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Finite Sample Properties of Indirect Nonparametric
Closed-Loop Identification

James S. Welsh and Graham C. Goodwin, Fellow, IEEE

Abstract—This paper presents new results on the properties
of indirect nonparametric estimation using closed-loop data.
Specific results to be developed include finite sample bias and
variance. We show that previous asymptotic results hold only
when the signal-to- noise ratio (SNR) is large. We develop an
expression which holds generally and which departs significantly
from the known asymptotic results. Simulations are presented
which substantiate the validity of the general expression.

Index Terms—Bias, closed-loop identification, indirect identifi-
cation, nonparametric, variance.

I. INTRODUCTION

CLOSED-LOOP identification has been a topic of interest
for some time. This is due to many factors including the

fact that many industrial processes require that data be collected
under closed-loop conditions for safety or other operational rea-
sons. Here, we will be concerned with nonparametric estimation
[1]–[4]. Specifically, we consider the indirect method of identi-
fication [1], [2], [4], and [5].

The indirect method first requires that one fit a model to the
closed-loop system. Then, using knowledge of the controller,
one back-solves for the corresponding open-loop model of the
process. This method has been well studied. However, many of
the key properties, especially under finite sample conditions are,
as yet, unresolved. A key difficulty turns out to be a fundamental
singularity in the indirect procedure. Here, we overcome this
problem by a regularization technique based on use of an exclu-
sion zone.

Our analysis leads to general results for bias and variance.
When specialized to the case of high signal-to-noise ratio
(SNR), our results turn out to be consistent with earlier findings
[1], [3], [4], [6]. However, a key conclusion arising from the
work presented here is that the earlier approximate results are
valid only when the variance is negligibly small. By way of
contrast, our results hold for arbitrary SNR.

The layout of the remainder of the paper is as follows. A
review of previous work on indirect nonparametric estimation
is provided in Section II. In Section III, we introduce notation
by briefly summarizing known results on open-loop nonpara-
metric identification. Section IV explains the indirect estimate
obtained in closed-loop, sets up the key exclusion zone idea, and
details the associated assumptions. Section V gives a heuristic
statement of the results to follow. Section VI provides prelimi-
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Fig. 1. Closed-loop system.

nary technical results on the probability density function for fi-
nite sample data with an exclusion zone. Sections VII and VIII
give a rigorous development of the bias and variance results.
Section IX examines design issues associated with the applica-
tion of the bias and variance results as well as issues regarding
the size of the exclusion zone. Section X presents a simulation
example and Section XI draws conclusions. To facilitate read-
ability, details of proofs are given in the Appendix.

II. OVERVIEW OF INDIREDT NONPARAMETRIC IDENTIFICATION

Consider the closed-loop system shown in Fig. 1. We examine
the special case when the external reference signalis periodic
and we assume, so as to avoid transients, that the reference has
been applied for some time before samples are taken. Also, we
consider a square window function. The use of other windows
would not change the main thrust of our argument [7].

In open loop, the least mean square estimate of the frequency
response of a linear system is given by the ratio of the input and
output discrete Fourier transforms (DFTs). As the calculation
of the frequency response depends upon ratios, the scaling of
the DFT is irrelevant. Thus, the estimate,, of the closed-loop
transfer function from to is given by

(1)

where and denote the DFT, at frequency , of output
and reference, respectively, anddenotes the estimate of the
closed-loop transfer function at frequency.

This estimate has also been called the empirical transfer func-
tion estimate (ETFE). It is known [1] that this estimate has poor
asymptotic properties when the input is a stochastic process. In
fact, the variance of the ETFE for a stochastic input has been
shown to be infinite [8]. However, the method is known to give
good results when the input is periodic [1], [7].

