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Finite Sample Properties of Indirect Nonparametric
Closed-Loop Identification

James S. Welsh and Graham C. Goodviagllow, IEEE

Abstract—This paper presents new results on the properties
of indirect nonparametric estimation using closed-loop data. +

Specific results to be developed include finite sample bias and r +f\\ c LI + ,X’
variance. We show that previous asymptotic results hold only \ / (\ /

when the signal-to- noise ratio (SNR) is large. We develop an
expression which holds generally and which departs significantly
from the known asymptotic results. Simulations are presented
which substantiate the validity of the general expression. Fig. 1. Closed-loop system.

Index Terms—Bias, closed-loop identification, indirect identifi- . - . . .
cation, nonparametric, variance. nary technical results on the probability density function for fi-

nite sample data with an exclusion zone. Sections VIl and VI
give a rigorous development of the bias and variance results.
|. INTRODUCTION Section IX examines design issues associated with the applica-

LOSED-LOOP identification has been a topic of interedton of the bias and variance results as well as issues regarding
C for some time. This is due to many factors including théhe size of the exclusion zone. Section X presents a simulation
fact that many industrial processes require that data be collec@@mple and Section XI draws conclusions. To facilitate read-
under closed-loop conditions for safety or other operational redRility, details of proofs are given in the Appendix.
sons. Here, we will be concerned with nonparametric estimation
[1]_[4] Specifica”y, we consider the indirect method of |dent|“ OVERVIEW OF INDIREDT NONPARAMETRIC IDENTIFICATION

fication [1], [2], [4], and [5]. Consider the closed-loop system shown in Fig. 1. We examine
The indirect method first requires that one fit a model to th@e special case when the external reference sigisgberiodic
closed-loop system. Then, using knowledge of the controllgfag we assume, so as to avoid transients, that the reference has
one back-solves for the corresponding open-loop model of thgen applied for some time before samples are taken. Also, we
process. This method has been well studied. However, manyghsider a square window function. The use of other windows
the key properties, especially under finite sample conditions aygyyId not change the main thrust of our argument [7].
as yet, unresolved. A key difficulty turns out to be a fundamental |, gopen loop, the least mean square estimate of the frequency
singularity in the indirect procedure. Here, we overcome thigsponse of a linear system is given by the ratio of the input and
problem by a regularization technique based on use of an exc@itput discrete Fourier transforms (DFTs). As the calculation
sion zone. of the frequency response depends upon ratios, the scaling of

Our analysis leads to general results for bias and variangga DFT is irrelevant. Thus, the estimate, of the closed-loop
When specialized to the case of high signal-to-noise rafigynsfer function from- to v is given by

(SNR), our results turn out to be consistent with earlier findings

[1], [3], [4], [6]. However, a key conclusion arising from the T = ﬁ (1)
work presented here is that the earlier approximate results are R;

valid only when the variance is negligibly small. By way ofyherey; and R; denote the DFT, at frequenay;, of output
contrast, our results hold for arbitrary SNR. and reference, respectively, afifidenotes the estimate of the

The layout of the remainder of the paper is as follows. élosed-loop transfer function at frequency.
review of previous work on indirect nonparametric estimation Tpjs estimate has also been called the empirical transfer func-
is provided in Section II. In Section Ill, we introduce notatiojon estimate (ETFE). It is known [1] that this estimate has poor
by briefly summarizing known results on open-loop nonpargsymptotic properties when the input is a stochastic process. In
metric identification. Section IV explains the indirect estimatgct, the variance of the ETFE for a stochastic input has been
obtained in closed-loop, sets up the key exclusion zone idea, &pgwn to be infinite [8]. However, the method is known to give
details the associated assumptions. Section V gives a heurig%d results when the input is periodic [1], [7].
statement of the results to follow. Section VI provides prelimi- The true closed-loop transfer function at frequeagywhich

we denote by7,;, can be expressed as
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Inverting the relationship in (2) suggests the following indirect 1) The reference signalis periodic with period\/, having

estimate forG at frequencyw; energy at frequencies, . .., w, and corresponding am-
R plitude4;; ¢ =1, ..., p.
G, = 1 @) 2) The observation periofy is an integer multiple ofif.
C; (1 _ Tz) 3) The noisev (see Fig. 1) is a stationary stochastic process
having a Gaussian probability function and spectral den-
whereT} is given in (1). sity S, (w) at frequencyw.

Our objective here is to study the propertiesfas givenin _ Lemma 1:Part 1) The finite sample properties of the
(3) and (1). Recent work on this problem includes [1], [5], anfiourier transform of the noise are described by

[9], which all build on classical methods for time series analysis EIVVY — NAS (w; 4
in the frequency domain [10]-[14]. Various approximate results vV} 1(wi) (4)
for bias and variance have been described in the literature. For E{ViVi} = AS(wi) ®)

example, in [6], it is argued that, when the SNR is low, tégn whereV; is the DFT of the noise at; = 2ri/N, defined by
approaches-1/C;. Also, in [1], [4], and [6], it has been argued

that in high SNR environments the bias approaches zero and the R
. g ; . : . Vi=A § : e I2mi(k/N) (6)
variance is a simple function of the output noise power to input i k
energy atthe frequency of interest. A difficulty with these results k=0 .
gy guency ot HcLtty i - A =sampling period (s) (7

is that they depend on the sample property of having high SNR

which is not verifiable from the data. Si(w;) is the noise spectral densit§,(w;) convolved with a
Results in [15] and [16] corroborate these approximations by, ? function centered ow;, i.e.,

showing that, for high SNR, the probability density function of 1 ~

the estimate is concentrated around the true value and asymptot- s; (wi) = =— / Sp(w)1 (w — w;) dw (8)

ically approximates a complex Gaussian distribution. Moreover, 2r J_x

in [9], an exact expression is given for the bias of the estimate i ek .

using the Cauchy principal value to deal with the singularity at [w)=A Z nke (asinc” fn.) ©)
7; = 1 inherentin (3). In a similar vein, it has also been shown h=—o0

in [9] that the variance is infinite due again to the singularity at N — [k] for [k| < N

1, = 1. This result is similar to the result for open-loop systems ~ 71(k) = ’ - (10)
when the input contains noise signals [8], [17], [18]. 0, otherwise.

It can be seen from the previous discussion that substanfigdte that (10) is a triangular function and that (9) and (10) define
dlffI'CultIeS arise from the smgy!anty qf (3) & = 1. Indeed, ihe Fejér kernel [21]. AlsoS:(w;) is given by
(3) isan example of an ill-conditioned inverse problem. As men-
tioned in Section I, our solution to this difficulty is to use regu- )
larization based on an exclusion zone. In particular, we require Sa(wi) =4 Z Ro(k)f (ks 0)
that, at the frequency of interest, the true closed-loop transfe k=1
function,7,;, be bounded away from one. This allows us to dig¥
card any value of’; that falls in the vicinity of one. A similar Ro(k) =E{v(i)v(i — k)} (12)
idea of using exclusion zones to deal with a potential singularity i ki
has recently been usedin[17]inthe context of errors in variables Sk, i) =—2 <C0t A + j) sin N
estimation. We utilize this idea here to develop an expression for
bias and variance which takes account of the fact that nelther Part2)  The finite sample properties of the DFT of the periodic
nor 7Z; will lie in a region surrounding the point 1 in the com-excitation signal applied to the reference input (see Fig. 1) are
plex plane. The effect of the exclusion zone size on the resultsigscribed by
also examined. A range of exclusion zone sizes is provided, to

