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Computational Techniques for Hybrid
System Verification

Alongkrit Chutinan and Bruce H. Krogh, Fellow, IEEE

Abstract—This paper concerns computational methods for ver-
ifying properties of polyhedral invariant hybrid automata(PIHA),
which are hybrid automata with discrete transitions governed by
polyhedral guards. To verify properties of the state trajectories
for PIHA, the planar switching surfaces are partitioned to define
a finite set of discrete states in anapproximate quotient transition
system(AQTS). State transitions in the AQTS are determined by
the reachable states, orflow pipes, emitting from the switching sur-
faces according to the continuous dynamics. This paper presents a
method for computing polyhedral approximations to flow pipes. It
is shown that the flow-pipe approximation error can be made arbi-
trarily small for general nonlinear dynamics and that the computa-
tions can be made more efficient for affine systems. The paper also
describesCheckMate, a MATLAB-based tool for modeling, simu-
lating and verifying properties of hybrid systems based on the com-
putational methods previously described.

Index Terms—Hybrid systems, model checking, reachability,
verification.

I. INTRODUCTION

T HE growing use of computers in modern control systems
results in complex dynamical systems calledhybrid sys-

tems, which contain both discrete and continuous dynamics.
This paper concerns formal verification of such systems. Given
a desired property, called aspecification, we would like to guar-
antee that all of the hybrid system behaviors satisfy the specifi-
cation. This is a very important problem in the validation of the
system design, especially for safety-critical applications.

This paper describes computational procedures implemented
in CheckMate,1 a MATLAB-based tool for verification of hybrid
systems.CheckMatemodels are constructed as Simulink block
diagrams, using the Stateflow Toolbox to represent the discrete-
state transition logic. The verification procedure inCheckMate
is based on the general theory of hybrid automata with transi-
tion system semantics [1], [2]. To apply this theory,CheckMate
converts Simulink-Stateflow models into a class of hybrid au-
tomata called apolyhedral-invariant hybrid automata (PIHA),
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which are hybrid automata with invariants and guards defined
by linear inequalities (see Section III). As with hybrid systems
in general, the PIHA transition system has an infinite (uncount-
able) state space. To apply standard model checking techniques
for verification [3], [4], a finite-state conservative approxima-
tion to the hybrid system is constructed, called anapproximate
quotient transition system (AQTS)[5]. If the verification is in-
conclusive, the AQTS can be refined and the verification can be
attempted again.

The main obstacle toward realizing the AQTS for hybrid sys-
tems is the lack of effective methods for computingflow pipes,
that is, the set of continuous state trajectories emanating from a
set of initial states [6]. We propose a procedure for computing
conservative polyhedral approximations to flow pipes for con-
tinuous dynamic systems [7]. The procedure differs from most
other approximation methods (e.g., [8]–[11]) in that it deals di-
rectly with the dynamics described by continuous state equa-
tions and the approximation error for a single flow pipe does not
grow with simulation time. We also show that for general non-
linear dynamics, the flow-pipe approximation error can be made
as small as desired, albeit at the expense of more computation
time. We extend the results in [7] for efficient computation of
flow-pipe approximations forlinear systems toaffinesystems.

This paper is organized as follows. Section II presents the ele-
ments ofCheckMateto provide a context for the formal models
and computational procedures described in the rest of the paper.
Section III defines the PIHA and the transition system seman-
tics used for verification. This section also describes the AQTS
and the role that reachability computations for continuous-state
dynamic systems plays in building finite-state systems for ver-
ification. We then focus on the problem of approximating flow
pipes for nonlinear and linear systems in Section IV. As an ex-
ample, Section V describes the application ofCheckMateto
verify properties of a batch evaporator system [12]. The con-
cluding section summarizes the contributions of this paper.

