iteration
(Lemma 6). The maximal fairness of the output follows.

Now we show the feasibility result (Lemma 4). First, we state
Lemmas 2 and 3, which we will use in the proof of Lemma 4.
Lemma 2 establishes an intuitive property, i.e., the utilities allo-
cated to the virtual sessions at the end of every iteration belong
to the respective utility sets.

Lemma 2: For all virtual sessions and iterations
. For

all sessions , link and iterations
. It follows that

, and .

The result follows from the operation of the algorithm and
has been proved in details in [18].

Next, we state another result without proof.

(2)

This result follows from the computation of in step (4)
of the algorithm, and relation (1). This result can be further
strengthened in the special case of , (i.e., if no new
virtual session saturates in step (6) of the algorithm in iteration

). Lemma 3 proves that in this case the utility of any one unsat-
urated virtual sessioncan be increased from to the next
higher level, if all other virtual sessions have utilities assigned
by the utility vector . The proof follows from the saturation
condition for a virtual session.

Lemma 3: If , then for all virtual sessions

Lemma 4 (feasibility lemma) shows that the utility allocation
at the end of every iteration is feasible. This is argued as fol-
lows. Virtual session utilities belong to the respective utility sets
(Lemma 2). Utility of a virtual session at the 0th iteration is its
minimum utility. Utility of a virtual session does not decrease
in subsequent iterations (Lemma 1). Thus minimum utility con-
straints are satisfied. We show that the capacity constraints hold
using Lemma 3 and (2). The formal proof follows. We will use
this feasibility result in the proof of Theorem 1.

Lemma 4: The utility allocation at the end of the th
iteration is feasible, .

Proof of Lemma 4:We prove by induction. Note that
, for any virtual session. Thus satisfies the

minimum utility requirements. Also, by assumption
for all virtual sessions. Note that , for all sessions

and all links . Since the set of feasible rate allocation
vectors is nonempty, , for any link .
Thus, is a feasible utility vector.

Let be feasible. Let the algorithm not terminate in
iterations, i.e., . We will prove that

is feasible. For all virtual sessions, by
Lemma 2. For all virtual sessions, .
The first inequality follows from Lemma 1 and the last from
the feasibility of . Thus, satisfies the minimum
utility requirements.

Now, we prove that satisfies the capacity constraint.
If , for all virtual sessions, traversing
through link , then , for all sessions
traversing link . Thus, satisfies the capacity condi-
tion from (2). If , for one or more virtual
sessions traversing through link, then
for some virtual session traversing through link and

. Thus,
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and .
Note that and as .
Thus, Lemma 3 applies for virtual session

(from Lemma 3)

Thus, satisfies the capacity condition in this case as
well. The feasibility follows.

Now we will introduce the notion of ageneralized bottleneck
link. Utility allocation is maximally fair iff every virtual ses-
sion has a generalized bottleneck link, w.r.t.. We will prove the
sufficiency of this condition in Lemma 5. First, we introduce an-
other function, . Let be the minimum utility not less
than . More formally, is a function defined as follows:

for some

For example, if , then the utility set
consists of nonnegative integral multiples of, and

. Since is a nonde-
creasing function, is a nondecreasing function for all.

A link is a generalized bottleneck link for a virtual session
w.r.t. a utility allocation if

1) , (recall that ).
2) If , then . Also,

if for any session traversing the link , then
.

3) If , then

We follow the convention that , if set .
We briefly explain the bottleneck conditions here. The first

condition states that virtual sessionhas the maximum utility
among all other virtual sessions of its session traversing its
generalized bottleneck link. Conditions 2) and 3) deal with
the two possible cases: and .
The first happens when the utility set of receivercon-
tains a right neighborhood , for some .
Again, this happens when the utility function for receiver

increases strictly in a right neighborhood of. In this
case, the bottleneck conditions require that the total band-
width of the link be fully utilized under the utility allo-
cation . Also, consider a session
traversing link with session link utility higher than its
minimum required utility . The utility allocation of any
such session is upper bounded by (if then

). Recall that is the minimum utility of
session not lower than . Thus a virtual session has “almost
maximum” utility in its generalized bottleneck link in this

case. Condition 3) applies when . Again, this
happens when the utility function for receiverdoes not in-
crease strictly in a right neighborhood of. Condition 3) can
be explained as follows. The first summation in the left-hand
side of the expression in condition 3)
is the available bandwidth in the link. Consider a session
whose session link utility in link is higher than both
and (recall that is the least utility
value for session not lower than ). The second
term in the left hand side

is the additional bandwidth
obtained by reducing the session link utility of any such ses-
sion to either or , whichever is higher. The
term in the right hand side is
the bandwidth required to increase the utility of virtual session

to the next higher level, . Note that is
a utility value which is one level higher than in this case,
i.e., is greater than , but there is no valid utility
value for the session of receiverbetween and .
Condition 3) states that the total bandwidth obtained after
such reduction (the sum of the available bandwidth and the
additional bandwidth released after reduction) is not sufficient
to increase the utility of receiver to the next higher value,

. Thus, the utility of receiver can be increased,
only by decreasing the session link utility of one or more ses-
sions to a value below .