The true closed-loop transfer function at frequency, which
we denote by , can be expressed as

(2)

where and are the transfer functions of the process and
controller, respectively, evaluated at frequency(see Fig. 1).
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Inverting the relationship in (2) suggests the following indirect
estimate for at frequency

(3)

where is given in (1).
Our objective here is to study the properties ofas given in

(3) and (1). Recent work on this problem includes [1], [5], and
[9], which all build on classical methods for time series analysis
in the frequency domain [10]–[14]. Various approximate results
for bias and variance have been described in the literature. For
example, in [6], it is argued that, when the SNR is low, then
approaches . Also, in [1], [4], and [6], it has been argued
that in high SNR environments the bias approaches zero and the
variance is a simple function of the output noise power to input
energy at the frequency of interest. A difficulty with these results
is that they depend on the sample property of having high SNR
which is not verifiable from the data.

Results in [15] and [16] corroborate these approximations by
showing that, for high SNR, the probability density function of
the estimate is concentrated around the true value and asymptot-
ically approximates a complex Gaussian distribution. Moreover,
in [9], an exact expression is given for the bias of the estimate
using the Cauchy principal value to deal with the singularity at

inherent in (3). In a similar vein, it has also been shown
in [9] that the variance is infinite due again to the singularity at

. This result is similar to the result for open-loop systems
when the input contains noise signals [8], [17], [18].

It can be seen from the previous discussion that substantial
difficulties arise from the singularity of (3) at . Indeed,
(3) is an example of an ill-conditioned inverse problem. As men-
tioned in Section I, our solution to this difficulty is to use regu-
larization based on an exclusion zone. In particular, we require
that, at the frequency of interest, the true closed-loop transfer
function, , be bounded away from one. This allows us to dis-
card any value of that falls in the vicinity of one. A similar
idea of using exclusion zones to deal with a potential singularity
has recently been used in [17] in the context of errors in variables
estimation. We utilize this idea here to develop an expression for
bias and variance which takes account of the fact that neither
nor will lie in a region surrounding the point 1 in the com-
plex plane. The effect of the exclusion zone size on the results is
also examined. A range of exclusion zone sizes is provided, to
be used as a guide, when applying the bias and variance results.

A technical difficulty is that, with finite samples, the real and
imaginary parts of the estimate are correlated [19]. Asymp-
totically, this correlation becomes negligible. However, a rig-
orous analysis of finite sample properties depends on explicitly
accounting for this correlation. We will show how this can be
achieved in the sequel.

III. PROPERTIES OFOPEN-LOOPNONPARAMETRICESTIMATION

In this section, we summarize known results on the nonpara-
metric estimation of linear frequency responses from open-loop
data. We will build on these results in the sequel. Proofs are
given for the convenience of the reader in [20].

We make the following assumptions.

1) The reference signalis periodic with period , having
energy at frequencies and corresponding am-
plitude ; .

2) The observation period is an integer multiple of .
3) The noise (see Fig. 1) is a stationary stochastic process

having a Gaussian probability function and spectral den-
sity at frequency .

Lemma 1: Part 1) The finite sample properties of the
Fourier transform of the noise are described by

(4)

(5)

where is the DFT of the noise at , defined by

(6)

sampling period (s) (7)

is the noise spectral density convolved with a
function centered on , i.e.,

(8)

(a fn.) (9)

for

otherwise.
(10)

Note that (10) is a triangular function and that (9) and (10) define
the Fejér kernel [21]. Also, is given by

(11)

where

(12)

(13)

Part 2) The finite sample properties of the DFT of the periodic
excitation signal applied to the reference input (see Fig. 1) are
described by

(14)

(15)

where and are simple functions of the deterministic input,
namely

(16)

(17)

and is the amplitude of the input at frequency.
Remark 2: We note that, provided is smooth, then

(18)

due to the sampling properties of the function.
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A. Application to Open-Loop System Identification

We temporarily focus on the open-loop estimation problem.
The open-loop analog of (1) is

(19)

Lemma 3: Let denote the true open-loop frequency re-
sponse of the system at frequencyand define .
Then

(20)

where and denote the DFT (at ) of the noise and of the
reference input, respectively. We then have

(21)

(22)

where

(23)

(24)

(25)

and the , , and are as given in Lemma
1.

Remark 4: We note from Lemmas 1 and 3 that for

(26)

(27)

(28)

where

(29)

and and are of order . Hence, for or , we
have

(30)

Note that this result holds exactly for finite in the case of a
white noise source [22].