II. CHECKMATE

Recently, several tools have been introduced to perform
formal verification of hybrid systems, including UPPAAL [13],
HyTech [14], KRONOS [15], Veri-Shift [16], [17], and
the MLD-verifier [18]. In terms of the types of continuous
dynamics that can be handled be each of these tools, UPPAAL
and KRONOS deal with timed systems, that is, the continuous
dynamics are pure integrators; HyTech handles so-called linear
hybrid automata, that is, the continuous state derivative vectors
are constrained to be in given polyhedra (differential inclu-
sions); and VeriShift deal with affine dynamical systems;
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Fig. 1. Major block types inCheckMate.

and the MLD-verifier includes discrete-time linear dynamics.
In contrast to these tools, theCheckMatetool for hybrid system
verification will accept arbitrary nonlinear continuous state
equations [19].

CheckMateis implemented in MATLAB, using the Simulink
graphical user interface. Fig. 1 illustrates the three major blocks
used to build a hybrid system model inCheckMate. The first
two blocks are customCheckMateblocks implemented with
Simulink masking [20]. The third block is a standard Stateflow
block. These three blocks are used with other standard Simulink
blocks to build hybrid system models that can be simulated as
well as verified. The three blocks in Fig. 1 are described as fol-
lows.

Theswitched continuous system block (SCSB)defines a con-
tinuous dynamics system whose dynamics depends on a dis-
crete-valued input. Fig. 1(a) depicts an SCSB whereis the
discrete input and the outputis the continuous state vector for
the dynamics in the block. The continuous dynamics is selected
by the value of according to . The discrete input

to an SCSB can only come from finite-state machine blocks
(described later). The following three types of ordinary differ-
ential equations can be specified for each value of the discrete
input : , where for an arbitrary contin-
uous nonlinear function ; , where for a
constant matrix and vector ; and , where for a
constant vector. In each case,CheckMateuses a flow-pipe ap-
proximation procedure that is optimized for the specified type
of dynamics. (The flow-pipe representation is exact in the case
of dynamics.)

Thepolyhedral threshold block (PTHB)in Fig. 1(b) defines
a convex polyhedron parameterized by a matrix-vector pair

. The input is a continuous state vectorand the output
is a Boolean signal indicating whether or notlies within the
convex polyhedron defined by . The input must be
constructed from the outputs of SCSBs.

The finite-state machine block (FSMB)in Fig. 1(c) is imple-
mented by aStateflow[21] block with the following restrictions.

Fig. 2. Overview ofCheckMateverification procedure.

Eacheventinput must be a logical function of the outputs of
PTHBs. Each data input must be a logical function of the outputs
of PTHBs or FSMBs. Only one discrete-valued output signal is
allowed. The Stateflow diagram must contain no hierarchy and
each state must assign a unique value to the data output in its
entryaction. No other action is permitted on any state or transi-
tion label string.

The CheckMateverification procedure, shown in Fig. 2,
starts with the conversion of the Simulink model into an equiv-
alent PIHA (defined in Section III). The analysis of the PIHA is
limited to a user-specified polyhedral region called theanalysis
region in the continuous state space. A finite-state AQTS is
constructed to verify properties of the PIHA state trajectories
[5] (see Section III-C). The discrete states in an AQTS are
defined by an initial partition of the switching surfaces (i.e., the
boundaries of the polyhedra defined in the threshold blocks)
constructed according to parameters specified by the user.
Transitions between states in the AQTS are computed using
the flow-pipe approximations (see Section IV). The AQTS
is then verified against a given specification using standard
model checking techniques for finite-state transition systems.
The user defines specifications to be verified using ACTL,
a restricted class ofcomputation tree logic(CTL) [3]. If the
verification fails due to the coarseness of the discretization in
the AQTS, the partition for the AQTS is refined to give a tighter
approximation. The process can be repeated until the AQTS
satisfies the specification or the user terminates the verification.

Remark: When the ACTL expression is found to be true,
it can be concluded that the specification is true for the given
PIHA. Since PIHA verification problems are undecidable in
general [22], however, it is impossible to determinea priori
whether or not the procedure described above will terminate.
That is, if the verification is inconclusive for a given AQTS, the
user usually cannot determine if further refinement will help. In
our experience, the verification is often successful after two or
three refinements, and even when the verification fails, the user
typically gains valuable knowledge about the hybrid system be-
haviors from the construction and simulation of theCheckMate
model.
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Section III presents the formal model of hybrid systems used
in Checkmate. We then focus on the theory behind the flow-pipe
approximation in Section IV. Section V presents an application
of CheckMateto a batch reactor.