The following lemma shows that if every virtual session has
a generalized bottleneck link, then the utility allocation is max-
imally fair. We sketch the proof for the forward part here. We
will use this lemma in proving Theorem 1.

Lemma 5: A feasible utility allocation vector is maximally
fair if every virtual session has a generalized bottleneck link.

Sketch of Proof for Lemma 5:Let be a feasible utility al-
location. Let every virtual session have a generalized bottleneck
link under . Let not be a maximally fair utility allocation.
Thus, from the definition of maximal fairness, there must exist
a feasible utility allocation, fairer than . Define the set
of virtual sessions as follows, ( is the set of
virtual sessions which have different utilities under allocations

and ). Since is fairer than , there exists a virtual ses-
sion such that has the minimum utility in under ,
(i.e., ) and the utility of is even lower
under (i.e., ). This follows from a necessary
and sufficient condition for relative fairness stated in [13]. The
condition applies for the relative fairness in any feasible set in

and hence holds for the relative fairness of utility alloca-
tions as well.

Now we state a property of utility allocation , which fol-
lows from the fact that every virtual sessionhas a generalized
bottleneck link under . If the utility allocation of a component

in is increased, then the utility allocation of one or more vir-
tual sessions must be decreased to values below, in order to
maintain feasibility. The intuition is similar to the explanation
for the bottleneck conditions stated before this lemma, and the
precise argument has been stated in [18].

Note that the utility of component is higher in than
in and is feasible by assumption. There
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exists at least one componentwhose utility allocation is lower
under , (i.e., ) and also the utility allocation ofunder

is less than , i.e., . Thus,
, and as . However, this contradicts the

definition of . The result follows.
Now we show that if a virtual session saturates in an iteration

, it has a generalized bottleneck link in all subsequent itera-
tions. Since the computation algorithm terminates only when
all virtual sessions saturate, the maximal fairness of the output
utility allocation follows from Lemma 5.

Lemma 6: If , then virtual session has a
generalized bottleneck link w.r.t. utility vector, .

Proof of Lemma 6:Since
for all virtual sessions. Thus the lemma holds by vacuity for

. Consider . Let . We need to show that
virtual session has a generalized bottleneck link w.r.t. utility
allocation vector . Since saturates in theth
iteration or earlier. Let saturate in the th iteration,

. Thus . Thus step (4) of the
algorithm implies that

(Note that the computation algorithm does not change
the utility of a virtual session once it saturates). We consider
the cases and
separately

First let (3)

We need to prove the general bottleneck conditions 1) and 2) for
some link

from (3) and since (4)

From (4) and the saturation conditions in iteration , there
exists a link s.t.

(5)

(6)

We will show that this link satisfies the general bottleneck
conditions 1) and 2) for virtual session, w.r.t. utility allocation

. From Lemma 1, , for all sessions
traversing , since . Thus (6) shows that

, for all sessions traversing , otherwise
, which violates the feasibility condition for . We

know from Lemma 4 that is a feasible utility allocation.
Two conditions follow. First,

. Thus general bottleneck condition 1)
holds. The second condition is that

. Thus, the first part of the general
bottleneck condition 2) holds.

We sketch the proof for the second part of the general bottle-
neck condition 2). We show that .
Note that is the largest sessionutility not greater than

. Now using certain technical properties of thefunction and
the fact that [see (4)], we show
that furthermore in this case. Thus,

, for all sessions, since is

a nondecreasing function. Next, we argue that
, for all sessions, if . Thus, it

follows that for all sessions, if
. The second part of condition 2) follows since

and for all sessions
traversing link .

Now let . We need to show that there
exists a link which satisfies the generalized bottleneck con-
ditions 1) and 3) for virtual session w.r.t. utility allocation

. Since as observed before,
. Since , there exists a link

s.t.

(7)

and

(8)

We next show that this link satisfies the required generalized
bottleneck conditions 1) and 3).

(using (7) and (8)) (9)

Note that from feasibility of
(Lemma 4). Thus, from (9) and since
(Lemma 1), . Also,

. From the definition of the function, and
since is in the range of function (Lemma 2),

. As , bottleneck
condition 1) of the lemma follows from (7).

We sketch the proof of bottleneck condition 3). We have ar-
gued in [18] that

If

then

If

then

Using , it follows that:

for all

(10)

Using (10), we can upper bound the second summation in the
left-hand side of (3)

(11)
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The last inequality follows since is an increasing function
and for all .