N—-1

11)

I%ere

(13)

2
be used as a guide, when applying the bias and variance results. RiRf =g? 4+ hi= <E> A? (14)
A technical difficulty is that, with finite samples, the real and 2
imaginary parts of the estimafe are correlated [19]. Asymp- RiR; =g; — hi + 2jgih; (15)

totically, this correlation becomes negligible. However, a ri whereg: andh; are simple functions of the deterministic input,

orous analysis of finite sample properties depends on EXp"Cin(yameI
accounting for this correlation. We will show how this can be y
achieved in the sequel. gi =Re {R;} (16)

Ill. PROPERTIES OFOPEN-LOOP NONPARAMETRIC ESTIMATION

. . . ndA; is the ampli f the in fr A O
In this section, we summarize known results on the nonparaa—OI IS the amplitude of the input at frequency,

: N . Remark 2: We note that, provided,(w) is smooth, then
metric estimation of linear frequency responses from open-loop
data. We will build on these results in the sequel. Proofs are lim & (w) — S,(w) (18)
given for the convenience of the reader in [20]. N=oo
We make the following assumptions. due to the sampling properties of tsiac? function. O
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A. Application to Open-Loop System Identification In the sequel, we will focus on a single frequeney, Thus,
We temporarily focus on the open-loop estimation problerfP! clarity, we will not show the explicit dependence®f etc.,

The open-loop analog of (1) is onz.
G Y; (19) B. Application to Complementary Sensitivity Estimation
T — Rz

We next consider the closed-loop system of Fig. 1. The re-
Lemma 3: Let G; denote the true open-loop frequency results of Section IlI-A can clearly be applied to the estimation
sponse of the system at frequengyand define®; = CA?Z —@G,;. ofthe complementary sensitivity functidf,, via (1). The only
Then changes necessary to apply the results of Section IlI-A are as
follows.
1) The noise needs to be transformed to the closed-loop
output where it has spectral density

~ V;
Gi:_zv
R;

whereV; andR; denote the DFT (ab;) of the noise and of the

i=1,2,...,p (20)

_ 2
reference input, respectively. We then have Suw(w) =[So(W)"Su(w) (32)
{ 3 } where
1) E<G;+=0 (21) _ 1
Solw) =17 GW)C(w) (33)
ii) E {ézéj} = B“ 13”} =D (22) 2) The output signal energy becomes
3 2¢
|T,|2NAA?
where output energy= —— (34)
v = M 1 { 5 E{QV"'V"’}' } (23) Animmediate consequence of Lemma 3 is the following.
(NAZA7 2 (97 — h7) + 24gihi Corollary 6: Let 7, denote the true complementary sensi-
2E{V;V*} 1 { E{V;V;} } 2) tivity at frequencyw and definel’ = 7' — T,. Then
V2 = e 5 ~ 4 e
(NAZAT 27 [(gf — h]) + 2igihi ) E {T} -0 (35)
1, { E{V;Vi} } - .
i =5 lm - . . ,
TEZ T (g2 = h2) + 2jgihs i) E{TT*} =1S,2D=D= Bl 13} (36)
3 2
and theg;, h;, E{V;V.*} andE{V;V;} are as given in Lemma 5
e S 25,781
1. O . A vazz O 2
Remark 4: We note from Lemmas 1 and 3 that fog 0 ji) lim D — N = [U 2} .
N—oo 0 2|So|251 0 o
Y1 =07 + kg (26) NAA?
Y2 =07 — Ky (27) 37
v3i =kai (28) U
where Remark 7: It follows from Corollary 6 [Parts 1) and 2)], that
b, 251(wi) if the noise is Gaussian thdnhas a Gaussian distribution with
% T NAAL (29)  mean and variance as given in (35) and (36). We denote this

andky; andk,; are of orderl /N2. Hence, fori # 0 or N/2, we
have

distribution byp(T). O

IV. M ODIFIED INDIRECT ESTIMATION OF &G

25, (“;i) 0 We essentially use the indirect estimatétdescribed in Sec-
lim N ['m 7371} _ AA; (30) tion Il. However, we introduce the foIIowing further assump-
N—oo Y3 Y2 281 (w;) tions that allow us to remove the singularityZat= 1 from this
0 AA? estimate.

Note that this result holds exactly for finit¥ in the case of a
white noise source [22]. O
Remark 5: From Lemma 3, we see that asymptotically
GG

- 451 (wz)
T |GiPNAAZ

(1)

1) Atfrequencyw,, the true value of the complementary sen-
sitivity function, namelyZ,, satisfie§T, — 1| > e.

2) The true complementary sensitivity satisfiés| < Z.

We modify the indirect estimator by discarding any experi-
ment in which|7’ — 1] < e. This is easily accomplished as the
experiment directly yields the estimafe The removal of the
singularity by excluding a zone arourtd = 1 of radiuse is

This has a nice physical interpretation, namely asymptoticabjrown in Fig. 2.

the normalized mean square error in the frequency response e&Jsing this exclusion zone, we will in the sequel, show that the
timate is two times the ratio of the output noise spectral densitysulting estimate of! is essentially unbiased for a good SNR
(windowed by ainc? function) to the output energy due to theand that the variance in the estimate is, for high SNR, essentially
test signal at frequency;. O identical to that achievable with open-loop data.
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" B. High SNR
Here,T has low variability and thus there is large probability
= mass associated witlf’| < |1 — 7,|. These conditions suggest
T the following approximation to (38):
Te So ~ T
G~ —» (44)
T ) C(1-T,)
Hence, for largeV, we would expecE to be unbiased and
~ . (45)
GG |GC|2|1 — T, |*
Fig. 2. Exclusion zone il” space. Using Corollary 6, part 2), we then have
E{GG* 2
V. HEURISTIC STATEMENT OF BIAS AND VARIANCE RESULTS { } ~ 415, "5y = 451 . (46)
GG+ |GC2|S,|*NAA2  |T,|2NAA?

Since the subsequent derivation is rather technical, we willTh,s based on this heuristic result, we might anticipate that,

first give a heuristic statement of the results to be obtained SOA%high SNR ¢ will have mean(; and variance that decays as
to set the scene.

Itis easily seen that the err¢t = G — ( associated with the

estimate (3) is given by C. Intermediate SNR
. It will turn out that the rigorous analysis presented later will
. r bstantiate the above heuristi ions. In additi
G = - (38) Substantiate the above heuristic expressions. In addition, our
c(1-1,) (1 -7, — T) analysis will cover intermediate SNRs. To the best of our knowl-

edge, this is the first time that these results have been obtained

. - and are actually somewhat surprising.
Now use of the exclusion zone, ensures tha¥, andl -7, -1 y P 9

are bounded away from zero.