III. POLYHEDRAL-INVARIANT HYBRID AUTOMATA (PIHA)

To develop effective computational tools for verification, we
focus on a particular class of hybrid systems called PIHA.

A. PIHA

We define a PIHA using the formalism from [23] (with some
restrictions).

Definition 1: A PIHA is a tuple
where

• , where is the continuous
state–space and is a finite set of discrete locations;

• is a function that assigns to each discrete location
a vector field on ;

• assigns to an invariantset of the
form where is a nondegenerate convex
polyhedron;

• is a set of discrete transitions;
• assigns to a guard set that

is a union of faces of ;
• is the set of initial states of the form

where each is a polytope and
; here, the notation means the set

;
• , , and must satisfy the following cov-

erage requirements: 1) for each ,
, that is, the guards

for cover the faces of the invariant for; and 2) for all
, , that is, events do not

lead to transitions that violate invariants.

As previously defined, the PIHA differs from general hybrid
automata [2] in the following respects: 1) there are no so-called
reset mappings associated with the discrete transitions, which
means there are no discontinuities in the continuous-state trajec-
tories; 2) the invariants are defined by linear inequalities (hence
the name “polyhedral invariant”); and 3) the guards are faces of
the invariants, which means that a discrete-state transition oc-
curs immediately when the continuous-state trajectory reaches
a guard set. Point 3) is reflected in the semantics defined for the
PIHA Section III-B.

B. Discrete-Trace Transition Systems

A hybrid system can be thought of as atransition system
where is the set of states, is the tran-

sition relation, and is the set of initial states [1], [2]. In this
paper, we are interested in the transition system that abstracts
away the continuous dynamics and retains the hybrid system
behaviors only at the instants of discrete transitions. We call
this the discrete-trace transition system. To define this tran-
sition system, we use the following notation and definitions.
Given an initial PIHA state , we denote the continuous

trajectory in location by where and
, (until a discrete transition

occurs). Given a PIHA , the set of states through which the
PIHA can enter a location, called theentry states, is defined as

for some and
. We now define the discrete-trace transi-

tion system for a PIHA.
Definition 2: Given a PIHA , its discrete-trace transition

systemis given by where ,
, and the transition relation

is defined as follows.

i) Discrete Transitions: iff
and there exist and such that

, , and ,
i.e., the interior of , for all ;

ii) Null Transitions: iff
for all .

In Definition 2, the discrete transitions comprise all contin-
uous-state trajectories in the PIHA between location transitions.
The null transitions comprise all continuous-state trajectories
that remain in a location indefinitely.

C. AQTSs

The standard approach to verification of hybrid systems is to
construct a finite-statebisimulationof the infinite-state transi-
tion system [1], [24]. Bisimulations are constructed using a fi-
nite partition of the original state space, leading to a so-called
quotient transition system(QTS). The difficulty is that finite-
state bisimulations are known to exist only for hybrid systems
with trivial continuous dynamics (e.g., see [25]). In general, fi-
nite bisimulations do not exist, which means that verification
problems for hybrid systems are usually undecidable (e.g., see
[22]). Nevertheless, the quotient transition system computed for
any partition of the transition system state space is asimulation
of the transition system. This means if auniversal specification
(that is, a specification that must be true for all possible trajecto-
ries) is true for the QTS, it is also true for the infinite-state tran-
sition system (that is, for the hybrid system). Therefore, even
for problems that are undecidable in general, it is possible to
verify certain specifications. It is not possible, however, to pre-
dict whether or not a given specification is going to be verifiable.

