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Near-Optimal Control of Linear Multiparameter [1]. Furthermore, thus far, the loss of performance between the optimal
Singularly Perturbed Systems control and the resulting controller which is based on the exact decom-

position technique has not been investigated.
Hiroaki Mukaidani, Tetsu Shimomura, and Hua Xu In this note, we study the linear-quadratic regulator problem for the

MSPS. Our main result shows that a high-order approximate control
. . . . ) can be constructed by making use of a Kleinman algorithm [9]. The
Abstract—I n thisnote, thelinear quadratic optimal control for multipa- tina hiah . | hi f
rameter singularly perturbed systems is studied. The attention isfocused ~ "€SUItING Nig '959? approximate control can achieve a performance
on the design of a new near-optimal controller. The resulting controller ~ which isO(||x||* ) (wherei denotes the iterations) close to the op-
achieves O( ||u||2’+1) approximation of the optimal cost. The proposed  timal performance. Moreover, as a special case when the paramgters
algorithm has been numerically tested on areal physical exampleand pro-  are unknown, we can obtain ap-independent controller. Using this
duced useful results. controller, we can achieve a performance whiclig|u||*) close to
_ Index Terms—Generalized multiparameter algebraic Lyapunov equa-  the optimal performance. It is worth to note that thg|2[|*) near-op-
“’\;";Pg'se'”ma” anOf;Ihm’ tmL:'t'pafamEte' singularly perturbed systems  timg|ity is proved for the first time to the optimal control problem of the
( ), near-optimal control. MSPS [2], [6]. As another important feature, this note presents an im-
portant improvement on some of the results of [7] and [8] in the sense
. INTRODUCTION that ones need no assumption that the Hamiltonian matrices for the fast
The deterministi d stochasi limodeling stabilit trol f.lsubsystems have no eigenvalues in common. Hence, the resulting con-
rhedeterministicand stochastic multimodeling stability, control, ilg. | o applicable to more realistic MSPS. In fact, it is shown that for
tering and dynamic games have been investigated extensively by seY

| h 11-18]). Th timodeli bl Umerical example our proposed algorithm is applicable to the wider
eral researchers (see, e.g., [11-{8]). The multimodeling problems aragss of the MSPS compared with the exact slow-fast decomposition

in large-scale dynamic systems [1], [8]. In order to obtain the optim[';)echnique
solution to the multimodeling problems, we must solve the muItiparam-Notation', The superscrip’ denotes matrix transpos, denotes
eter algebraic Riccati equation (MARE), which are parameterized H;(e 1 x n identity matrix. || - || is any appropriate matrix norm,

the small positive same order parametgry = .1’ 2.’ Varlou_s re- block-diag denotes the block diagonal matrixecM denotes the
liable approaches to the theory of the algebralc Riccati equation (AR lumn vector of the matrif/ [13]. < denotes the Kronecker product.
have been well documgnted In many literatures (see, e.g., [9]—[1]L, . _denotes a permutation matrix in the Kronecker matrix sense [13]
One of the approaches is the invariant subspace approach based on ‘r&ﬁ that/, vecM = vecMT. M € RIX™

. . . . Im VECL 2 s 4 .
Hamiltonian matrix [10]. However, such an approach is not adequate to
the multiparameter singularly perturbed systems (MSPSs) since the di-
mension of the required workspace to carry out the calculations for the
Hamiltonian matrix is twice the dimension of the original full system. We consider the linear time-invariant MSPS
As another disadvantage, there is no guarantee of symmetry for the so-
lution of the ARE when the ARE is known to be ill conditioned [10]. d0(t) = Agowo(t) + Aoyay (1) + Agawa (t) + Boyus ()

A popular approach to deal with the MSPS is the two-time-scale de- » _ .0

sign method (see, e.g., [1]-[6], and [12]). In particular, in [2] and [6], a . + Bozua(t), 20(0) = o (12)
resulting near-optimal controller has been proven to have the property 211 (1) = Arowo(t) + Anz (f) + e3Aizaa(t)