Remark 5: From Lemma 3, we see that asymptotically

(31)

This has a nice physical interpretation, namely asymptotically
the normalized mean square error in the frequency response es-
timate is two times the ratio of the output noise spectral density
(windowed by a function) to the output energy due to the
test signal at frequency .

In the sequel, we will focus on a single frequency,. Thus,
for clarity, we will not show the explicit dependence of, etc.,
on .

B. Application to Complementary Sensitivity Estimation

We next consider the closed-loop system of Fig. 1. The re-
sults of Section III-A can clearly be applied to the estimation
of the complementary sensitivity function,, via (1). The only
changes necessary to apply the results of Section III-A are as
follows.

1) The noise needs to be transformed to the closed-loop
output where it has spectral density

(32)

where

(33)

2) The output signal energy becomes

output energy (34)

An immediate consequence of Lemma 3 is the following.
Corollary 6: Let denote the true complementary sensi-

tivity at frequency and define . Then

i (35)

ii (36)

iii

(37)

Remark 7: It follows from Corollary 6 [Parts 1) and 2)], that
if the noise is Gaussian thenhas a Gaussian distribution with
mean and variance as given in (35) and (36). We denote this
distribution by .

IV. M ODIFIED INDIRECT ESTIMATION OF

We essentially use the indirect estimate ofdescribed in Sec-
tion II. However, we introduce the following further assump-
tions that allow us to remove the singularity at from this
estimate.

1) At frequency , the true value of the complementary sen-
sitivity function, namely , satisfies .

2) The true complementary sensitivity satisfies .
We modify the indirect estimator by discarding any experi-

ment in which . This is easily accomplished as the
experiment directly yields the estimate. The removal of the
singularity by excluding a zone around of radius is
shown in Fig. 2.

Using this exclusion zone, we will in the sequel, show that the
resulting estimate of is essentially unbiased for a good SNR
and that the variance in the estimate is, for high SNR, essentially
identical to that achievable with open-loop data.
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Fig. 2. Exclusion zone inT space.

V. HEURISTICSTATEMENT OF BIAS AND VARIANCE RESULTS

Since the subsequent derivation is rather technical, we will
first give a heuristic statement of the results to be obtained so as
to set the scene.

It is easily seen that the error associated with the
estimate (3) is given by

(38)

Now use of the exclusion zone, ensures that and
are bounded away from zero.

The results to be presented below hold for all SNRs. To get a
feel for the results to be presented, we heuristically examine the
extreme cases of low and high SNRs.

A. Low SNR

Here, has high variability and, thus, there is a large prob-
ability mass associated with . These conditions
suggest the following approximation to (38):

(39)

Based on this approximation, we have

(40)

(41)

and, hence

(42)

(43)

Thus, based on this heuristic result, we might anticipate that,
at low SNR, will have mean value and very small vari-
ance around the mean.

B. High SNR

Here, has low variability and thus there is large probability
mass associated with . These conditions suggest
the following approximation to (38):

(44)

Hence, for large , we would expect to be unbiased and

(45)

Using Corollary 6, part 2), we then have

(46)

Thus based on this heuristic result, we might anticipate that,
at high SNR, will have mean and variance that decays as

.

C. Intermediate SNR

It will turn out that the rigorous analysis presented later will
substantiate the above heuristic expressions. In addition, our
analysis will cover intermediate SNRs. To the best of our knowl-
edge, this is the first time that these results have been obtained
and are actually somewhat surprising.

VI. PRELIMINARY TECHNICAL RESULTS

Our objective in the following sections is to rigorously derive
expressions (akin to those outlined in Section V) which hold in
the finite sample case with an exclusion zone. The key results
are given in Theorems 12, 13, and 15. As a prelude, we present
here some preliminary technical results. Again, for convenience
of the reader, proofs of these results can be found in [20].

We observe that since the noise is assumed zero-mean
Gaussian and since is a linear function of the data, then
and will also have a Gaussian distribution. Indeed, from
Corollary 6, we see that has a Gaussian distribution with
zero mean and covariance (36).