The results to be presented below hold for all SNRs. To get a
feel for the results to be presented, we heuristically examine theOur objective in the following sections is to rigorously derive
extreme cases of low and high SNRs. expressions (akin to those outlined in Section V) which hold in
the finite sample case with an exclusion zone. The key results
are given in Theorems 12, 13, and 15. As a prelude, we present
i here some preliminary technical results. Again, for convenience

Here, " has high variability and, thus, there is a large prokwf the reader, proofs of these results can be found in [20].
ability mass associated wiffi’] > |1 — 7;|. These conditions  We observe that since the noise is assumed zero-mean

VI. PRELIMINARY TECHNICAL RESULTS

A. Low SNR

suggest the following approximation to (38): Gaussian and sincg is a linear function of the data, theh
~ and 7" will also have a Gaussian distribution. Indeed, from
Gt ~ r _ -1 (39) Corollary 6, we see thal” has a Gaussian distribution with

zero mean and covariance (36).

We next express the probability density function in terms of
polar coordinates vid® = Re’*. For a two-variate Gaussian
random variable with zero-mean and radially symmetric covari-

C(1-T,) (—T) Cl-T,)

Based on this approximation, we have

R _1 ance, the resultant probability density function is a Rayleigh dis-
E ~—— ibuti
{G} -1 (40) tribution .
. 1 H(R, Nio) = —— ¢ F/2° (47)
E (S R 41 272
e o T “h " ~
Our goal is to essentially apply this result To However,
and, hence a difficulty with the distribution forZ’ is that it is not radially
symmetrical with finite sample size. To deal with this problem,
E{é} ~ -1 (42) Wwe will use bounding techniques on the distribution. Essen-
C tially, this is accomplished by surrounding the elliptical distri-
R Y12 bution by inner and outer radially symmetrical distributions. Let
E { ‘G —-E {G}‘ } ~0. (43) pr(R, A) be the transformed (true) probability density function
for " without an exclusion zone. Then
Thus, based on this heuristic result, we might anticipate that, pr(R, A =Jp (T) T — Red? (48)

at low SNR,G will have mean value-1/C and very small vari- N '
ance around the mean. whereJ is the Jacobian [12] linking” to Re’*.
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Lemma 8:Let T = Re’* = Re[I] + jIm[T]. Then the im(T6,)
probability density function fof” can be bounded as follows: ]

kminp (R7 Al O—min) S pT(R7 )‘) S kmaxp (R7 Al O—max) (49)
whereg (.), pr are as in (47) and (48), and

o2

kmin = min (50)
det(D)
2
knla‘)( — O—HlaX (51)
det(D)
o2 in = min (F14, J2:) — [l (52)
012na.x = Imax (ﬁlia ’?21) + |r§/3l| (53)
and whereD is given in (36). - Fig. 3. Exclusion zone ifl" space.

Remark 9: In the limit asN — oo, we see for Part 3) of
Corollary 6, that2 _ — o2 ando2. — o2. Also

max min

) ) The scaled values @f.,;, andk,,,x are then given by

a. gz
max - — 1 and 111n - — 1' agc -
det(D) A/ det(D) ksc min det(D) (58)
O 2
Finally, in the modified indirect estimator we remove the sin- - Tscmax (59)
gularity in the estimate af by excluding a zone arourid = 1. det(D)

In this zone, we are implicitly setting the probability to zero.
This requires us to rescale the probability density function so
that it integrates to unity. In the sequel, it will be convenierft®
to recenter and scale the estimation error in the complimentary s 1

sensitivity function. Thus, we defin€’ = 7°/S,. Inthe sym- ¢ =1-— e /2% Z W’V < +1,
metrical case, using (37), the real and imaginary parfg bfve k=0 \ Tac

variance

Lemma 10: The probability of lying outside the exclusion
ne for the probability density function given in (47) is

S
- ) (60)

sC

wherey(k + 1, (¢2/202))) is an incomplete Gamma function.
2
2 g _ 251 (54) |:|
U S,2 T NAA? Proof of this and subsequent results are presented in the Ap-
) . pendix.
Also, the exclusion zone, when transformed to the ~ Remark 11: For the case of an elliptical shaped distribution,

space remains a circle centered(at 0) but having radius we denote the renormalized distributionzag R, \) where
e1 = ¢/|S,|. We will develop expressions for renormalization

. . . X 1
coNStantStax and coin Of the bounding probability density pr(R, \) = —pr(R, N (61)
functions when the excluded zone is removed. The excluded c1

zone is shown as the shaded area “A” in Fig. 3. We have . : . -
seen (Lemma 8) that the density functipn(R, A), although andpr(R, ) is as in (48). We will not need to explicitly eval

not itself a Rayleigh distribution, is bounded from above an%atecl' Instead, we note that

g

below by scaled Rayleigh distributions. These Rayleigh density Conitn < €1 < Conax (62)
functions, with the excluded zone removed, will be expressed T
as wherec,,,x andey,;, are as in (60) with the appropriate substi-
(R o, tutions foro?2, (i.e.,02, 1axs 02 min)- O
PR, \:0,.) = (R 70) (55)
Ch
) . ’ ] VII. FINITE SAMPLE BIAS

Wheno?, is replaced by eithes?, .. or o2, . [as defined

In this section, we develop an expression for the bias in the
modified estimator. We know from Corollary 6 that asymp-
totically the distribution ofl” becomes symmetrical. Thus we
first determine an expression for the bias corresponding to the
asymptotic symmetrical distribution. Then we bound the error

in (56) and (57)], theny, takes the value,,. Or ¢yin, respec-
tively. We will quantify the constants;,, ¢.x @andeyi, in the
following.

Scaling of the minimum and maximum valuesadf, gives

o2 . — Zmin (56) between the true bias under finite sampling and that of the bias
I A for the asymptotic distribution.
2 a2 Theorem 12:Part 1) For the asymptotic case, when the

o — max . (57)

Scmax |S |2
o

distribution for 7' has radially symmetrical covariance as in
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Part 3) of Corollary 6, then the bias in the indirect estimate afhere

the process transfer function is 1
1 1 Ke =T~ 1c 1 (71)
E{Gi}= o+ (1-et-tmaryen) |C115,|
CS ChCSO PB = kSC maxﬁmax(R) - kSC miﬂz_)min(R) (72)
+Ky1 + K2 (63) R .
9 ) . : : Pom(R) = e B /20% in (73)
where,o 3, is defined in (54)¢;, is as in (60), and mun Comin 2 i
14€e1 p27— 62 R )
Ky = / (R, N)dAdR (64) Prnax(R) =—————¢ e R/20% 0 max (74)
1—ey Jeg Cmax% 5¢ max
Ky = / fo(R, \)d\dR (65) and o2, i 9Zmaxs Fsemin @nd ksemax are defined in
£ (56)—(59), respectively
ﬁ(R, )\; asc) Ke <COS_1(1 — 61)) €2
R \N)=——""""°" 66) K., <— | logtan| ———% ) —logtan | —
TN = o = Re) (66) Ke === log 2 5 (2)
2R 2 CiRZ/?Uic, for (R, \) _|_% - COS_1(1 —€1) m )
Ch sc _ 2 _ 2
PR Xoy) =4 "7 €(C—4) 2a-q 2vE-2atq
2 2
0 for (. A) € 4. (B (AP (L)
202 202
(67) Cmax scmax scmax
A =Area“A” in F|g 3 kscmin < <_(1_61)2> < (1+61) )))
O i - eXp —exXpl\ 55—
B =Area“B” inFig. 3 Cmin 2ascmm 2ascmm
Part 2) Under the conditions of Part 1), we can tightly over- (75)
bound the constani&,; and K, as follows: K. < ™
Ko< —F7—— €2 —€1 €2 — =
cos™H(1 — ¢1) 2m+/det(D) [ ( 2>}
Ky < logtan | ———==
mepCS, 2 1 —(1—¢)? 1 -1
. 1 — exp 5 ———¢exp 552
€o 5 CcOs (1 - 61) Cmax 05cmax Cmin scmin
— log tan (5) + 3 T
V2er — € +[1+ eq] [262 + e (62 - 5)}
Qo 2 2
T e(—(l—fl) )/ 20, 1 1 1 1 2
s [en{ar) (2]
5 5 Cmax 207 max Cmin 205c1111n
—e(—(te) )/2030) (68) (76)
1 T wherecy,,x andcy,;, are as in (60) with the appropriate substi-
Koz < 2rena?.CS, ([262 “ (62 - 5)} tutions fora?,. O
e Ame)/20% 4 (1 4 ) A. Discussion
TN\ _1/202 Note that the true biaB{G} is displaced fronE{G;,} both
(2 - /2050 69) ) TS S Tk ,
( c2te (62 2)) ¢ ) (69) in magnitude and phase but rapidly approaches the asymptotic

