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Now, we choose Robust Stability and Stabilization for Singular Systems
- With State Delay and Parameter Uncertainty
(I)_{l, O} \II_{IQ, —.):|
0, 1 =3 7 Shengyuan Xu, Paul Van Dooren, Radefan, and James Lam
The corresponding Riccati equation (13) admits the maximal solution
1, 0 Abstract—This note considers the problems of robust stability and sta-
= 0’ A bilization for uncertain continuous singular systems with state delay. The

parametric uncertainty is assumed to be norm bounded. The purpose of
By Theorem 2, all optimal controls are given as follows: the robust stability problem is to give conditions such that the uncertain
' singular system is regular, impulse free, and stable for all admissible un-
0. 0 certainties, while the purpose of robust stabilization is to design a state
u(t) = { ’ _} z(t) + v(t) feedback control law such that the resulting closed-loop system is robustly
0, 7 stable. These problems are solved via the notions of generalized quadratic
stability and generalized quadratic stabilization, respectively. Necessary
and sufficient conditions for generalized quadratic stability and general-
ized quadratic stabilization are derived. A strict linear matrix inequality
a(t) = {0, 0} #(0). (LMI) design approach is developed. An explicit expression for the desired
0, 7 robust state feedback control law is also given. Finally, a numerical example
is provided to demonstrate the application of the proposed method.

with v(-) € L3(R™). Moreover, one feedback law is

Next, we would like to see how the choice ®fand¥ might affect

- . : . Index Terms—Continuous singular systems, delay systems, linear matrix
the form of the optimal controls. Take the following matrices: inequality (LMI), robust stability, robust stabilization.
1+:= 0 19k, -5k
q%:{?)“ 1 } qjk:{E)k ”k}
) +< —ok, NOTATION

parameterized by andk with || < 1/2 and0 < k < 18. Both . Throughout this note, for real symmetric matricésandY’, the no-
and ¥, are positive—definite and the corresponding Riccati equatiQftion X > Y (respectively,X > Y) means that the matriX — Y’

(13) admits the maximal solution is positive—semidefinite (respectively, positive—definife)s the iden-
) 0 tity matrix with appropriate dimension, the superscript fepresents
]:[H L [ }

’ - the transpose}x|| is the Euclidean norm of the vector while p( M)
0. (1+2)(3+ /o+ )

denotes the spectral radius of the matix
In this case, it follows from Theorem 2 that all optimal controls of the
original LQ problem can also be given as follows: I. INTRODUCTION

0, 0
a(t) = z
“(t) [0, 34+4/9+ 1=

with v(-) € L%(R™). Hence, a different optimal feedback law is

0, 0

u(t) = |: / 7
0. 3+4/9+ = the method based on the conceptgjo@dratic stabilityandquadratic

Itis interesting to note that the aforementioned optimal controls do nﬁ}f"b'"_zaé)'“:]yhas F’ee” Sho"‘;”é‘? be effective in dealing with these prob-
depend on the parameter ems in both continuous and discrete contexts [12], [18].

Control of delay systems has been a topic of recurring interest over
T(t) + v(t) the past decades since time delays are often the main causes for insta-
bility and poor performance of systems and encountered in various en-
gineering systems such as chemical processes, long transmission lines
in pneumatic systems, and so on [8]. Recently, the problems of robust
stability analysis and robust stabilization for uncertain delay systems
z(t). have been studied. Like in the case of uncertain systems without delay,