We next express the probability density function in terms of
polar coordinates via . For a two-variate Gaussian
random variable with zero-mean and radially symmetric covari-
ance, the resultant probability density function is a Rayleigh dis-
tribution

(47)

Our goal is to essentially apply this result to. However,
a difficulty with the distribution for is that it is not radially
symmetrical with finite sample size. To deal with this problem,
we will use bounding techniques on the distribution. Essen-
tially, this is accomplished by surrounding the elliptical distri-
bution by inner and outer radially symmetrical distributions. Let

be the transformed (true) probability density function
for without an exclusion zone. Then

(48)

where is the Jacobian [12] linking to .
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Lemma 8: Let . Then the
probability density function for can be bounded as follows:

(49)

where , are as in (47) and (48), and

(50)

(51)

(52)

(53)

and where is given in (36).
Remark 9: In the limit as , we see for Part 3) of

Corollary 6, that and . Also

and

Finally, in the modified indirect estimator we remove the sin-
gularity in the estimate of by excluding a zone around .
In this zone, we are implicitly setting the probability to zero.
This requires us to rescale the probability density function so
that it integrates to unity. In the sequel, it will be convenient
to recenter and scale the estimation error in the complimentary
sensitivity function. Thus, we define . In the sym-
metrical case, using (37), the real and imaginary parts ofhave
variance

(54)

Also, the exclusion zone, when transformed to the
space remains a circle centered at but having radius

. We will develop expressions for renormalization
constants and of the bounding probability density
functions when the excluded zone is removed. The excluded
zone is shown as the shaded area “A” in Fig. 3. We have
seen (Lemma 8) that the density function , although
not itself a Rayleigh distribution, is bounded from above and
below by scaled Rayleigh distributions. These Rayleigh density
functions, with the excluded zone removed, will be expressed
as

(55)

When is replaced by either or [as defined
in (56) and (57)], then takes the value or , respec-
tively. We will quantify the constants , and in the
following.

Scaling of the minimum and maximum values of gives

(56)

(57)

Fig. 3. Exclusion zone in~T space.

The scaled values of and are then given by

(58)

(59)

Lemma 10: The probability of lying outside the exclusion
zone for the probability density function given in (47) is

(60)

where is an incomplete Gamma function.

Proof of this and subsequent results are presented in the Ap-
pendix.

Remark 11: For the case of an elliptical shaped distribution,
we denote the renormalized distribution as where

(61)

and is as in (48). We will not need to explicitly eval-
uate . Instead, we note that

(62)

where and are as in (60) with the appropriate substi-
tutions for (i.e., , ).

VII. FINITE SAMPLE BIAS

In this section, we develop an expression for the bias in the
modified estimator. We know from Corollary 6 that asymp-
totically the distribution of becomes symmetrical. Thus we
first determine an expression for the bias corresponding to the
asymptotic symmetrical distribution. Then we bound the error
between the true bias under finite sampling and that of the bias
for the asymptotic distribution.

Theorem 12:Part 1) For the asymptotic case, when the
distribution for has radially symmetrical covariance as in
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Part 3) of Corollary 6, then the bias in the indirect estimate of
the process transfer function is

(63)

where, is defined in (54), is as in (60), and

(64)

(65)

(66)

for

for .
(67)

Area in Fig. 3

Area in Fig. 3

Part 2) Under the conditions of Part 1), we can tightly over-
bound the constants and as follows:

(68)

(69)

We next consider the finite data case when the distribution
for is not radially symmetric. This significantly complicates
the result. Thus, we will relate the bias in this case to the result
developed above for the radially symmetric case. Specifically,
we have the following.

Theorem 13: In a closed-loop indirect identification experi-
ment, the bias in the case of an asymmetric distribution
is related to the bias in the asymptotic radially symmetric case,

, as follows:

(70)

where

(71)

(72)

(73)

(74)

and , , , and are defined in
(56)–(59), respectively

(75)

(76)

where and are as in (60) with the appropriate substi-
tutions for .

A. Discussion

Note that the true bias is displaced from both
in magnitude and phase but rapidly approaches the asymptotic
bias, . Hence, for all practical purposes it suffices to use
the simpler expression given in Theorem 12.