Il. MULTIPARAMETER SINGULARLY PERTURBED SYSTEMS

of a performance which i9(||z2]|) (where||z|| denotes the norm of the + Biyua(t), a1(0) = Y (1b)
vectory := [z1 22 --]) close to the optimal performance for the stan- soia(t) = Anoao(t) 4+ 4 Ao 21 () + Asaia(t)
dard and nonstandard MSPS. However, when the parametars not + Bosus(t) ¢2(0) = 2% (10)

small enough, it is known from [7] and [8] that &¥(||¢||) accuracy is
very often not sufficient. More recently, in [20] and [22], the recursive e . .
algorithms for solving the MARE and the generalized multiparametéfl€€*; € R"7,j = 0,1, 2 are the state vectors,; € R™7,
algebraic Lyapunov equation (GMALE) have been developed. How-— 1, 2 are the control inputs. All the matrices are constant matrices

ever, there exists the drawback that the recursive algorithm conver égpp_roprllate d'TeES't(,mS' The pa{ametfetrﬁnd@ are tV\éO smfall pos-'t q
only to the approximation solution [19] since the convergence of t dve singu’ar perturbation parameters of the same order of magnitude

recursive algorithm depend on the zero-order solutions. On the otﬁ‘(leJFh that [1}-[8]

hand, the exact slow—fast decomposition method for solving the MARE e

has been proposed in [7] and [8]. However, these results are restricted O0<k €a= o < ko < oo 2

to the MSPS such that the Hamiltonian matrices for the fast subsystems

have no eigenvalues in common (see, e.g., [8, Assumption 5]). Thyfe parameters; ande, are two weak coupling between the fast sub-

we cannot apply the technique proposed in [7] and [8] to the practicg)stems. Note that the fast state matridgs, j = 1, 2 may be sin-

system, such as the Pareto optimal strategy of a multiarea power sys¢giyr. In the optimal control of the above MSPS, the performance cri-
terion is given by
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where
ClO Cll
C=
CQ() 0
Q[]()
c'c=Q= Qi
Q>
D'D=R=

0
Caa
Qo1 Qo2
Q11 0
0 Q22

R 0 .
>0, ¢'D=o.
0 R
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The optimal control for the MSPS will be studied under the following
basic assumptions [6]. In particular, it should be noted that we need to
generalize the assumption about stabilizability and detectability, so that
they can be applied to the nonstandard MSPS.

Assumption 1: The limit of o exists as=; and =, tend to zero
[1]-[8], that is

lim
£0—0

ey —o0t

a = .

®)

Assumption 2: The triples(A4;;, Bj;
able and detectable.

, C;;), 5 = 1, 2 are stabiliz-

Itis well known [2], [7] that the solution of the linear quadratic control
problem (1) and (3) is given by

Uopt (1) =

whereP. satisfies the MARE

ulopt(t)

aope (1)

|

R™'B! P.a(t)

AP 4+ PA.—P.S.P.+0Q=0

c RNXN
6;1502
0 € RN><N
52_2522

with
Aoo Ao Aos
Ac= et 0 gt AL g e
Ley ' Ao g5 'eadar &y ' Ass
Bo, Boz
B.= |-, 0 e RV*M
L 0 g5 B
Soo 6171501
S. :BERABET = |e7'SE e7 25
2718 0
N :=ng + n1 + nq, M :=my + mo.

Moreover, the optimal cost is given by

Jopt = 22" (0)Pz(0).

IIl. M ULTIPARAMETER ALGEBRAIC RICCATI EQUATION

Before we present the near-optimal controller, we first introduce
some useful results for the MARE (5). A solutidir of the MARE
(5), if it exists, must contain the parameters j = 1, 2 because the

Assumption 3:
[8lny — Avo —Aor —Ao2 Boi Bo»T
rank —Ao —An 0 Bin 0 | =N (%9a)
4 L — A 0 —Asyy 0 Bl
[sl,, — Aly —Al, —AL oy ¢4
rank — AL —AL 0 ch o0 =N (9b)
L —Ad 0 -4} 0 ]
(5)
whereRe[s] > 0,5 € C, N = ng + n1 + no.

Using similar proofs in [5], [20], [21], the following lemmas can be
proved.

Lemma 1. Under Assumptions 1-3, there exist a matrix
B, € R™*M and a matrixC. with the same dimension as
[T, ¢%]T suchthatS, = B.R™'BT, Q. = CTC,. Moreover,
the triple(A., B, C.) is stabilizable and detectable.