O bias,E{éh}. Hence, for all practical purposes it suffices to use
We next consider the finite data case when the distributidhne simpler expressioB{G},} given in Theorem 12.
for 1" is not radially symmetric. This significantly complicates It is also evident from (63) that the estimate with symmetric
the result. Thus, we will relate the bias in this case to the resdistribution essentially lies on a straight line betwe&nthe
developed above for the radially symmetric case. Specificaltyue frequency response, ard /C. The amount the estimate
we have the following. is displaced from this line is due to the computable tefiys
Theorem 13:1n a closed-loop indirect identification experi-andK,, which are dependent on the size of the chosen exclusion
ment, the bia®{G} in the case of an asymmetric distributiorzone around the singularity, and hence can be made arbitrarily
is related to the bias in the asymptotic radially symmetric casamall. The bias result is essentially as presented in [15], save for
E{éh}! as follows: modifications necessary to account for the exclusion zone.
‘E { é} E { é } We can rewrite the bias expression (for the symmetric case)
- h

in the following informative fashion:
1—eq oo R =
SKe/ (1+R+R2+"')PBCZR+K€/ E{G}L}:E{G+Gh} (77)
0

1 1 1 1
.<E+ﬁ+ﬁ”.>PBdR+K€1+K€2 (70) —/3G+(1—/3)<C>+Kb1+Kb2 (78)
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where where
(1 - 61)2
K=—- (79) 9 (1—¢)? —(1—¢)?
2Na§c K3 - 2O—SC e [( 203C max + 1 exp 203C max
(1 _ CfKN)
= - 7 146)? —(1+46)?
B o (80) (A +e) 1) exp (14€) (89)
. . . 20—826 max 20—526 max
We also see from (63) that a rapid bifurcation occurs between
an unbiased and a biased estimate depending on the SNR ag, K, < [262 — ey — ™ 61:|
captured bys2.. The asymptotic situation is summarized in the T 2MCmax€102, ax 2
following. (1= ep)? .
Corollary 14: Part1) The estimate is asymptotically unbi- - exp <227> + |:2€2 + €160 — 5 61}
ased, specifically e man
i . 8 = 90
Jim [B{}]=0 & BraPes(gr —)): (0
Part 2) The rate at which the bias converges to zero is of ex- 0

ponential order

A;Eréo ‘E{é}‘ =0 (G*N) . (82) A. Discussion

The above result gives the variance around the true v@lue
Using E {é} = Gy, the variance around the mean is readily

VIII. FINITE SAMPLE VARIANCE seen to be

Here, we develop an expression for the variance of the esti- E{
mator.

The skewed distribution caused by the finite samples is over- R
bounded using the symmetric probability density function as mhereE{G]_» = Gy. ) . ) -
(49) to obtain our result. Armeql Wlth these rigorous result;, it is convenient to revisit

Theorem 15:Part1) Inaclosed-loop indirectidentificationth® heuristic results foreshadowed in Section V.-
experiment, the variance of the estimation error in the estimatel) LOw SNR:Under these conditions, the variance expres-
ofthe process can be bounded by the following series expansigi@n (83) is dominated by the first term in the second integral

N 2 R 2
G—Gb‘ }:E{‘G—G‘ }—|c:b—c:|2 (91)

e, which gives
E{GG} SKU/ RX(1+R*+R*+-- )p,..(R)dR o .
0 E{GG 2 ———. 92
0o 1 1 { } |C|21S,)% (92)
+KU <1+_2+_4+ ) ']_)max(R)dR — .
Lhes R* R Note that this is as foreshadowed in (41) and (43).
+ Ky + Koo (83) 2) High SNR: Under these conditions, the variance expres-
3 ) ) sion (83) is dominated by the first term of the first integral. It is
wherep,,,,«(R) is as in (74) shown in the Appendix that, as the number of observatiafs (
kse masx tends to infinity the normalized variance of the estimation error
K, = |CI2]S, 2 (84) converges to a value of two times the ratio of the noise spectral
e, p2me density to the output energy due to the test signal at frequency
K, = / ' ’ £o(R, \) d\dR (85) wi- Specifically, the following result holds:
1761 €2 ~ o~
Ko = // fo(R, \)dNdR (86) li . {NGG*} S S (93)
w2 = (L2, ]\_1}})0 GG~ |T,|2AA2 =0.
B
Fo(R,N) = R2kse maxP (B A: Ose max) (87) Note that the aforementioned result is the same as the low-order

|C12|S, 21 — Re’?|?
andc?, is given in (54).

Part 2) The integral#<,; and K,» can be tightly over-

bounded by
1_
K, < cot(ea) — o
TCmax 2(:1 — (:%
T 1
5 —cos (1—e) ™
K; (88
12— e) 22—2c,4+2) ) ° (88)

approximations for the variance given in [6] and [3] and as
heuristically described in Section V.

An interesting observation arising from this result is that
|T,|>NAA?%/2 is actually the output signal energy due to the
test signal. Hence, if one fixes the output energy due to the test
signal, then we see that estimation accuracy is the same whether
open or closed-loop provided the SNR is high. [Compare (93)
with Remark 5].

Itis also evident from (93) that, the rate of which the variance
(83) converges to the ratio of the noise spectral density and the
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w
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Fig. 4. (Top) Bias versus/o2,. (Bottom) Variance around the mean versus w0
2
/a2 300~
50—

energy present in the output due to the excitation signal appli<.
. < 200
at the reference is of the order bfN

1
@

pmplecl|-o(t) e =

50~

3) Intermediate SNRTo the best of our knowledge, this | &l o~ ~>35==
case has not been previously treated in the literature (even " - =
a heuristic level). The reason is that the exclusion zone is cr e,
cial to ensuring convergence of the series in (83).