The state–space for the PIHA discrete-state transition system
is the set of continuous states on the invariant boundaries. To
construct the QTS for a partition of this transition system, it is
necessary to compute the transitions between elements of the
partitions. This involves computing the sets of continuous states
that are reached starting from an element of the partition (a set of
continuous states on the boundary of an invariant) and finding
out where the set of reachable states intersects with other ele-
ments of the partition (other subsets of the invariant boundary).
We call this set of reachable states theflow pipefor the contin-
uous dynamics corresponding to the invariant.

Flow pipes can be represented and computed exactly only for
particular types of simple dynamics (e.g., forclockdynamics).
In general, one must settle for a conservative approximation of
the flow pipe, leading to an approximation of the QTS called an
AQTS. Fig. 3 illustrates the computation of AQTS transitions
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Fig. 3. Illustration of the construction of transitions in the AQTS.

using flow-pipe approximations. In this example, one element
of the partition is mapped to two other elements.

The general theory of using the AQTS for verification of in-
finite state systems is developed in a companion paper [5]. Sec-
tion IV presents the details of a particular way to construct the
flow-pipe approximations for general continuous dynamics.

IV. COMPUTING FLOW PIPE APPROXIMATIONS

This section describes our method for computing flow-pipe
approximations, presented originally in [7]. We consider an au-
tonomous dynamical system with state equation
in the bounded and connected domain . We assume
that vector field is Lipschitz, that is, there exists a constant
such that for all .
The solution to the state equation starting from the initial state

at time is denoted by . The Lipschitz condition
implies that for every initial state there is a unique solu-
tion to the state equation. The set of reachable states at
time from a set of initial states is defined as

for some . The flow pipe from
in the time interval is defined as

.
To construct the AQTS, it is necessary is to compute

flow-pipe approximations that are conservative. That is, given
a polyhedral set of initial continuous states and a final
time , we must compute a flow-pipe approximation, denoted
by , such that . Our
approximation method constructs as the union of
convex polyhedra, where each polyhedron is an over approx-
imation to a flow-pipe segment corresponding to an interval
of time. If the time interval is divided into time seg-
ments, , the complete flow-pipe
approximation from to is the union of all
flow-pipe segments ,
where . As illustrated in
Fig. 3, the AQTS transition relation is computed by finding
intersections of flow-pipe segment approximations with the
faces of the associated polyhedral invariant.

A. Approximating a Flow Pipe Segment

We use the following notation to describe the polyhedral ap-
proximation of a flow-pipe segment. Given a pair

, we write POLY to denote the polytope
. Each row , of is the unit

normal vector to theth face of the polytope. Given a polytope
, we write to denote the set of vertices of. Given a fi-

nite set of points , we write to denote theconvex hull
of [26].

The polyhedral approximation of a flow-pipe segment
is computed as a matrix-vector pair

, such that POLY . We are
also interested in making the approximation error as small as
possible.

There are two steps in the procedure for finding . First,
the rows of are selected. This determines the normal vectors
for the faces of the polyhedron to approximate .
Then, given , we compute as the solution to the following
optimization problem:

volumePOLY

s.t. POLY (1)

This optimization problem finds the polyhedron that min-
imizes the approximation error for given
that the normal vectors for the polyhedron are speci-
fied by the rows of . We denote the set POLY ,
where is the solution to (1), by .
Hence, our approximation for the flow-pipe segment is

. Throughout the
remainder of the paper, the notationwill stand for approxi-
mations computed using this particular procedure.

The components of solving (1) can be found by solving the
following constrained optimization problems for :

s.t. (2)

Using the definition of , we can rewrite (2) as

s.t.

(3)

Proposition 1: Let be solutions to (3)
for . The solution to (1) is given by

, for .
Proof: To show this, first note that since is the

solution to (2) for , we have that is feasible, i.e.,
POLY . Now, consider an alternative

solution . For any such that , if , then
there exists a state such that ,
namely the state such that . This implies that

POLY and is not feasible. If
, assume that for all so that is a feasible

solution. Then, POLY POLY . Thus, no solution
produces a feasible set smaller than POLY .
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(a)

(b)

Fig. 4. Flow-pipe approximation procedure for one segment.