Lemma 2: Under Assumptions 1-3, there exists a snadllsuch
that for all|| || € (0, ¢*) the MARE (5) admits a symmetric positive—
semidefinite stabilizing solutio®-, which can be written as

Poo+O(lull) =1 (Pro+O(lull)”
P.= e (FIO + O(||u||)) €1 (Fn + O(”M”))
g2 (P20 + O([lnl])) VeErE20(lpll)
- T
29 (Pao + O(|lul)
vere20(|pll) (10)
22 (P22 + O(||ul]))
®)  where
Azﬁoo + PogAs — PooSsPoo + Qs =0 (11a)
— — 1 ITLU
Pjo=[Fj; —In;1T5; Tho (11b)
00
AL Pj; +PjjA;; — PSP+ Q=0 (11c)

matricesA. andB. contain thef;l-order parameters. Taking this fact

into account, we look for the solutioR. of the MARE (5) with the

structure [1]-[8]

- T - T
Poo g1 Pro g2 Py
T NxN
P.= | ea1Po 1P verea P | ER
g2P0  \fE182 1 g2 P

wherePyo = P(;I(;,Pll = P]l1 and Py = PQIQ

— — -'45 _Ss

T. = Too — Ton T11 ' Tio — To2Tos' Too = [_Q —Al}
Ao —Soo Aoy —So;
Too = T Tuj = T
@) —Qoo  —Ago —Qo; —Ajo
AJ’U —Sg; ’ Ajj —S]’j
To = \T AT 3= T
—Qoj —Ao, —Qj; —A4j;

j=1,2.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 12, DECEMBER 2002 2053

IV. ITERATIVE ALGORITHM and o
In this note, we develop an elegant and simple algorithm which con- veelto veeLon
verges globally to the positive—semidefinite solution of the MARE (5). veePio veePro
The algorithm uses 1) the GMALE, which has to be solved iteratively, VF(P):= 8;-;7;) P = Vecj’fo Py = Veclgzo
and 2) is based on the Kleinman algorithm [9]. We propose the fol- veesn veelan
lowing algorithm for solving the MARE (5): veclyy 0
vecPay vec Pay
(A - SP(Z)) e (A - SPU’)) Proof: This proof is equivalent to the proof of existence of the
DT < i) _ o . unique solution for the following generalized multiparameter algebraic
+PSPY+Q=0,  i=0,1,2,...  (12) Rijccati equation (GMARE)
P =3.pY =pT,
PO L pWT L, plT A"P+P"A-P'SP+Q=0. (15)
pir_ | P p@ 1 por _ _ _
= 10 & Ja The proof follows directly by applying Newton—Kantorovich theorem
o o o [14], [15] for the GMARE (15). We now verify that functiofi( P) is
Py VaPy) Fa differentiable on a certain convex sBt Using the fact that
A=8.4., S=3.5.5.
VO(P) = Lf"g(PT)
with the initial condition d(vecP)
=[(4-5P)" @ INJUxx + In © (A= SP)T
Pyo 61P1T0 e P ={In2+Unn) [In@ (A - SP)T] (16)
PO =P, Pu 0 (13)
Poo 0 2 we have
where ®. = block-diag( L., €1l., c2l.,) and P, pg = IVG(P1) = VG(P)|| <Al — Pl
00, 10, 20, 11, 22 are defined by (11). = ||[VF(PL) = VF(Pa)ll £ AP — Pel|

The algorithm (12) has the feature given in the following theorem.