Fig. 6. Effect of exclusion zone on the variance around the mean.
IX. DESIGN ISSUES
Wi%ﬁ:\riance will go toxoe. Of course, this is what we anticipated. In-
| deed, this was the original motivation for including an exclusion
zone in the first place. As — 1, with a high SNR, the variance
Iso tends towardo. This occurs since now the true systefy,

In Fig. 4, we examine our results for bias and variance
respect to the SNR as capturedipyr2. (which is proportiona
to NV, the number of observations). Herewas set to a value

of 0.0035. We see in Fig. 4(a) the rapid bifurcation occurring i o .
9. 4(2) P 9 alls within (or close to) the exclusion zone and, therefore, when

. ) ) A _q
the bias as foreshadowed in Section VII-A. From (§0), qthe SNR s high the probability density function of the estimates

is defined as biased and| = 0 as unbiased. The heuristic an rated 4 this point and. h il be discarded
analytic results for the variance are confirmed in Fig. 4(b). Ag concentrated around this point and, hence, Wil be discarded.
pway from the valueg 0, 1}, Fig. 6 shows the estimate of

foreshadowed in Section V, we see that the variance around 4 . o o
mean is zero for both high and low SNRs. An interesting obsdP€ variance is actually quite insensitive to values bétween

T005 and 0.1 for this particular value’5f. More generally, we

ave found that the result is insensitivestprovided the size of
exclusion zone is greater than about 0.005 and smaller then

?jgound on) the distance @f from 1. Indeed, this is intuitively

reasonable given the geometry of Fig. 2. This suggests that any

10ice ofe in this region will yield satisfactory results.

vation is that the maximum of the variance occurs at a high
SNR than that of the “switching point” of the bias. Note that th
results in Fig. 4 have been presented in a normalized fashf
and, hence, these “design curves” can be used to calculate
and variance foany given problem.

To compare the true variance expression with the asym
totic result given in (93), we have plotted the two expressions
in Fig. 5. Note that, surprisingly, the asymptotic expression is
valid only when the variance is negligibly small. Thus, it seems To test the theory presented here, we have chosen a simple
essential to use the general result as given in Theorem 15. system withG = 1/(4s + 1) andC' = (4s + 1)/s.

Finally, we examine the effect the size of the exclusion zone A test signal consisting of Schroeder phased sinusoids was
has on our estimate of the variance around the mean with respamtlied to the reference input with their amplitude made in-
to the SNR. Fig. 6 shows the result of a simulation where tiversely proportional to their frequency. Noise was added which
variance around the mean was calculated for a ranggsife was normally distributed having zero mean and a spectral den-
of exclusion zone) and/o2, (SNR). sity of 0.1. An experiment length of 80 s was used with a sam-

A preliminary observation from Fig. 6 is that one should keepling period of 5 ms. A Monte Carlo study was carried out uti-
¢ away from 0 or 1. Indeed, we see from Fig. 6, that as O the lizing 2500 tests with different noise seeds, the results of which

X. SIMULATION
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Fig. 7. Estimate of bias Fig. 8. Estimate oft1 standard deviation around the bias.

i i XI. CONCLUSION
were then averaged. The bias and variance results for the av-

eraged data are readily derived from the earlier results. Specif- he key result of this paper has been to rigorously quantify
ically, if we assumeV, independent repetitions of the experilhe finite sample properties of the indirect nonparametric esti-
ments and denote By7(k): k = 1, ... N,}, the results of each mator of the frequency response of a linear system operating

experiment, and by, the averaged estimate, then in closed-loop assuming Gaussian noise. The key to doing this
has been to utilize regularization in the form of an exclusion

R 10X zone. We have shown that, with an exclusion zone, the estimate
Gop = N Z G(k) (95) of G under closed-loop conditions is biased for finite samples
5 k=1 but asymptotically unbiased when a periodic signal is applied

E {@av} —-E {G(k)} 2@ (96) 0 the reference. Furthermore, the transition between an unbi-

ased and a biased estimate occurs rapidly allowing easy distinc-
tion between the estimates. Similarly, an exclusion zone leads
to a result for the variance which holds generally for arbitrary
9 SNR. This result is consistent with earlier results for the high
97) SNR case. Our results hold generally but, inter-alia, show that
the previously published asymptotic results are valid only in the
limit as the variance becomes vanishingly small. We have also
Gk ‘ }_ @, — G|2} _shown that our results are relatively insensitive to a range of ex-
clusion zone diameters.

and, hence

(é(k) - Gb)

(98)

APPENDIX

The averaged estimated gains are shown in Fig. 7 togetheA Proof of Lemma 10:The probability of lying inside the
with the theoretical bias obtained using the results of Section I\,

exclusion zone is

Note that Fig. 7 uses lines for the various plots whereas, in fact .

only discrete frequencies were used. This was done purely for pl = / 5

aesthetic reasons as the number of test frequencies used in the A 2mas,

simulation was 2000, making the figure difficult to interpreshifting the origin to the left by 1 and defining a new variable,

e H 295 gy, (99)

when only the discrete frequency points are plotted. z = (+1, gives
From Fig. 7, it can be seen that as the amplitude of the test 1 CIC+ 12
signal decreases, then the estimate becomes biased toward pl= / P exp< = ) dc. (100)
A sc

—1/C. The bias was estimated using the result for the asymp-
totic symmetrical distribution. The plot shows that this bia€hanging to polar coordinates, we have
estimate predicts the behavior of the bias to a high degree of . —(r2 +1)
accuracy for our estimat@,,,, under the test conditions. pl = / oro? P < 992 )

It can also be seen from Fig. 7 that the perceived variance “° or 0
around the mean appears to approach zero when the SNR is ei- / - exp < r COS(/)) dpdr.  (101)
ther low or high. This accords with the observations made in 0
Section VIII-A. Indeed, one can readily estimate the variangehe integral with respect to can be expressed as a Bessel func-
using Theorem 15 and (98). The plot of the standard deviatign of the first kind [23]
around the bias is then as shown in Fig. 8. Note that the standard oo X ok
Qevi_ation does indeed capture the correct qualitative and quan- < ) Z < ) ] (102)
titative features of the experimental results. o3

sC

=0
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Substituting (102) into (101) and changing the order of integrathere ¢;,, is defined in (60). To simplify the integration, we

tion and summation, we obtain divide the integral into four regions
2k
< ) {Gh} CS (113)
Osc ke where
€1 .2
/ L <—(72 T 1)) dr. (103) I = / fo(R, \)dAdR (114)
0 Osc
"
By substitutingr = #2/202, in (103), we obtain and the integration areas are
o . /20 A1 ={R, M 0< R<1—¢,0< A< 27} (115)
_ -1 20’3C ! ok 7 _ .
pl=c¢ / Z 4(/@!)22’“052(’; /0 e~ dr. (104) Ar={R, i:14+¢ <R<o0,0< A< 27} (116)
k=0 As={R, A 1—-ag <R<l+4e,e<A<2r—e}
Expressing (104) as an incomplete gamma function (117)
i 2 Ay ={R, X: Area“B” in Fig. 3}. 118
pr=etriy 1, < +1, % ) . (105) 1= . &3 (118)
— (k1)22k 524 2, Integrating/; and /s in (113) we obtain the result of Theorem
12 Part 1).