It is also evident from (63) that the estimate with symmetric
distribution essentially lies on a straight line between, the
true frequency response, and . The amount the estimate
is displaced from this line is due to the computable terms
and which are dependent on the size of the chosen exclusion
zone around the singularity, and hence can be made arbitrarily
small. The bias result is essentially as presented in [15], save for
modifications necessary to account for the exclusion zone.

We can rewrite the bias expression (for the symmetric case)
in the following informative fashion:

(77)

(78)
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where

(79)

(80)

We also see from (63) that a rapid bifurcation occurs between
an unbiased and a biased estimate depending on the SNR as
captured by . The asymptotic situation is summarized in the
following.

Corollary 14: Part 1) The estimate is asymptotically unbi-
ased, specifically

(81)

Part 2) The rate at which the bias converges to zero is of ex-
ponential order

(82)

VIII. F INITE SAMPLE VARIANCE

Here, we develop an expression for the variance of the esti-
mator.

The skewed distribution caused by the finite samples is over-
bounded using the symmetric probability density function as in
(49) to obtain our result.

Theorem 15:Part 1) In a closed-loop indirect identification
experiment, the variance of the estimation error in the estimate
of the process can be bounded by the following series expansion:

(83)

where is as in (74)

(84)

(85)

(86)

(87)

and is given in (54).
Part 2) The integrals and can be tightly over-

bounded by

(88)

where

(89)

(90)

A. Discussion

The above result gives the variance around the true value.
Using , the variance around the mean is readily
seen to be

(91)

where .
Armed with these rigorous results, it is convenient to revisit

the heuristic results foreshadowed in Section V.
1) Low SNR: Under these conditions, the variance expres-

sion (83) is dominated by the first term in the second integral
which gives

(92)

Note that this is as foreshadowed in (41) and (43).
2) High SNR: Under these conditions, the variance expres-

sion (83) is dominated by the first term of the first integral. It is
shown in the Appendix that, as the number of observations ()
tends to infinity the normalized variance of the estimation error
converges to a value of two times the ratio of the noise spectral
density to the output energy due to the test signal at frequency

. Specifically, the following result holds:

(93)

Note that the aforementioned result is the same as the low-order
approximations for the variance given in [6] and [3] and as
heuristically described in Section V.

An interesting observation arising from this result is that
is actually the output signal energy due to the

test signal. Hence, if one fixes the output energy due to the test
signal, then we see that estimation accuracy is the same whether
open or closed-loop provided the SNR is high. [Compare (93)
with Remark 5].

It is also evident from (93) that, the rate of which the variance
(83) converges to the ratio of the noise spectral density and the
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Fig. 4. (Top) Bias versus1=� . (Bottom) Variance around the mean versus
1=� .

energy present in the output due to the excitation signal applied
at the reference is of the order of

(94)

3) Intermediate SNR:To the best of our knowledge, this
case has not been previously treated in the literature (even at
a heuristic level). The reason is that the exclusion zone is cru-
cial to ensuring convergence of the series in (83).

IX. DESIGN ISSUES

In Fig. 4, we examine our results for bias and variance with
respect to the SNR as captured by (which is proportional
to , the number of observations). Here,was set to a value
of 0.0035. We see in Fig. 4(a) the rapid bifurcation occurring in
the bias as foreshadowed in Section VII-A. From (80),
is defined as biased and as unbiased. The heuristic and
analytic results for the variance are confirmed in Fig. 4(b). As
foreshadowed in Section V, we see that the variance around the
mean is zero for both high and low SNRs. An interesting obser-
vation is that the maximum of the variance occurs at a higher
SNR than that of the “switching point” of the bias. Note that the
results in Fig. 4 have been presented in a normalized fashion
and, hence, these “design curves” can be used to calculate bias
and variance foranygiven problem.

To compare the true variance expression with the asymp-
totic result given in (93), we have plotted the two expressions
in Fig. 5. Note that, surprisingly, the asymptotic expression is
valid only when the variance is negligibly small. Thus, it seems
essential to use the general result as given in Theorem 15.