Theorem1: Under Assumptions 1-3, there exists asmailichthat \ yere- — 9|51 Moreover, using the following result established in
forall||u|| € (0, @), < o™ the iterative algorithm (12) converges toj,o1.
the exact solutio?; = ®.P* = P*" ®. with the rate of quadratic
convergence, wherB'” = &.P() = PAOT&_ is positive semidefi- .
nite. Moreover, zero-order solutia” is in the neighborhood of the et v 7 (P, ) = [T det 7, - det [Ino 2 Dl+D! o InU:| +o(ul)
exact solution”. That is, the following conditions are satisfied:

j=1
S (T y where
[P =Pl < =2 = o (W)
i -
i=0.1,2, ... (14a) Jji =D @ Iy Js3:=Iny @ Dy + Dy @ Iy
1
O_pl<th_yizos Jas =NaDi O I, + —= I, © D,
HP <5 [1 1 49] (14b) 14 22 O Quy + o= 1y © Dy
Jss =1, @ D3+ Dy, © I,
where Dy := Doop — Do1 D1y D1g — Do2D33' Dag
1 ) DO() = fl(]() - 5()()ﬁ(]0 - S[]1ﬁ1 0o — S()‘_)?ZU
vi= Sl <o gi= IFRII 6= iy Doy = Aoy~ 50,5y D= Ao — S Poo — 55,
_ Djj=4;; = 8;;Pij, =12
with
vecF itis shown that there exists a smalsuch that for sufficiently small pa-
r”FOO rameted|n|| € (0, @), < ¢, VF(Po) is nonsingular becaude
‘ve\C.Fm Dy andDy = A, — S, Py are stable under Assumptions 2 and 3 (see,
ni=8-|FPo) F(P)i= | (/on e.g., [1, Th. 1]). Therefore, there existssuch tha{|[VF (P)] "' || =
veeti B. On the other hand, we verify th§tF ()| = O(||¢||) because
vecFy A7PO) 4 pOTE _ pOTGOPO) ) =0 A=A+ o(llul).
’ veclys Hence, there existg such that|[VF(Po)]~'|| -|F (Pl = n =
g(P):=A"P+P"A-P"SP+Q O(||p]]). Thus, there exist§ such thatt = 8y < 2 * because
Foo FL FL 1 = O(||n]]). Using the Newton—Kantorovich theorem, the strict error
= |FPo Fu FZ estimate is given by (14a). Furthermore, siti&& — PO|| = O(||p|))

Foo Foy Fao holds for the smalt;, j = 1, ..., 4, we show thatP* is the unique
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solution inthe subse = {P: ||P— P < (3v) *[1-v1 - 26]}.
On the other hand, using (14a), we have

P =
Poo+O(lul) =1 (Pro+0(||))!

1 (Pro+0(lnlD) &1 (P +0(ul))
g2 (Poo+0(nl))  vEz20(|ul)

ea (Pao+O(Iul))"
Vaz0(lnl)”
€9 (F22+O(”l"”))

SincePoo > 0, P11 > 0, andP22 > 0, P9 s positive semidefinite

aslong ag; > 0 ands=2 > 0 by using the Schur complement [16].

Therefore, the proof is completed. [ ]
We must solve the GMALE (12) with the dimensidn larger than
the dimensiom;, j

0, 1, 2 compared with the exact decomposi-
tion technique [7], [8]. Thus, in order to reduce the dimension of the
workspace, a new algorithm for solving the GMALE (12), which is
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where
:(’o =&l \215/(7) + cly(’ Aoo
+ Y('-H)TALO + \/EYZ({-FUTAZO + Uy
:go) =<l \QY( D4 SZYQ((;)AOO

i+1)T L G T
+ Y2(2+U Ao + ﬁ 52(1+1)A‘0 +Uss

Yl(é)) =Y Yz((?) =Y YI(IU) =Y

YW =Yy Y =0, i=01.2,...

AT Y00 + Yooro — ALGATTUL — U AT Ao
— AD A Ul — UnaAgy Aso + AloAL U AT Ao
+ "\QTOAZ_ZTU-H "\7_01 Ao+ U =0

Vo = = (Vooho, + ALY, + Uo; ) A

ALY i+ YA+ U =0, j=12

based on the fixed point algorithm, is established. Let us consider the

following GMALE (17), in a general form:
ATY +YTA+U =0 a7)

whereY is the solution of the GMALE (17), and andU are known
matrices defined by

Yoo aVih o eV

vy |ve v Iy
va

Yoo VaYa o Y

Ao Aor Ao oo Ut Uo2
A=A A EA U= YoTl U €U

Ao EAoy Aso 7012 € U#Z Usz
Yoo =Ys, Yii =Y Ve =Y
U =Usy Ui =UJ, Us =Usy
Yoo, Aoo, Ugo € R™*™0 Yiq, Ay, Upp € R™VX™
Yoz, Aoz, Uz € R™277"2 € = /5155,

In order to solve the GMALE (17) corresponding to the iterative algo-

rithm (12), we need another assumption.
Assumption 4: Ay, A2z and Ao
;’\021\2_211\20 are stable.