On the other hand, control of singular systems has been extensively
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tion for uncertain singular systems have been considered. The notiorfereM, N4, N, andNp are known real constant matrices with ap-

of quadratic stabilityandquadratic stabilizabilityfor regular systems propriate dimensions. The uncertain matfixs ) satisfies

have_ _been extended [_20], [22]. It shou_ld be pointed out tha_t the robust F(a)F(a)T < 4)

stability problem for singular systems is much more complicated than ) - o

that for regular systems because it requires to consider not only stabififjdo € ©, where® is a compact set iR. Furthermore, itis assumed

robustness, but also regularity and absence of impulses (for continult given any matrix™: FF* < I, there exists @ € © such that

singular systems) and causality (for discrete-singular systems) at fhe= £'(¢). A4, A4, andAB are said to be admissible if both (3)

same time [6], [7], and the latter two need not be considered in re@joI (4) hold. )

ular systems. Very recently, much attention has been paid to singulaRemark 1: It should be pointed out that the structure of the uncer-

systems with time delay. For the discrete-time case, when structufgiity with the form (3) and (4) has been used in other papers dealing

uncertainty appears, some results on robust stability were given in [y»g]h the problt_am of robust_ stabilization for regulgr and singular uncer-

by using properties of modulus matrix. When unstructured uncertairf@/n Systems in both continuous and discrete time contexts; see, e.g.,

appears, the results on robust stability and robust stabilization werel#8] and [2?]- ) ]

ported in [17], where a linear matrix inequality (LMI) design method The nominal unforced singular delay system of (1) can be written as

was developed. For the continuous-time case, numerical methods for Ei(t) = Ax(t) + Agx(t — 7). (5)

syph systems were dlscgssed in [1] anq [3], while [2.3]. studled.the Sta_Definition 1: [4], [11]:

bility problem by analyzing the system’s characteristic equation and ; ) . . .

some frequency domain conditions for stability were given. Itis worth 1) The pair(E. A) is said to be regular ilet(s E — A) is not

pointing out that no parameter uncertainty was considered in [23]. To identically zero. _ ,

the best of our knowledge, when parameter uncertainty appears, ther@ 1 he pair(E, A) is said to be impulse free deg(det (s £ —

are no results on the problems of robust stability and stabilization for 4)) = rank E.

continuous singular delay systems in the literature. The singular delay system (5) may have an impulsive solution, how-
In this note, we address the problems of robust stability and sger. the regularity and the absence of impulses of the(pair ) en-

bilization for uncertain continuous singular systems with state del&jyre the existence and uniqueness of an impulse free solution to this

The parameter uncertainties are time invariant and unknown, but nop¥$tem, which is shown in the following lemma.

bounded. The purpose of the robust stability problem is to develop conl-€mma 1: Suppose the paitE, A) is regular and impulse free, then

ditions such that the uncertain singular system is regular, impulse ft8€ solution to (5) exists and is impulse free and uniquffosc).

and stable for all admissible uncertainties. Following the same idea as Proof: Noting the regularity and the absence of impulses of the

in dealing with the robust stability problem for uncertain singular sy£air (E. A) and using the decomposition as in [4], the desired result

tems without delay [20], [22], we introduce the concepgeheralized follows immediately. o

quadratic stability It is shown thatieneralized quadratic stabilityn- In view of this, we introduce the following definition for singular

plies robust stability. A necessary and sufficient conditiorgfemeral-  delay system (5).

ized quadratic stabilitys obtained in terms of a strict LMI. Similarly, ~ Definition 2:

the concept ofjeneralized quadratic stabilizatiois proposed when 1) The singular delay system (5) is said to be regular and im-
dealing with the robust stabilization problem, the purpose of which is pulse free if the paifE, A) is regular and impulse free.

the design of memoryless state feedback control laws such that thee- The singular delay system (5) is said to be stable if for
sultant closed-loop system is regular, impulse free and stable for all ad- any ¢ > 0 there exists a scalaf(¢) > 0 such that,
missible uncertainties. A strict LMI design approach is proposed and for any compatible initial conditions¢(t) satisfying

an explicit expression for the desired robust state feedback control law Sup_ o, l16(8)|| < 6(e), the solutionz(t) of system (5)

is given. Itis worth pointing out that most LMI-type conditions for sin- satisfieg[z(t)|| < e fort > 0. Furthermore

gular systems in the literature contain equality constraints [13], [21],
[22], which will result in numerical problems when checking such non-
strict LMI conditions since equality constraints are fragile and usually Throughout this note, we shall use the following notion of robust
not met perfectly [15]. Therefore, the strict LMI design approach préalability and robust stabilization for uncertain singular delay system

posed in this note is much more reliable in numerical computation. (X).
Definition 3: The uncertain singular delay systé®) is said to be

robustly stable if the systefiX) with «(¢) = 0 is regular, impulse free
) ) ] ] and stable for all admissible uncertainti&si, andAA,.
Consider a linear singular system with state delay and parameter unpefinition 4: The uncertain singular delay systéi) is said to be

x(t) =0 t— oc.