To solve (3), one needs to solve the state equation to find
for each and . The solution can be

computed numerically using an ordinary differential equation
(ODE) solver. Thus, by embedding numerical simulation of
the continuous state equations into the routine for computing
the objective function, one can use a software package such as
the MATLAB Optimization Toolbox to solve (3) numerically.
Note that (3) is not a convex optimization problem in general.
We discuss this issue in Section IV-D.

We have found the following heuristic effective for com-
puting the set of normal vectors (the rows of the matrix

) used in (3). We begin by computing the sets
and , where ,
of vertices of at times and using numer-
ical simulations. We then use these points to form
a convex hull POLY

, as illustrated for a 2-D case
in Fig. 4(a). Finally, we use theoutward pointing normal
vectors from this convex hull to solve (3), as illustrated in
Fig. 4(b).

B. Flow-Pipe Approximations for Affine Systems

The procedure described above applies to arbitrary nonlinear
systems. It is computationally expensive, however, since a sim-
ulation of the state equations is embedded in the optimization
problem for each face of the polyhedral approximation. The
computations can be reduced significantly for affine dynamic
systems with dynamics of the form , where
is an constant matrix and is an constant vector. In
this case, the analytical solution to the state equation is given by

, where , and
Lemma 1 follows from time invariance.

Lemma 1: Given an affine system and
, , where is previously

defined.
We introduce the following notation. Given a set, a matrix
, and a vector , we write the set obtained by applying

the affine transformation to each element
as for some .
A polytope described by a set of inequality constraints can be
transformed by applying Lemma 2 to each inequality constraint
in the set.

Lemma 2: Given a set , an invertible
linear transformation , and a vector , the set
can be written as where and

Proof:

The following proposition states that when the dynamics are
affine, the set of reachable states for any time interval
is equal to an affine transformation of the set of reachable states
for the time interval .

Proposition 2: Given an affine system ,
.

Proof: First, note that since is invertible, the affine
transformation from to is a bijection. Thus, for
each there is a such that

andvice versa. In particular, for each , we have
that for some and and we
have by Lemma 1 that . Similarly, for each

, we have that for some
and , and we have by Lemma 1 that .

The following proposition states that the affine transforma-
tion in Proposition 2 also applies to the polyhedral approxima-
tions to flow-pipe segments.

Proposition 3: .
Proof: We compare the procedure for computing the

flow-pipe segments and . For the time
intervals and , we construct the convex hulls

and
, respectively. Proposition 2 im-

plies that . Thus,
if POLY then we have by Lemma 2
that POLY with and

.
For the time interval , we use and to solve

(1) and write the optimization problem (3) corresponding to the
normal vector in as

s.t. (4)

Similarly, for the time interval , we use and
to solve (1) and write the optimization problem

(3) corresponding to the normal vector in as

s.t. (5)
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Substituting (using Lemma
1) and into (5), we obtain

s.t. (6)

We observe that (4) and (6) differ only by the constant term
in the objective function. Thus, we conclude that

if is the solution to (4) for the interval , then
is the solution to (6) for the interval . This

implies that POLY and
POLY . By Lemma 2, we have that

.
Proposition 3 implies that our computational procedure for

each flow-pipe segment depends only on the size of the time step
. To compute the segment between timeand , we may

apply our computational procedure for the time interval
and then apply the transformation , which depends
on the starting time of the segment, to the resulting polytope.
The matrix and the vector can be computed numeri-
cally (using numerical integration for ). This suggests that
the efficiency of the flow-pipe computation can be improved by
caching the resulting polytopes (before the transformation) for
different ’s and transforming them to the starting times of the
segments as needed. Examples of flow pipes computed for non-
linear and linear systems can be found in [7].