Ago — AOLAHLALO —

We propose the following algorithm (18) for solving the GMALE

(17):

VaYSi T Agy + —— AT YETIT 4 vV D Agn + 22 A0 VT

\/_

e (Y“)_m n AmY;;)) FEUL =0 (18a)
AHY'(HH) + yr(iJr])An 4o (‘\(1” )rl(é)/ + Y'l((;)AOl

FALYY 4y OT xm) Y UL =0 (18b)
ALYS T + ¥ A 4 22 (ALY + 5 A

ALY + YA ) + U2 = 0 (18¢)
AJYLEY v 0T A = ATATTED — 20T AT AL

— Ad AR 2 —ZT AT A g + Ugo = 0 (18d)
);(OL+1) — _A]’_jT (\0/}/(7_’_1) += '—( ))‘ ] =1,2 (186)

The following theorem indicates the convergence of the algorithm (18).
Theorem 2: Under Assumption 4, the fixed-point algorithm (18)
converges to the exact solutidn, with the rate of convergence of

O([lull™*"), that is
=o(luI™t). =012 ...

pq = 00, 10, 20, 11, 21, 22.

Proof: Since the proof of Theorem 2 can be done by using math-
ematical induction similarly as in [19], it is omitted. For the fixed-point
algorithm; see, e.g., [7] and [8]. [ |

Using a similar technique in [18], the high-order approximate feed-
back controller is given. Such a linear state feedback controller is ob-
tained by using the iterative solution of (12)

Y

-
}P(I

PG{

(19)

Wl ()= -RB"PYu(t), i=0,1,2,.... (20)

Theorem 3: Under Assumptlons 1-3, the use of the high-order ap-
proximate control (20) results uﬁapp satisfying

JO

app

oot + O (||u||2”*), i=0,1,2..... (21)

Proof: Whenuﬁfgp is used, the value of the performance index is

I8, = LT (0w a(0)

app

(22)

whereW!" is a positive—semidefinite solution of the multiparameter
algebraic Lyapunov equation (MALE)

(AE - SEPS(Z)) w4 w4, — S.PY)

+PYS. PP+ Q=0. (23)

Subtracting (5) from (23) we find that'” = Ww"

following MALE:

— P. satisfies the

(As _ SSPS(L)> Vg(‘) + V’g(’) (Ag _ SEP§Z)>
+ (PE - Pﬁ,”) S. (PE - P;-")) —0. (24)
Note that (12) is equivalent to the following MALE:

(AE - 551’;"))T Pt 4 plty (A - SEPE“))

+PIS.PY 4 Q=0. (25)
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TABLE |

EXACT SOLUTION OF THE MARE (5)

2055

P()() EIP% €2Pg(;
Ps= €1P10 EIPH ‘/5152P2’1£
eaPy  fE162Pn1 €2Pp

5.5462e + 00 8.2344e — 01 46229+ 01 -1.4711e - 01 2.6640e — 01

8.2344e — 01 5.5462¢ + 00 —-1.4711e—01 4.6229¢ + 01 —2.6640e — 01
Py = 4.6229¢ +01 -1.4711e —01 6.4114e + 02 —2.3198¢ + 02 5.1277e 4 00

—1.4711e — 01 4.6229¢ + 01 —2.3198e + 02 6.4114e + 02 —5.1277¢ + 00
2.6640¢ — 01 —2.6640e — 01 5.1277e¢ + 00 —5.1277e + 00 1.3178¢ + 00
P 9.1182¢ — 02 —9.6817¢ — 05 1.2538e¢ -+ 00 —4.5653¢ — 01 8.5347¢ — 03

€10 =

4.4721e — 02 1.3989¢ — 17 6.0236e — 01 —2.2353e — 01 3.8104e — 03

P —90.6817e — 05 9.1182¢ — 02 —4.5653e — 01 1.2538¢ + 00 —8.5347¢ — 03
€240 =
4.6754e — 17 4.4721e — 02 —2.2353e — 01 6.0236e — 01 —3.8104e¢ — 03