Il. PRELIMINARIES AND PROBLEM FORMULATION

certainties described by robustly stabilizable if there exists a linear state feedback control law
(Z):  PBi(t) =(A+ AAd)a(t) u(t) = Kz(t), K € R™*" such that the resultant closed-loop system
+(Ag+ AAe(t = 1) is robustly stable in the sense of Definition 3. In this casg) =

Ka(t) is said to be a robust state feedback control law for sy$tem
+ (B + AB)u(t) @ The problem to be addressed in this note is the development of con-
z(t) =é(¢t), t€[—7,0] (2) ditions for robust stability and robust stabilizability for the uncertain
wherez(t) € R" is the statey(¢) € R™ is the control input. The ma- Singular delay systerfi) given in (1) and (2).
trix E € R**"™ may be singular, we shall assume that réhk » < n.
A, A, andB are known real constant matrices with appropriate dimen- . MAIN RESULTS
sions.T > 0is a constant time delay() is a compatible vector valued |, s section, we give a solution to the robust stability analysis and
continuous functionAA, A4, andAB are time-invariant matrices ot stabilization problems formulated previously, by using a strict
representing norm-bounded parameter uncertainties, and are assumgdynproach. First, we present the following result for singular delay
to be of the following form: system (5), which will play a key role in solving the aforementioned
[AA AA; AB]=MF(o)[Na Ng Ng] (3) problems.
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Theorem 1: The singular delay system (5) is regular, impulse fre€inceQ.. > 0 and the inequality (17) holds, we have that, is

and stable if there exist a matri} > 0 and a matrixP such that invertible. Therefore, it follows from (17) that
EP" = PE" >0 (6) —Q2 Al P! 0
- P Az PR+ Pl 4 Q) S
APT 4+ PAT + 4,PT Q7' PAL + Q <O. @) Py’ Aazz Poy + Py 22
For the proof of Theorem 1, we need the following results. where
Lemma 2 [13]: The singular system Ous = P 0ua 3T > 0. (18)
Ei(t) = Ax(t) (8)
is regular, impulse free and stable if and only if there exists a m&rix BY [>: Th- 1], we have th‘"i‘t (18) |mp||fes
such that Al Qa2 Adns — Qaz < 0. (19)
EP" = PE" >0 Therefore
AP' + PA" <.
. ) + L. p(Adz'g) < 1. (20)
Lemma 3: Consider the functiop: R™ — R. If ¢ is bounded on
[0, 00), that is, there exists a scalar> 0 such tha{(t)| < o forall  Now, let
€ [0, o0), theny is uniformly continuous of0, oc).
Lemma 4 (Barbalat’s Lemma) [9]:Consider the functiop: RT — () = [Cl(ﬁ)} =H ‘a(t)
R. If ¢ is uniformly continuous ang;™ ¢ (s)ds < oo, then G(t)
Aim o(t) = 0. where¢; (t) € R, (2(t) € R"". Using the expressions in (10) and
Proof of Theorem 1:Suppose both (6) and (7) hold far > 0, (11), the singular delay system (5) can be decomposed as
then from (7) it is easy to see that Sp): G =AGH) 4+ Aan G (= 7)
APT + pPA”T <. 9) + AuaCalt — 7) 21)
By Lemma 2, it follows from (6) and (9) that the p&iE, A) is regular 0=C(t)+ Aami G (t—7)
and impulse free. Next, we shall show the stability of the singular delay ¥ A Golt — 7). 22)

system (5). To this end, we note that the regularity and the absence

of impulses of the paifE, A) implies that there exist two invertible It is easy to see that the stability of the singular delay system (5) is
matricesG andH € R™*" such that [4] equivalent to that of the systef@p). In view of this, next we shall