Thus the normalization constant is givendy= 1 — p; which
then yields the result.
B. Proof of Theorem 12Part 1) With reference to Fig. 1
the estimation error can be expressed as l4er p2m—co
7 I3 _/ fo(R, A)dAdR. (119)
- (108) :
C(1-T,) (1 T, - T)

Part 2) Forlz in (113), consider the annulus, as shown in
Fig. 3, excluding the areas andB. The integration we need to
' perform is then

The factorf, (R, A) in (119) has a denominator containing the
vector 1 — Re/? WhICh is the length from “1” to any point
The expected value, in the case of the symmetric asymptotiithin the annulus. We will next establish bounds by taking the

G=G-G, =

distribution including an exclusion zone, is given by smallest length vector around the annulus for any given angle.
Fig. 9 shows the annulus divided intofive regions to simplify the
E // B(R, \: o) d\dR (107) integration. Consider
CS I3 =131+ Izp + I33+ Iy + I3 (120)
whereC denotes the entire complex plane ahi the excluded where
region, shown in Fig. 3, of radius . I3, :/ (R, A)dAdR. (121)
We change to normalized variables usig/* = 7/5,. The A
areas to be integrated over are shown in Fig. 3. The scaled cPo-explain the regmnﬁgk consider Fig. 9. For integration over
stants defining the exclusion zone become Region 1, we define by the angle that gives the shortest length
€ Ly € vector () to any point on a line sweeping from an angle:of
LTS and e =sin 1S,] (108) {5 a maximum angle. The shortest length vector, to this line, oc-

curs when the angle of intersection i’9The maximum angle

to be integrated over for this region occurs when the vector also
hersects the inner ring of the annulus. The angle is then calcu-

lated by basic trigonometry and is found todess 1 (1 — ¢;).

wheree is as in Fig. 2.
Hence, the expected value, in the case of the asymmet
asymptotic distribution, becomes

G Re/? Y D\dR Region 5 will be of the same size as Region 1 due to sym-
h 05 // eJA PR, A o) ‘ metry. Hence, we can establish the integration limits
(109) Agl I{R, )\11—61SR<1+61,
. ea <A <cos H1—e)} (122)
- = +/ Fo(R, \) dNdR (110)  Ap={R N1-a<R<l+q
, B -
where cos (1—e) <A< 5} (123)
_ 37
(R A 0,0) Aggz{R AMl—ea <R<1l+4¢ <A<—} (124)
—,. 111 ’ = B
The normalized probability density function is given by Az = {Rv Al—a S R<l+e,
PR, X USC)R 3; <A< 27 —cos™ (1—61)} (125)
—R2/20'§p f —A
—{ a2ro? ¢ or (R, M) e (€ - 4) (112) Ass={R, A1-a <R<Il+e,

0 for (R, \) € A 2r —cos T (1l —e1) <A< 27 — ea}. (126)
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taking into account symmetry we obtain an upper bound for
(119), which in terms of our result & .

We next proceed td{,>. We will overbound the integral,
in (113), which represents area “B” in Fig. 3

Region 3 |

I = / fo(R, \)dNdR. (134)

We further divide area “B” into smaller regions B1 and B2,
where Bl is the shaded region of “B” that lies within radius one,
and B2 is the area lying outside radius one. Thus we partition
I, with respect to B1 and B2, as

Fig. 9. Integration regions.

Iy =1y + Ly (135)

Next, we establish the length of the vector as a function gfe then overbound the integrals, andly, as follows:
the angle. For region 1, using simple trigonometry we find the

vector length(r) to ber = sin(\). Ly < 1 exp< (1- 61 ) // d\dR (136)
The integral for region 1is thus = 2mcp02.CSse1
Iy = // (R, X oy.)dNdR.  (127) _Re-a(e-3)) —(1—e) 137
s, REM 2m¢,02.CS, exp 202, (137)
Integrating an upperbound d@l with respect to angle I (1+e) -1 // dNdR (138)
2 S 2ren02.CS, cl ‘
(1 el) 1 (1 el) 1
/ ———d\ = / ——dA
e |1 — Re’ | € Sln()‘) _ (1 + 61) (262 + €1 (62 — %)) -1 (139)
<COSl(1 —61)) N 2re,02.CS, P 202, )
= log tan —
. Substituting (137) and (139) into (135) we obtain an upper
—log tan (52) . (128) bound on (134), which in terms of our result,A%2. O
o _ ) ) C. Proof of Theorem 13The true bias in the estimation error
Subst|tut|ng (128) into (127) and integrating is given by
cosTH(1—ep) €2 .
Q- A+a) Re’
[exp<72) (5] e
203, 203, For the asymptotic symmetrlcal distribution, the bias is given
Overbounding the integraJQQ and I3 we obtain by (119). The magnitude of the difference between (140) and
(110), is
Iz < // Re ®/27% g\ dR ) .
2nc,02.C8, \/2 -
7TC]O' €1 61 ‘E{G} {Gh} |C||S |
(130) [Pr(R, A\) —D(R, A )]
P P Ose
_ 3—cosi(1-c) // 7( = Re”l dNdR. (141)
2mcp,CSor/261 — €2
—(1—eq)2 —(14eq)2 As the true distribution of” is of an elliptical shape, the above
(1-e) (1+e1) / rue dist Fan .
AP\ T o2 ) TP T2 (131) integration is difficult. Thus to simplify, we bound the difference

betweerp, (R, \) andp (R, A: o,.) by the difference between
Re_Rz/Qof" dNdR ﬁ(Rv A 05cmax) andﬁ (R7 A JScmin)

az) [E{¢}-B{G:} SKEC/{1 ﬁdm}z (142)

v
B 21c, CSo\/2 — 2¢1 + €3 where
—(1-e)? —(1+e1)? K- (143)
'<‘”‘p< 2z )TN T ) W TS

Regions 1 and 5, 2 and 4 are symmetric hedige,= I; and P4 =FscmaxP (B, A 0semax) = KscminP (B, A: Gscmin)-
I35, = I34. Substituting (129), (131), and (133) into (120) and (144)

I33 <

1
T 27mcn02.05,\/2 — 2e1 + €3 //
) Aszs
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Next, we partition the integral into four regions
e {e}-2{6)

I = / fo(R, \)dNdR  (146)

<h+L+L+ 1L (145)

where

Py

(R, \) = - 147
FEN = esin-rer 447
and limits A, are defined in (115)—(118). Integratidg
~17€1 27 P_l
I :Ke/ / ————d\dR (148)
0 o |1—Re
1—ey
<K. / s (149)
0 1-
1—€;
=Ke/ (14+R+R*4---)PgdR  (150)
0
where
PB = kscma.xﬁmax(R) - kscminﬁmin(R) (151)

andp,,;, (R) andp,,,.(R) are as in (73) and (74}sc min, and
ksemax are as in (58) and (59).
Similarly, we integratd,

=) 27 PA
I :Ke/ / — 2 __dxdR
14€;J0 |1 — Re’ |

< -1
SKe/ —— PpdR
+e1 - R

< /1 1 1
:Ke/ <—+—+—+
e, \R ' R? " RB

(152)
(153)

) PpdR.  (154)

Finally, we bound the constanks.; andX ... First, we integrate

I in (145)

1+4€, 27 —e€o
I = / / f.(R, \)d\dR (155)
1

wheref.(R, A)is asin (147). We then integrate, as in Theorem

12, (120), where
T = / L(R, \)d\dR

Aap

(156)

and Az, is given in (122)—(126). Using previous results from

Theorem 12, we now integrate in each region

1+4€q 1(1 €1) P.
Iy = / 4 (157)
1—e; Jeg |1 - ej)\|
K “Tl—er) 1+61
=_° [Iog tan — } PpdR (158)
27 1 €1
cos (1 61)
= 2—€ [log tan — }
kscmax _(1 - 61) _(1 + 61)2
' |: Cmax <eXp < 20,3(: max T 203(: max
ksc min _(1 - 61)2 _(1 + 61)2
B Cmin <eXp < 20—3(: min —op 20—3(: min '