7.4660e — 03 2.8529¢ — 03 7.4660e — 03 2.8529¢ — 03
1Py = , E2Pop =

2.8529¢ — 03 3.8886e — 03 2.852%¢ — 03 3.8886e — 03

—9.0046¢ — 04 —4.4140e — 04
VEi1E2Pa =
—4.4140e — 04 —2.1649¢ — 04

Similarly, subtracting (5) from (25) we also get the MALE

(4. - sgpé”)f (P = P )+ (PO — P ) (A = 5.180)

+ (pf - Pg")) s. (PE - PE“)) —0. (26)

Proof: Since the result of Corollary 1 can be proved by using the
similar technique in Theorem 3 under the fact tRat P = O(||u]),
the proof is omitted.
Itis worth to note that thé (|| «||*) near-optimality is proved for the
first time to the optimal control problem of the MSPS [2], [6].

Itis easy to verify that\’ = PO+ _ p, becauset. — 5. P is
stable forali = 0, 1, 2, .... Using Theorem 1 we obtain that

ol

V. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of our proposed algorithm,
we have run a numerical example. The system matrix is given as a

W - P, H

- HPE("“) _ PEH -0 (||N||'2“ 1) ] (27) modification of [1, Appendix A]
i i . ro o0 4.5 0 1
Hence V. = W — P, = O(||u|?™™),i = 0, 1, 2. ..., which >
e 00 0 45 -1
implies (21). u
. : Ago= [0 0 —-0.05 0 —-0.1
Consequently, wher; are known, we can get the hlgh-(lerer .
O(|lul|*) approximate controller which achieve®(|ju|> ) 00 _0 _2:0‘3 0.1
approximation of the optimal cost by performing iterations on the L0 0 327 =327 0
reduced-order ALE (18). (o o0 0 0
In addition, we will present an important implication. If the param- 0 0 0 0
eters; are unknown, then, in view of Theorem 3, the following corol- 43, = | 0.1 0 App =10 0
lary is easily seen by using a similar technique [17]. 0 0 0.1 0
Corollary 1: Under Assumptions 1-3, the use of the parameter-in- L0 0 0 0
dependent controller o 0 0 0 0 00 0 0 0
- A = ) :[ Ao = |: ) :[
wan (t) = — B~ BT Pa(t) [0 0 —0.4 0 0 000 —04 0
B —-0.05 0.05
15T §00 _0 0 f'111 :A22 = |: 0 0 1):[
=—R B PlO P11 0 I(t) (28) -
Py 0 Py Boy=Bpx=[0 0 0 0 (]]T Bi1 = Bas = |:001:[
results inJ.p, satisfying Q=diag(1 1 1 1 1 05 05 05 0.5)
Tapp = Jopi + O(|]?)- (29) R =diag (20 20).
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TABLE I TABLE IV
ERROR PER ITERATIONS CPU TIME [s]
i “g(P(i))” €1 = €3 | Kleinman algorithm MATLAB
0 1.2916e — 00 10e — 2 2.5620¢ — 01 2.6600e — 02
1 1.4350e — 02 10e — 3 8.7500¢e — 02 2.6600e — 02
2 7.9244e¢ — 05 10e — 4 6.4100e — 02 2.5000e — 02
3 2.5918e — 12 10e — 5 5.6300e — 02 2.8100e — 02
10e — 6 4.6900e — 02 2.5000e — 02
TABLE Il 10e — 7 4.5300e — 02 2.6600e — 02
ERROR||G(P)||
10e — 8 3.9100e — 02 2.9700e — 02
€1 = €2 | Kleinman algorithm MATLAB
10e — 2 5.6646¢ — 11 2.4062¢ — 10 TABLE V
Loss oF THECOST FUNCTIONAL
10e —3 1.4637e — 11 1.2534e — 09
10e — 4 3.4385¢ — 11 4.4533¢ — 08 i E[JS, E[J5h] — ElJop] n (%]
0 1.2631e — 03 3.2818¢ — 07 2.5988¢ — 02
10e—5 9.3788¢ — 12 1.5047¢ — 06 ¢ ¢ ¢
1 1.2628¢ — 03 5.1635¢ — 11 4.0889%¢ — 06
10e -6 1.3580e — 11 5.7044e — 04 2 1.2628¢ — 03 5.2042¢ — 18 41212 — 13
10e — 7 2.8934e — 12 4.6487e — 04 3 1.2628¢ —- 03 8.6736€ — 19 6.8686¢ — 14
10e — 8§ 1.9069¢ — 11 3.1307e — 01 optimal 1.2628e — 03 - -