I, 0 B 4, 0 prove that the systeiE ) is stable. Sincé®; = P{; > 0 and
A:=GAH = |~ 1 _ _ _

0 0:| |:0 I'l—r:| ( P11A1T+441P11+Q11<0

wherel, € R™" andl,_, € R""*("=") are identity matrices, as (16) shows, it follows tha®,; > 0. Define

E:=GEH = {

Ay € R™". According to (10), let o - o
g = [0 4] V@ =am Pam+ [ PP s
Ag =Gz = t—r
! ! Agar Ao where
Z:)ll ]:)12
P:=GPH™" 7,
|:P21 P22:| G=Ct+p3), pe[-10].
5. g _ [Qu Que N ; . . )
Q =GQG" = Ol Os | (11) Recall that for any matricek, K> andK; of appropriate dimensions
12 2 T
Then, from (6) and (7), we have with Kz > 0
EP” — PET >0 (12) KiKs+ KTK, < K[ Kb Ky + KY K7 ' Ks.
APT + PAT + A,PTQTTPAY + Q <. (13) Then, the time-derivative df (¢) along the solution of (21) and (22)
is given by

By using a Schur complement argument, it follows from (13) that _ i
APY 4+ PAY 4+ Q A,P" V(&) == (0T PTIECH)) + ) PTIQPTT
Bt _ | <o. (14) dt
Noting the expression of irf (10) and u;ifg (12), we can deduce that ot T)TP_lQP_TC(t ~
/ ) _ T p—11/; LT 5T p—1
P, = P, > 0andP,;, = 0, thereforeP reduces to =) P; 75@2"1:’_;’(& B P C(? .
o [P Pa +OTPTIQPTTU — (k=) PTIQPTT((t - 7)
= [ 0 p} - (15) =2¢()T P A + (T PP T
Substituting (10), (11) and (15) into (14), one eventually gets (16), as +20t) P ALt —T) = Ct =) PTIQP Tt - 1)

shown at the bottom of the page. Thus < C(f)TP_] (APT +PAT + 4,707 PAT + Q)

Pyo + Py + Qo2 Aana Py
=~ = 0. 17 =T .
{ Pos AT, ~Qn | () x PTI(t).
PnAlT_-l- All?u + Q1 B Py _+ le_ Adn?u + Aml?f; 44d12?21‘;
. P+ Q;‘Fg - 71—’22 + P + Qgg Agoi Pry + Ao Py Adagpzzé <0 (16)
P ALY, + PaALL, Py AL, + PiaAls, —Q11 —Q12 )

Py Al Piy Alyy -Qf —Qu
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It follows from this inequality and (13) tha't'((t) < 0and
MG @I = V(o) <G PR'¢(1) = V()
<G"PRG ()
+ Cs)'PQP 1 ¢(s)ds
= V()

:A%N@ws

ot
<= [Clcoras
0

-t
g—A{/n@um%s<o (23)
4]

where
At =Amin (P') >0,
Ao = = Amax[ P~ H(APY + PAY + 1,PY G PAL + )
x P> 0.
Taking into account (23), we can deduce that

ot
mewW+A3/n¢@m%ssvmm
0

Therefore
GO < ma (24)
and
.f 5
[ 1cnis < ms (25)
0
where
m —LV(“)>O m —LV(C >0
= N Co , 2 = " 0) .

1125

2], we can regard Theorem 1 as an extension of existing results on
singular systems without delay to singular delay systems.

Following the same philosophy as in dealing with the problems of
robust stability and robust stabilization for uncertain singular systems
without delay [20], [22], and taking into account Theorem 1, we intro-
duce the following definitions.

Definition 5: The uncertain singular delay systé®) is said to be
generalized quadratically stable if there exist matries- 0 and P
such that

EPT =PET >0 (27)
(A+AAPY + P(A+ A4
+(Ag+ AANPT QT 'P(As+ ALY +Q <0 (28)

for all admissible uncertaintied A andA A,.