(from (11))

(by (8))

since

Thus, bottleneck condition 3) of the lemma holds in this case.
Now we prove Theorem 1. The proof follows from Lemmas

4 and 6.
Proof of Theorem 1:Let the computation algorithm ter-

minate in iterations. Note that is feasible by Lemma 4.
Since , there does not exist a virtual sessionin .
Thus from Lemma 6 for every virtual sessionthere exists a
link which satisfies the properties of a generalized bottleneck
link for virtual session w.r.t. utility vector . Thus is
a maximally fair utility allocation by Lemma 5. Thus, part 1)
follows.

If a maxmin fair utility allocation exists, then it is fairer than
any other utility allocation, by definition of relative and maxmin
fairness [16]. Thus it is the only maximally fair utility allocation
in the feasible set, by definition of maximal fairness. Since the
output utility allocation, is maximally fair under all cir-
cumstances, part 2) follows.

C. Proof of the Finite-Termination Theorem

Now we will prove that the algorithm terminates in a
finite number of iterations (Theorem 2). We prove it using
Lemma 1 in the first subsection and the following additional
lemmas.

The following lemma shows that if no virtual session
saturates in step 6) of the algorithm, then at least one
virtual session meets the condition for utility incrementation
in step 8). Thus there is either a saturation or a utility
incrementation in every iteration of the algorithm. The
proof looks at the link which attains the minimum-link
control parameter, amongst all those which carry at least
one unsaturated virtual session. It chooses an unsaturated
session traversing link by certain criteria, and
argues that all the unsaturated virtual sessions of
satisfy the required properties. Refer to [18] for details.

Lemma 7: If , there always exists a virtual session
such that

For some s.t.

and

and for all s.t.
.

The following lemma shows that the number of iterations
in which there is a utility incrementation in step 8) is upper-
bounded by . Since Lemma 7 indicates that there is al-
ways a utility incrementation if no virtual session saturates in
step 6), this means that the number of iterations in which no vir-
tual session saturates in step 6) is at most . The proof uses
Lemmas 1 and 7. Interestingly, this result is independent of the
nature of the utility functions.

Lemma 8: Let . The cardinality of is
at most where is the set of links and is the number
of virtual sessions.

Proof of Lemma 8:Set is the set of iterations which
execute step 8). From Lemma 7, for every iteration there
exists at least one virtual sessionand link pair s.t.

which satisfies the following properties:

(12)

(13)

(14)

(15)

(16)

(17)

Now for one such virtual
session . We call such a virtual session and the link

. We will show that the pair can occur for at
most times in the sequence . There can
be at most different virtual session, link pairs. Thus

, where is
the total number of sessions.

Now, we show that the pair can occur at
most times in the sequence . Let

. Note that the
saturation status of a session in a link can only change from
unsaturation to saturation. Thus, . We
will show that . Thus, at least one session
saturates in link between any two occurrences of in the
sequence. Clearly can not occur in the sequence after all
sessions saturate in link. Thus, can occur at most
times in the sequence.

Now we show that . Assume otherwise,
i.e., . Since , it
follows from (16) and (13) that .
Also . The first inequality follows
from Lemma 1, since . The second follows from (13).
It follows that . Since is a
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nondecreasing function, it follows that . Since
:

(from (1))

since by Lemma 1

since (18)

Thus, from definition, . If , then
from (18),

. This means that . Thus
. But, we have shown that

. It follows that . Let, if pos-
sible, . Since by
property (2) of . Since

. This contradicts
(17). Thus, . Since

. This
contradicts property (3) of the function. Thus,

. Thus, .
Now, we prove Theorem 2. The proof uses Lemmas 7 and 8.

Proof of Theorem 2 (Finite Termination The-
orem): Observe that at least one of the following holds
for every iteration :

1) ;
2) (proper subset).

The status of a virtual session can change from saturation to
unsaturation only. Thus, for all . So (2)
can hold for atmost iterations, where .
Lemma 8 shows that (1) can hold for at most iterations.
Thus the algorithm must terminate in iterations.

VI. CONCLUSION AND DISCUSSION

This paper develops a framework for studying diverse fair-
ness objectives in multirate, multicast networks. The key con-
tribution is to present an algorithm for computing the fair utility
allocations for general utility functions. The algorithm termi-
nates in polynomial number of iterations. We mention some in-
teresting topics for related future research. We pointed out that
computation of lexicographically optimal utility allocation is
NP-hard. Hence, we focused on a weaker notion of fairness,
maximal fairness which has intuitively appealing fairness prop-
erties. Another direction is to develop approximation algorithms
and heuristics for computing lexicographically optimal utility
allocation. It may also be possible to develop a lower complexity
algorithm for computing maximally fair utility allocation. An-
other promising direction is to explore the connection between
the choice of utility functions and pricing mechanisms. We hope
that this study would initiate further research in these areas.
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