The small parameters are chosereas= ¢, = 0.001 andes = V1. CONCLUSION

24 = 0. Note that we cannot apply the technique proposed in [7] andin this note, we have studied the near-optimal control problem as-

[8] to the MSPS since the Hamiltonian matricEg, j = 1, 2 have sociated with the MSPS. The main contribution of this note is to pro-

eigenvalues in common. We give a solution of the MARE (5) in Table pose the new algorithm for solving the MARE. We have shown that our

We find that the algorithm (12) converges to the exact solution wiifroposed algorithm which is based on the Kleinman algorithm has the

accuracy of|G(P)|| < 107" after three iterations. In order to verify quadratic convergence property. In addition, we have also presented a

the exactitude of the solution, we calculate the remainder per iteratigéw numerical method for solving the GMALE by a fixed point algo-

by substitutingP!" into the MARE (5). In Table II, we present resultsyithm. Finally, we have shown that the resultiay [|u[|>') accuracy

for the error[|G(P")|| per iterations. It can be seen that the initiakontroller achieves the cost,. + O(|[ul> ).

guess (13) for the algorithm (12) is quite good. "
In order to verify the exactitude of the solution, we substitute

the obtained reference solutioR*® by using the functionare

of MATLAB into the MARE (5). We find that the remainder is [t H: |}<< Khalil a“é’_ﬁp- V-t KOkgt‘?Vi‘F ;‘(iﬁntrol strategites folrz qreCiSion
IG(®-1P2M)|| = 1.2534¢ — 09. For different values of; andes, moﬁ\r; %%23 V|0|er2e;? pr;OZ:gigcég fprsig% SYSIEIREE Trans.
the remainder of the algorithm (12) versus MATLAB are given by [2] —— “Control of linear systems with multiparameter singular perturba-

Table Ill. From Table Ill, we see that the resulting algorithm of this tions,” Automatica, vol. 15, no. 2, pp. 197-207, 1979.

note is very useful. In Table IV, we give the results of the CPU time [3] H. K. Khalil, “Stabilization of multiparameter singularly perturbed sys-

when we have run the new method versus MATLAB. The CPU time tlegn;;' IEEE Trans. Automat. Contr., vol. AC-24, pp. 790-791, May

represents the average based on the computations of ten runs. Fro Z. Gajicand H. K. Khalil, “Multimodel strategies under random distur-

Table 1V, even if the iterative algorithm (12) takes a lot of CPU time bances and imperfect partial observatiofstomatica, vol. 22, no. 1,

in case of not very small value of the singular perturbation parameter,  pp. 121-125, 1986.

our algorithm can obtain the exact solution. [5] Z. Gajif;, “The exist_ence ofa gnique anq boynded solution of the alge-
Finally, we evaluate the costs u_s_ing the high-order con_troller (20). gg?g;ﬁ;i}'fgﬂ?ggf %%ﬂf'?ggfllgeg’“rlng"’gg n and control problems,

We assume that the initial conditions are zero mean independents] v.-v. Wang, P. M. Frank, and N. E. Wu, “Near-optimal control of non-

random vectors with covariance matrix standard singularly perturbed systemaitomatica, vol. 30, no. 2, pp.

277-292, 1994.

E[;zf((])mT(O)] :10_’1diag (1 1 001 001 1 1 1 1 1). [7] C. Coumarbatch and Z. Gji¢Exact decomposition of the algebraic

Riccati equation of deterministic multimodeling optimal control prob-

lems,” |EEE Trans. Automat. Contr., vol. 45, pp. 790-794, Apr. 2000.

——, “Parallel optimal Kalman filtering for stochastic systems in mul-
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