Definition 6: The uncertain singular delay systgm) is said to
be generalized quadratically stabilizable if there exists a linear state
feedback control law(t) = Ka(t), K € R™*", matricesQ > 0
and P such that

EP" =PE" >0 (29)
(Ax + AAx)P" + P(Ax + Adr)"
+(Ag+AANP QT P(As+AA)" +Q <0 (30)
for all admissible uncertaintieA A, A4, andA B, where
Ax = A+ BK, AAx =AA+ ABK. (31)

The following lemma shows that generalized quadratic stability and
generalized quadratic stabilization imply robust stability and robust sta-
bilization, respectively.

Lemma 5: Consider the uncertain singular delay systém. If itis
generalized quadratically stable, then it is robustly stable. If it is gen-
eralized quadratically stabilizable, then it is robustly stabilizable.

Proof: From Theorem 1, the desired results follow immediately.
O
In view of this, necessary and sufficient conditions for generalized

Thus,||¢1(t)]] is bounded. Considering this and (20), it can be deducegiadratic stability and generalized quadratic stabilizability for the un-
from (22) that(|¢2(#)]| is bounded and, hence, it follows from (21)certain singular delay syste(i) are derived. In order to obtain these
that ||¢1(¢)|| is bounded. Thereforéd/dt)||¢:(¢)]|* is bounded too. results, the following lemma is needed.

By Lemma 3, we have thali¢; ()| is uniformly continuous. There-

fore, noting (25) and using Lemma 4, we obtain
Jim (|G (0] = 0. (26)
Now, noting that for any > 0, there exists a positive integérsuch
thatkT — 7 < t < k7, and considering (22) we have
k
G2 (t) = (—Adm)kCZ(t — k1) — Z(—44(122)i7144421C1 (t—ir).
i=1

This, together with (20) and (26), implies that
flim [1&2(8)] = 0.

Lemma 6 [14]: Given matrices?, I' and= of appropriate dimen-
sions and wit2 symmetrical, then

Q+TF(0)Z+ (TF(0)2)" <0
for all F(o) satisfyingF(o)F(o)T < I, if and only if there exists a
scalare > 0 such that
Q4T 4 e'2'2 <0
For simplicity we introduce the matri¢ € R"*("~") satisfying
E® = 0 andrank® = n — r. Now, we are in a position to give the
quadratic stability result.

Theorem 2: The uncertain singular delay systém) is generalized
quadratically stable if and only if there exist a scalas 0, matrices

- .
Thus, (Zp) 'S_ stable. This comp!etes the prqqf. . X > 0,Q > 0andY such that the LMI (32) holds, as shown at the
Remark 2: Theorem 1 provides a sufficient condition for thebottom of the page

singular delay systentX) to be regular, impulse free and stable. Proof:

WhenE = I, the singular delay systef@) reduces to a state-space o . . i
delay system and it is easy to show that Theorem 1 coincides with (SufficiencyAssume thatthere exista scaiar 0, matricesY >
[10, Lemma 1]. Therefore, Theorem 1 can be viewed as an extension 0 Q > 0 andY satisfying (32). By setting® = EX + Y&, it
of existing results on state-space delay systems to singular delay S €Sy to see that

systems. Furthermore, by comparing Theorem 1 with [13, Lemma EP" = PE" > 0. (33)
AEX+YI")Y + (EX+YI)A" + eMM" +Q AJEX+Yd")T (EX4+Y3")N}
(EX +Y®1)AY -Q (EX+Y®)N; | <. (32
Ni(EX +Yd")" NiJEX +YDH?" —el
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Observe that for any’(s) satisfying (4) and any scalar> 0
AAP" + PAA" AAPT] [M F(o)
PAAT 0 “lo |7V
x [NaPT  NuP")
PN} T
x [MT 0]
eMM" 0
<
<" 4
_, [PNT
te {PNJT
x [NaPT  NgPT.
Therefore
{(A +AAPT+ PA4+AADT +Q (Ag+AAHPT }
P(Aq+AANT -Q
< APT + PAT + eMMT +Q A4PT
- PAj -Q
_ [PNT ,

By using a Schur complement argument, it follows from this in-

equality and (32) that:
(A+AADPT 4+ P(A+ AT +Q (Ag+AAHPT
{ P(Aq+ 242" -Q } <0
or, equivalently
(A+AAPT 4 P(A+ AT
+ (A + AANPTQ P(As 4+ AAy)T
+Q<0.