(159)
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Bounding the integrals., we obtain

14€q /2
I < / / Py d\dR (160)
\/ 261 — 61 1 cos™1(l—ey)
_ K, (5 —cos7H(1 — 61))
27/ 2€¢1 — ef
kscmax (1 - 61)2 _(1 + 61)2
. |: Cmax <exp< 20'36 max —e 20'36 max

ksc min e (1 - 61)2 e _(1 + 61)2
— X —exp| ———
Cmin P 2asc min P 20—3(: min
(161)
For 133, we obtain
K 14€1 3w/2
Ip < ——te / / PydX\dR (162)
/2 — 2€ +F% l—e1 /2
2,/2—2¢ +
ksc max (1 - 61)2 (1 + 61)2
. |: Cmax <exp< 20—§c max P 20’3(: max
kscmin 1- 2
_semin (o (ZUZQ)Y M ,
Cmin 2056 min 2asc min

(163)

Substituting (159), (161), and (163) into (120) and taking into
account symmetry, we obtain an upper bound for (155), which
in terms of our result, i9<, ;.

Next, we bound the integrdl, which is given by

I, = / £.(R, \)d\dR. (164)
B

Again, we do this as in the proof of Theorem 12, (135). Thus,
we bound the integralg,; andi,. as follows:

K. < 1 < (1— 61)2>
€exXp 5
det (D) Cmax 20’5c max
1
- Cmin P <2 gc min )) / d)\ dR
K.
= 9 e D) (2e-a(2-3))

1 (1 — €1 ) 1
. eXp —
Cmax 20 sc max Cmin

41 =
2meq

(165)

-1
P 20—.3(: min

(166)
h2 = 272 (1(:;;(11))) <cljax eXp<20§_c 1X>
_Cl. exp< 1+61 )) / d\dR (167)
K,

(1+e1) (262 + e ((:2 — g))

exp <

27r«/det( )

< 1 < -1 ) 1 (1+e)
Cmax 20—5(; max Cmin

202

scmin

)

(168)
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Substituting (166) and (168) into (135), we obtain our resuBubstituting (54) into the remaining term in (63) we have

whereK,., = 1. O

D. Proof of Corollary 14: Part 1) We first note that, in

view of Theorem 12E{G} rapidly approache&{G},}. We

thus begin withG}, as in (63). Now we check the probabilitywhere

density renormalization constant for convergence to 1, i.e.,

limpy_.co |e.| = 1. Substituting (54) into (60), we have

_ —NZ/2 o (NZ)k NZG%
c,=1—c¢ / E WW k+1, (169)
where
AA?
Z = . 17
23, (170)

The gamma function can be expressed as [23]

N Z& —NZ& /2 - (N zd)!

Hence
¢, =1—pupr2 (172)
where
_N “(NZ
1 =e N2 Z ( ok (173)
k=0
2 (N Ze?)
_ —N Zei /2 1
=l—c¢ v/ Z ol (174)

Now, we see thalimy ... p11 = 1 andlimy ..o p12 = O.
Hencelimy .o ¢, = 1.

Each term in (63) is evaluated separately. Considekpg
we substitute (54) into (68) and express the result as

1 —N(l - 61)2Z
< —_— _ TN =
renCS, fle1, €2) <eXP< 5

—exp<w>> (175)

wheref (e, e2) is the term in square brackets in (68).

Then it is easily seen, recallindmy_... |cr] = 1, that
limy_oo(Kp1) = 0. Similarly, from (69), K> can be ex-
pressed as

Kb2 <

NZ 2
e (=N(1—e1)*Z)/2
~ 71 CS, (f1(61, c2)e

+faler, e2)e N2 (176)

.  —kny ) 1
N <chC'SO (1-e )> e (178)
AA2
K=ise @7

Then for any¢ > 0,3 M s.t. forN > M we havd E{G}| < &.
This establishes the result.

Part2) Immediate from (63). O

E. Proof of Theorem 15Part 1) With reference to (106),
the variance of the estimation error, with the exclusion zone is
given by

12
o~ I T D (Rv )‘)
E{GG*} — |C|21|50|4C[A ‘ ) _Ti i

4

dAdR.

(180)
We will overbound the distributiop, (R, A) via the Rayleigh
distribution as in (49). Thus we replacg (R, \) by
kmax]_)(Rv A 0111a.x)-
We also change to normalized quantities and defin€* as
T/|S,| and expand the integral to include the different regions.
Hence, the variance of the error in the estimatis given by

E{GG} < / Fo(R, \)dNdR (181)
C—A
where
RQk«SC Hla}(.ﬁ (R7 A: O—SC Hla.X)
MEN =g pn-rep - 0%

As before, we divide the integral into regions as follows:

I — / Fo(R, \) dAdR (183)
where 4, is given in (115)—(118). Hence
E{GG} <L+L+1s+1 (184)
Now consider the first term in (184)
lma 2w RQ_ R \o )
I scmax Scmax d)\ dR,
SNTCRIEAE / / — Re/?2
(185)
We first integrate with respect th, giving
1—eq RQ
I =K, —— 7 R)dR. 186
1 /0 1— R? pmax( ) ( )

SinceR < 1, we can express the integrand in terms of a con-

wheref; (1, €2) and f2(e1, €;) are the terms in the square and/€rgent power series [24]

curly brackets, respectively, in (69). ThBmy_.o(Kp2) = 0.
The first term in (63) is trivial, namely
I -1 -1
1111 — =
N—oo \ CSo

o (177)

K,
I =

cHlaXa

1 €1
/ RP1I+R*+R*+--)
0

R2

SC max

2
scmax

) dR. (187)
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Next, consider the second term in (184). Integrating with respect

to A, we obtain

oo R2
I = K, /
1+4€,

1— R2? ﬁmax(R) dR. (188)

HereR > 1, so we can also use a convergent power series forSubstituting (194), (198), and (201) into (120), and taking

the integrand

K,
I, =

g 1 1
R+—+—+---)
\/1+€1< R R3

)
-exp<20R )dR. (189)

Scmax

2
cmaXas cmax

pressions from (183) the result follows.

Part2) Here, we closely overbound the constant tekins

and K .. First, we consider thé; term in (184)

«14€eq 2T —€o
I3 = / / fo(R, A)dAdR. (190)
1761 €2
We integrate, as in Theorem 12, (120), where
I3y, = // fu(R, M) dAdR. (191)
Az
For region 1, the integral is
(192)

R2_ R A: scmax
IglzKU// p(1, 2 ) dNdR
! 11— Re’™ |2
13

1—61

=" e R? (R dR
v t I S -
27 0 (62) \/261 — 6% /1—61 " ( )

(193)
S <C0t(€2)— l1-a

= — | K.
27rcmax v/ 261 - 6% ) ®

(194)

where

2 (1-a)? —(1-a)?
K3 - 2O—scmax |:<2O'2— + 1) exp<2o_2—

Scmax Scmax

_ <M 4 1) exp<ﬂ)} . (195)

2 2
205 cmax 205c max

Overbounding the integralg, and 33, we obtain

K,
Iyp < — v // RZP(R, \: Tyo ) dAAR  (196)
61(2 — 61)