Finally, we examine the effect the size of the exclusion zone
has on our estimate of the variance around the mean with respect
to the SNR. Fig. 6 shows the result of a simulation where the
variance around the mean was calculated for a range of(size
of exclusion zone) and (SNR).

A preliminary observation from Fig. 6 is that one should keep
away from 0 or 1. Indeed, we see from Fig. 6, that as the

Fig. 5. Comparison of the general result and approximate result for the
variance around the mean.

Fig. 6. Effect of exclusion zone on the variance around the mean.

variance will go to . Of course, this is what we anticipated. In-
deed, this was the original motivation for including an exclusion
zone in the first place. As , with a high SNR, the variance
also tends toward . This occurs since now the true system,,
falls within (or close to) the exclusion zone and, therefore, when
the SNR is high the probability density function of the estimates
is concentrated around this point and, hence, will be discarded.

Away from the values , Fig. 6 shows the estimate of
the variance is actually quite insensitive to values ofbetween
0.005 and 0.1 for this particular value of. More generally, we
have found that the result is insensitive toprovided the size of
the exclusion zone is greater than about 0.005 and smaller then
(a bound on) the distance of from 1. Indeed, this is intuitively
reasonable given the geometry of Fig. 2. This suggests that any
choice of in this region will yield satisfactory results.

X. SIMULATION

To test the theory presented here, we have chosen a simple
system with and .

A test signal consisting of Schroeder phased sinusoids was
applied to the reference input with their amplitude made in-
versely proportional to their frequency. Noise was added which
was normally distributed having zero mean and a spectral den-
sity of 0.1. An experiment length of 80 s was used with a sam-
pling period of 5 ms. A Monte Carlo study was carried out uti-
lizing 2500 tests with different noise seeds, the results of which
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Fig. 7. Estimate of bias.

were then averaged. The bias and variance results for the av-
eraged data are readily derived from the earlier results. Specif-
ically, if we assume independent repetitions of the experi-
ments and denote by , the results of each
experiment, and by the averaged estimate, then

(95)

(96)

and, hence

(97)

(98)

The averaged estimated gains are shown in Fig. 7 together
with the theoretical bias obtained using the results of Section IV.
Note that Fig. 7 uses lines for the various plots whereas, in fact,
only discrete frequencies were used. This was done purely for
aesthetic reasons as the number of test frequencies used in the
simulation was 2000, making the figure difficult to interpret
when only the discrete frequency points are plotted.

From Fig. 7, it can be seen that as the amplitude of the test
signal decreases, then the estimate becomes biased toward

. The bias was estimated using the result for the asymp-
totic symmetrical distribution. The plot shows that this bias
estimate predicts the behavior of the bias to a high degree of
accuracy for our estimate under the test conditions.

It can also be seen from Fig. 7 that the perceived variance
around the mean appears to approach zero when the SNR is ei-
ther low or high. This accords with the observations made in
Section VIII-A. Indeed, one can readily estimate the variance
using Theorem 15 and (98). The plot of the standard deviation
around the bias is then as shown in Fig. 8. Note that the standard
deviation does indeed capture the correct qualitative and quan-
titative features of the experimental results.

Fig. 8. Estimate of�1 standard deviation around the bias.

XI. CONCLUSION

The key result of this paper has been to rigorously quantify
the finite sample properties of the indirect nonparametric esti-
mator of the frequency response of a linear system operating
in closed-loop assuming Gaussian noise. The key to doing this
has been to utilize regularization in the form of an exclusion
zone. We have shown that, with an exclusion zone, the estimate
of under closed-loop conditions is biased for finite samples
but asymptotically unbiased when a periodic signal is applied
to the reference. Furthermore, the transition between an unbi-
ased and a biased estimate occurs rapidly allowing easy distinc-
tion between the estimates. Similarly, an exclusion zone leads
to a result for the variance which holds generally for arbitrary
SNR. This result is consistent with earlier results for the high
SNR case. Our results hold generally but, inter-alia, show that
the previously published asymptotic results are valid only in the
limit as the variance becomes vanishingly small. We have also
shown that our results are relatively insensitive to a range of ex-
clusion zone diameters.