This inequality and (33) are precisely (27) and (28) in Definition
5. Hence, the uncertain singular delay systéi is generalized

quadratically stable.
(NecessityAssume that the uncertain singular delay syst&mis
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Invoking again a Schur complement argument, one obtains

APT 4+ PAT 4+ eMMT +Q APT PNY
PAY —-Q PN | <0. (34)
NaPT NPT eI

From Lemma 2, it can be shown that (34) implies that the pair
(E, A) is regular and impulse free. Therefore, it follows from [4]
that there exist two invertible matricés andV € R"*" such
that:

_ {Ir 0 Ay 0

E:=UFV =
U ‘ 0 0 O In—r

} A:=UAV = { } (35)
whereI, € R™" andI, . € R" """ are identity ma-
trices,4; € R™*". Let P_:: UPV~T, then from the proof of
Theorem 1, we have thdt takes the form
= Pﬂ p12
P = _
ol

(36)

whereP;; > 0, Pi» € R~ and Py, € R (=)
On the other hand, frol’® = 0 andrank® = n — r, we
can show that there exists an invertible matrix R(: > (=)

such that
=V {IO, } A. (37)
Hence
— Pﬂ Pm T
P=r 1 -
l [ ; Pn}x

(5 )L L)
() )

generalized quadratically stable. It follows from Definition 5 that

there exist matrice® > 0 and P such that (27) and (28) hold.
Thus, for allF(¢) satisfying (3) and (4), the following inequality

holds:
(A+ AP + PA+ AN +Q
|: P(As+ A;’—’ld)T
which can be rewritten as
APT 4+ PAT 4+ A4PT
{ PAY -Q }

+ {M} F(o)[NaPT NPT

(Aa +_AC;L1)P1} <

0

n {PN,Z

PNT

By Lemma 6, it follows that there exists a scatas 0 such that:
APT 4+ PAT 4+ Q AdPT} N [MMT 0}

} F(o)"[MT 0]<o0.

=EX +Y®"
where

[P 0 o 1 [P g
){_1[0 IWJ‘ L Y =UTH A

Finally, sinceX > 0 and by replacingP into (34), the desired
result follows immediately. O

The generalized quadratic stabilizability result is presented in the
following theorem.

Theorem 3: The uncertain singular delay systém) is generalized
quadratically stabilizable if and only if there exist a scalar 0, ma-
tricesX > 0,Q > 0,Y andZ such that the LMI (38) holds, as shown
at the bottom of the page, where

W =AY(X. V) + Y(X.V)A' + BZ
+Z"BT + eMMT +0Q
T(X.Y)=EX+Y®"

with T(X,Y) invertible. In this case, a robustly stabilizing state feed-

AT
PAg -Q (; 0 back control law is given by
-1 | PN4 T T
+e {PNJ [NsPT NPT <. u(k) = 20 (X, V)" "2 (t). (39)
w AX(X, V)T Y(X,Y)NL + ZTNE
T(X,Y)AY -Q T(X,Y)NT <0 (38)
NAY(X, V) + Nz NYX V)T —el
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Proof: According to Definition 6, the systeffE) is generalized = Consider the linear uncertain singular delay syst&nhwith param-
quadratically stabilizable with respect to the uncertainty structure (3)afers as follows:

H H k™ X n _
ingt;)rrrzly if there exist&” € R such that the resultant closed-loop 11 0 15 05 1
Yy EFE=|1 -1 1 A=1|-1 0 1
) , 12 0 1 05 0 1
Ei(t)=(Ac+ AA)z(t) + (Ad + AAx(t — 7) (40) 1 0 -1 11
) Aq=| 1 -1 0.5 B=1]1 0
with 103 05 -1 0 1
[0.5
Ac=A+BK, AA.=AA+ABK M=1{02]| Nia=[02 01 03]
10.1
is quadratically stable with respect to the uncertainty structure N,=[01 02 05] Ng=[01 0.1].
[AA. AAg]=MF(o)[Na+NsgK Ng]. In this example, we assume that the time detay= 1.5 and the un-

certain matrixF'(¢) = sin(o). The purpose is the design of a state

BY invoki Th 2 for the closed-I " 40 dfeedback control law such that, for all admissible uncertainties, the re-
y Invoxing now theorem  for the closed-loop system (40), one _EUItant closed-loop system is regular, impulse free and stable. To this
duces thatX) is generalized quadratically stabilizable if and only i
SN X7 . end, we choose
there existdt € R and a scala¢ > 0, matricesX > 0,Q > 0
andY such that the LMI holds, as shown in (41) at the bottom of the

T
page, with dP=[-1 1 2] .

Using Matlab LMI Control Toolbox to solve the LMI (38), we obtain
the solution as follows:

[ 0.2682  —0.1067 —0.3102
, X =|-0.1067 02976  0.3568
Define | —0.3102  0.3568  0.6443
70.9575  0.0475  0.0475
Q=100475 09538 —0.0503
10.0475  —0.0503  0.9538

©=(A+BK)EX+Y3")"
+(EX +Y®")(A+ BEK)" +eMM" + Q.

Z=K(EX+Yd")"

and observe that the LMI (41) is precisely inequality (38) in the state-

ment of Theorem 3. Hence, necessity is proved. ] 0.2467
Now, without loss of generality, we can assume tiaf\,Y) = Y =1-0.1484
EX +Y a7 isinvertible, otherwise we can choose a sufficiently smalll L —0.2103
scalard >0 such thatY(X, Y) = Y(X,Y) + 6T also satisfies 7 —0.9452 —0.4160 0.5859 } . 1.0021.
(38) with T(X,Y) invertible. If (38) holds, then (41) is satisfied for | —0.7454  0.5912  —0.7552

K = ZY(X,Y)~". Taking into account the aforementioned consid.—l_

erations, it follows thatX) is generalized quadratically stabilizable herefore, by Theorem 3, a robustly stabilizing state feedback control

law can be obtained as

This proves sufficiency. O
Remark 3: Theorem 3 presents a necessary and sufficient condi- . —13.5354 19.4496 —19.6474
tion for generalized quadratic stabilizability. The desired robustly sta- v =\ cri60  —15.0227 118584 | )

bilizing state feedback for uncertain singular systém) can be ob-
tained by solving the strict LMI (38), which can be solved numerically
very efficiently by using interior-point algorithm, and no tuning of pa-
rameters is involved [2]. It is worth pointing out that strict LMI (38) is
expressed by using the system matrice§Xf. The design procedure

V. CONCLUSION

. The problems of robust stability and stabilization for uncertain con-
Hlous singular systems with state delay and parameter uncertainty
8ve been studied. Based on the notions of generalized quadratic sta-
bility and generalized quadratic stabilization, these problems have been
solved. Necessary and sufficient conditions for generalized quadratic
stability and generalized quadratic stabilization are presented in terms
of a strict LMI, respectively. The proposed state feedback control law
In this section, we give an example to demonstrate the effectivengsmrantees that the resultant closed-loop system is regular, impulse free

numerical problems arising from decomposition of matrices and thH
makes the design procedure relatively simple and reliable.

IV. NUMERICAL EXAMPLE

of the proposed method. as well as stable for all admissible uncertainties.
o A EX4+Y2")T (EX4YPT)(Nas+ NgK)"
(EX +Y3")Al -Q (EX + Y3 NT <0 (41)

(Na4+ NgKYEX +Y®")" Ny EX +Y3")" —eI
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