Aszz
Kv T _ -1 1—¢ 1+ey
BB [ ey i
2mer (2 — 1) 1—e;
(297)
K, (% - -1(1 —
Koo tza) o (198)
27rcmaxfl(2 - 61)
Iz < K, // R*B(R, X YdAdR
T o1 9y g g . Oscmax g
33_(2—261—‘1-6%) Pt
Ass
(199)
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KU l+ter )
T32- 26,1+ ) /1  Bpua(R)dR (200)
= Ks. (201)

 2Cmax(2 — 2¢1 + e?)

into account symmetry, we obtain an upper bound’forvhich
in terms of our result is expressed &s; .
The integrally in (184) is overbounded as follows:

I = // £o(R, \) d\dR. (202)
B

oo . . Again, we proceed as in the proof of Theorem 12, (135). Over-
Substitutingl; and I in (184) with (187) and (189), reSpeC'bounding the integralf,;

tively, also replacing thé; andli, terms with there integral ex-

andl;», we obtain

K, —(1 - (:1)2
Iy < z dAdR
= 271'61113}{6%0'36 max exp< 20'36 max //
Bl

(203)

K, (262—6162—§61) . —(1—e)?
N 202

Scmax

) (204)

2T Crnax €102

Scmax

K,(1+¢) -1 //
I < dXdR (205
= 27rcmaX6%O—§c max P 2o—§c max ( )
B2

KU (262+6162 - %61) (1+61)3 —1
= exp
Zo—gc max

- 2
27I'CmaX€1 O—sc max

(206)

Substituting (204) and (206) into (135), we obtain an upper

bound for (202), which in terms of our resultis,,. O
F. Proof of Equation (93):We consider the terms in (83) in-

dividually. Expressing the first term as in (83), substituting (54)

for o2

sScmax

and (84) forK,,, we have

l—c1 p3 ,—R*KN/2

1
I = dR
e S0 |? v/ det(D)emax /0 1-R?
(207)
where
AA2
= 281 (wr) (208)
From (30), asV — oo, Ny/det(D) — 28;(w;)/AAZ. Hence
KN -1 R3 N
I = —RKN/2gR. (209
' |C|2|SO|26max/0 1—R2 ¢ ( )

To simplify the integration, we separateinto two parts

Iy =11 + 110 (210)
KN o 3 —R*KN/2

b= o o, R
KN T R perense

b= e, T AR @12)

Integrating (211), we have

B 2 . —KN(1—¢)?
TIPS Pemak N | P 2
|C|

. <1+ —KN(12_ EI)QH . (213)

Iy
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For (212), we simplify further by overbounding the integral [4] ——, “Reference signals for closed-loop identificatiomt. J. Contro|
vol. 26, no. 6, pp. 945-962, 1977.
1o 9 [5] U Forssell, “Cllosed—l(‘)op iqentifipation:_Met_hods,_theory and applica-
I, < KN R ex —-R°KN dR tions,” Ph.D. dissertation, Linkoping Univ., Linkoping, Sweden, 1999.
12 = |C)2 1502 Cmaxer - CXp 9 ‘ [6] G.C. Goodwin and J. S. Welsh, “Analysis of a novel method of auto-
(214) tuning a multivariable plant based on quantization,Pioc. American
Automatic Control Conf.San Diego, CA, June 1999, pp. 3347-3351.
4 —KN(l _ 61)2 [7] D. K. De Vries and P. M. J. Van den Hof, “Quantification of uncertainty
= 3 3 YYD <2 — exp <—) in transfer function estimation Automaticavol. 31, pp. 3—11, 1982.
|C| |SO| Cmax K *N2e 2 [8] P.M.T. Broersen, “A comparison of transfer function estimatdiSEE
K2N2(1 _ 61)4} ) Trans. Instrum. Measurevol. 44, pp. 657-661, June 1995.

0

(2 15) [9] W. P. Heath, “Bias of indirect nonparametric transfer function estimates
for plants in closed-loop,Automaticavol. 37, no. 10, pp. 1529-1540,
2001.
. . . 10] E.J. HannanMultiple Time Series New York: Wiley, 1970.

Th_e second 'ntegral termin (83) under the aforementioned CO'%Il] J. S. Bendat and A. G. Piers@ngineering Applications of Correlation

ditions becomes and Spectral Analysis New York: Wiley, 1980.

[12] M. B. Priestley,Spectral Analysis and Time SeriesNew York: Aca-

~|:2+KN(1—61)2+ 5

oo 2 demic, 1981.
I, < L / R3 exp M dR (216) [13] D. R. Brillinger and P. R. Krishnaialtjandbook of Statistics 3: Time
- |C|2 |So|20max€1 1+e; 2 Series in the Frequency DomainAmsterdam, The Netherlands: North
5 Holland, 1983.
- 2 exp —KN(l + 61) [14] K. R. Godfrey, “Correlation methods,Automatica vol. 16, pp.
|C1?S6|* cmax K Ney 2 527-534, 1980. " . . - .
[15] W. P. Heath, “Probability density function of indirect nonparametric
KN(1 + 61)2 transfer function estimates for plants in closed-loop,” presented at the
A\ (217) SYSID200pSanta Barbara, CA, June 2000.
[16] ——, “Characterising nonparametric estimators in closed-loop: The
finite data case,” ifProc. Eur. Control Conf. Porto, Portugal, 2001,
Overbounds for the constant terdis; and X ,» in (83) can be pp. 3558-3563. _ o .
expressed, using the same procedure as follows: [17] P.Guillaume, I. Kollar, and R. Pintelon, “Statistical analysis of nonpara-

metric transfer function estimatesEEE Trans. Instrum. Measure:ol.
45, pp. 594-600, Feb. 1996.

KU02 —1 [18] P. M. T. Broersen, “On the statistical accuracy of the empirical transfer
K, < —2528% f1 (617 62) €exp <2—> (218) function estimator,” irSYSID2000Santa Barbara, CA, 2000.
Cmax 203 max [19] D. R. Brillinger, Time Series: Data Analysis and TheorySan Fran-
1 KN/ cisco, CA: Holden-Day, 1981.
= —hen. /1 (e1, €2)e (219)  [20] J. S. Welsh and G. C. Goodwin, “Background on open loop nonpara-
|C| |SO| Cmax metric estimation,” Univ. Newcastle, CIDAC Tech. Rep. EE02044,
K. -1 2002.
K, < v fQ(q7 62) exp<2—> (220) [21] T. W. Kdrner,Fourier Analysis Cambridge, U.K.: Cambridge Univ.
max 203, max Press, 1988.
[22] D. S. Bayard, “Statistical plant set estimation using Schroeder-phased
- KN faler, €2) e KN/2 (221) mutlisinusoidal input design,J. Appl. Math. Comput.vol. 58, pp.
|C12 S0 12 Cimax ’ 169-198, 1993.
[23] G. Arfken, Mathematical Methods for PhysicistsNew York: Aca-
demic, 1985.
where fi(ey, e2) and fa(e1, €2) depend only or; andez and  [24] E. Kreyszig,Advanced Engineering MathematicsNew York: Wiley,
are constant with respect 19. 1979.

Combining (83), (213), (215), (217), (219), and (221), and
taking the limit as the number of observations tends to infinity,
it can then be seen that for any givén- 0, 3A > 0, s.t. for
N > M [E{NGG*/GG*} — (45, (w;)/|T,|?AA?)| < £ This
establishes the resuilt. O
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