APPENDIX

A. Proof of Lemma 10:The probability of lying inside the
exclusion zone is

(99)

Shifting the origin to the left by 1 and defining a new variable,
, gives

(100)

Changing to polar coordinates, we have

(101)

The integral with respect tocan be expressed as a Bessel func-
tion of the first kind [23]

(102)
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Substituting (102) into (101) and changing the order of integra-
tion and summation, we obtain

(103)

By substituting in (103), we obtain

(104)

Expressing (104) as an incomplete gamma function

(105)

Thus the normalization constant is given by which
then yields the result.

B. Proof of Theorem 12:Part 1) With reference to Fig. 1,
the estimation error can be expressed as

(106)

The expected value, in the case of the symmetric asymptotic
distribution including an exclusion zone, is given by

(107)

where denotes the entire complex plane andis the excluded
region, shown in Fig. 3, of radius .

We change to normalized variables using . The
areas to be integrated over are shown in Fig. 3. The scaled con-
stants defining the exclusion zone become

and (108)

where is as in Fig. 2.
Hence, the expected value, in the case of the asymmetric

asymptotic distribution, becomes

(109)

(110)

where

(111)

The normalized probability density function is given by

for

for

(112)

where , is defined in (60). To simplify the integration, we
divide the integral into four regions

(113)

where

(114)

and the integration areas are

(115)

(116)

(117)

Area in Fig. 3 (118)

Integrating and in (113) we obtain the result of Theorem
12 Part 1).

Part 2) For in (113), consider the annulus, as shown in
Fig. 3, excluding the areas and . The integration we need to
perform is then

(119)

The factor in (119) has a denominator containing the
vector which is the length from “1” to any point
within the annulus. We will next establish bounds by taking the
smallest length vector around the annulus for any given angle.
Fig. 9 shows the annulus divided intofive regions to simplify the
integration. Consider

(120)

where

(121)

To explain the regions consider Fig. 9. For integration over
Region 1, we define by the angle that gives the shortest length
vector to any point on a line sweeping from an angle of
to a maximum angle. The shortest length vector, to this line, oc-
curs when the angle of intersection is 90. The maximum angle
to be integrated over for this region occurs when the vector also
intersects the inner ring of the annulus. The angle is then calcu-
lated by basic trigonometry and is found to be .

Region 5 will be of the same size as Region 1 due to sym-
metry. Hence, we can establish the integration limits

(122)

(123)

(124)

(125)

(126)
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Fig. 9. Integration regions.

Next, we establish the length of the vector as a function of
the angle. For region 1, using simple trigonometry we find the
vector length to be .

The integral for region 1 is thus

(127)

Integrating an upperbound on with respect to angle

(128)

Substituting (128) into (127) and integrating

(129)

Overbounding the integrals and we obtain

(130)

(131)

(132)

(133)

Regions 1 and 5, 2 and 4 are symmetric hence, and
. Substituting (129), (131), and (133) into (120) and

taking into account symmetry we obtain an upper bound for
(119), which in terms of our result is .

We next proceed to . We will overbound the integral
in (113), which represents area “B” in Fig. 3

(134)

We further divide area “B” into smaller regions B1 and B2,
where B1 is the shaded region of “B” that lies within radius one,
and B2 is the area lying outside radius one. Thus we partition

, with respect to B1 and B2, as

(135)

We then overbound the integrals and as follows:

(136)

(137)

(138)

(139)

Substituting (137) and (139) into (135) we obtain an upper
bound on (134), which in terms of our result, is .

C. Proof of Theorem 13:The true bias in the estimation error
is given by

(140)

For the asymptotic symmetrical distribution, the bias is given
by (110). The magnitude of the difference between (140) and
(110), is

(141)

As the true distribution of is of an elliptical shape, the above
integration is difficult. Thus to simplify, we bound the difference
between and by the difference between

and

(142)

where

(143)

(144)
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Next, we partition the integral into four regions

(145)

where

(146)

(147)

and limits are defined in (115)–(118). Integrating

(148)

(149)

(150)

where

(151)

and and are as in (73) and (74), , and
are as in (58) and (59).

Similarly, we integrate

(152)

(153)

(154)

Finally, we bound the constants and . First, we integrate
in (145)

(155)

where is as in (147). We then integrate, as in Theorem
12, (120), where

(156)

and is given in (122)–(126). Using previous results from
Theorem 12, we now integrate in each region

(157)

(158)

(159)

Bounding the integral , we obtain

(160)

(161)

For , we obtain

(162)

(163)

Substituting (159), (161), and (163) into (120) and taking into
account symmetry, we obtain an upper bound for (155), which
in terms of our result, is .

Next, we bound the integral which is given by

(164)

Again, we do this as in the proof of Theorem 12, (135). Thus,
we bound the integrals and as follows:

(165)

(166)

(167)

(168)
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Substituting (166) and (168) into (135), we obtain our result
where .

D. Proof of Corollary 14: Part 1) We first note that, in
view of Theorem 12, rapidly approaches . We
thus begin with as in (63). Now we check the probability
density renormalization constant for convergence to 1, i.e.,

. Substituting (54) into (60), we have

(169)

where

(170)

The gamma function can be expressed as [23]

(171)
Hence

(172)

where

(173)

(174)

Now, we see that and .
Hence, .

Each term in (63) is evaluated separately. Considering,
we substitute (54) into (68) and express the result as

(175)

where is the term in square brackets in (68).
Then it is easily seen, recalling , that

. Similarly, from (69), can be ex-
pressed as

(176)

where and are the terms in the square and
curly brackets, respectively, in (69). Then .
The first term in (63) is trivial, namely

(177)

Substituting (54) into the remaining term in (63) we have

(178)

where

(179)

Then for any , s.t. for we have .
This establishes the result.

Part 2) Immediate from (63).
E. Proof of Theorem 15:Part 1) With reference to (106),

the variance of the estimation error, with the exclusion zone is
given by

(180)
We will overbound the distribution via the Rayleigh
distribution as in (49). Thus we replace by

.
We also change to normalized quantities and define as

and expand the integral to include the different regions.
Hence, the variance of the error in the estimateis given by

(181)

where

(182)

As before, we divide the integral into regions as follows:

(183)

where is given in (115)–(118). Hence

(184)

Now consider the first term in (184)

(185)
We first integrate with respect to, giving

(186)

Since , we can express the integrand in terms of a con-
vergent power series [24]

(187)
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Next, consider the second term in (184). Integrating with respect
to , we obtain

(188)

Here , so we can also use a convergent power series for
the integrand

(189)

Substituting and in (184) with (187) and (189), respec-
tively, also replacing the and terms with there integral ex-
pressions from (183) the result follows.

Part 2) Here, we closely overbound the constant terms
and . First, we consider the term in (184)

(190)

We integrate, as in Theorem 12, (120), where

(191)

For region 1, the integral is

(192)

(193)

(194)

where

(195)

Overbounding the integrals and , we obtain

(196)

(197)

(198)

(199)

(200)

(201)

Substituting (194), (198), and (201) into (120), and taking
into account symmetry, we obtain an upper bound for, which
in terms of our result is expressed as .

The integral in (184) is overbounded as follows:

(202)

Again, we proceed as in the proof of Theorem 12, (135). Over-
bounding the integrals and , we obtain

(203)

(204)

(205)

(206)

Substituting (204) and (206) into (135), we obtain an upper
bound for (202), which in terms of our result is .

F. Proof of Equation (93):We consider the terms in (83) in-
dividually. Expressing the first term as in (83), substituting (54)
for and (84) for , we have

(207)
where

(208)

From (30), as , . Hence

(209)

To simplify the integration, we separateinto two parts

(210)

(211)

(212)

Integrating (211), we have

(213)
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For (212), we simplify further by overbounding the integral

(214)

(215)

The second integral term in (83) under the aforementioned con-
ditions becomes

(216)

(217)

Overbounds for the constant terms and in (83) can be
expressed, using the same procedure as follows:

(218)

(219)

(220)

(221)

where and depend only on and and
are constant with respect to.

Combining (83), (213), (215), (217), (219), and (221), and
taking the limit as the number of observations tends to infinity,
it can then be seen that for any given , , s.t. for

. This
establishes the result.
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