C. Error Analysis for the Flow Pipe Approximations

In this section, we show that it is always possible to make
the approximation error arbitrarily small using the polyhedral
approximations to flow-pipe segments to approximate the com-
plete flow pipe for a time interval . For the affine system
case, one can see that the accuracy of the approximation can be
improved by simply using smaller time steps. This is because
the reachable set at any time is a polytope which is an
affine transformation of . The flow pipe is simply the union of
all these polytopes over the time interval . Each segment
beginning at time approaches as gets smaller
and smaller.

For nonlinear systems, reducing the lengths of the time seg-
ments (i.e., ) may not be sufficient to guarantee the approxi-
mation converges to the flow pipe. The reason is that the reach-
able set at a given time starting from a polyhedral set of initial
state will not necessarily be a polyhedron [7]. In order to ap-
proximate the flow pipe with an arbitrarily small approximation
error, it may be necessary to partition the initial setas well as
the time interval and into subsets that are small enough.
The precise definition of “small enough” is presented in Propo-
sition 4.

Before stating and proving Proposition 4, we introduce some
notations and mathematical preliminaries from [9] and [27]. For
a vector , denotes the Euclidean norm. A unit ball
centered at the origin is denoted by . For sets

, and . For ,
. For , is a -ball centered at ,

i.e., . If the ball center is the origin,
we simply write . As the metric for the approximation error,

we use theHausdorff distancebetween two sets ,
which is defined as

and

We define the metric on the size of a connected set as
. The following lemmas are used

in the sequel.
Lemma 3: Given ,

.
Proof: : Suppose

. Then, for some and
. Thus, or for some , ,

and , which implies that .
: Suppose

. Then, or for some ,
, and . Thus, for some

and , which implies that .
Lemma 4: Given , , and , if

and , then .
Proof: First, note that for all and ,

. We show that and .
We show by contradiction. Suppose but

. Then there exists such that ,
a contradiction. follows from a similar argument.

Lemma 5: Given , if
and , then .

Proof: Since and , we
have that , , , and

. These results imply that
and . It

then follows from Lemma 3 that and
.

Lemma 6: Gronwall–Bellman Inequality [27]:Let
be continuous and be continuous

and nonnegative. If a continuous function
satisfies for , then on

the same interval .
Lemma 7: [27] Let be Lipschitz in on with a Lip-

schitz constant , where is an open connected set. Let
, be initial conditions such that for

all . Then, .
Lemma 8: Let be Lipschitz in on with a Lipschitz

constant , where is an open connected set. Letbe
an initial condition such that for all .
Let . Then, for such that ,

.
Proof: First, we note that .

Thus

(7)

From the Lipschitz condition, we have
, which implies that

(8)
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Therefore, we have from (7) and (8) that
. By the Gron-

wall–Bellman inequality (Lemma 6), we have

(9)

The second term on the right-hand side of the afore-
mentioned inequality reduces to

. Replacing the second term on
the right-hand side of (9) with this simplification, we have the
desired result.

Lemma 9: Let be Lipschitz in on with a Lipschitz
constant , where is an open connected set. Let
and be initial conditions such that
for all . For and such that

, , and

Proof: Since
, we have that

. By Lemmas
7 and 8

(10)

From the Lipschitz condition, we have that
, which implies that

. It
then follows from Lemma 7 that

(11)

From (10) and (11), we have that

Simplifying the right-hand side of this inequality, we have

The proposition then follows from the fact that and
.

Recall that given a set and a matrix containing a set of
normal vectors in its rows, we denote the smallest polyhedron
with face-normal vectors given by the rows ofthat contains

with . Let denote the identity matrix. We
define a special matrix BOXthat gives the normal vectors for

a hyper-rectangle in as BOX .

Lemma 10: Given a matrix , BOX

where
BOX

.

Proof: The first containment follows immediately be-
cause has more constraints thanBOX .

The second containment follows becauseBOX is the
hyperrectangle and the maximum Euclidean norm of

occurs at corner points.
The following proposition demonstrates that the flow-pipe

approximation error can be made arbitrarily small by using ap-
propriate partitions of the time interval and the initial state
set .

Proposition 4: Given a connected set such that
, let be Lipschitz in on with a

Lipschitz constant and define . For a
time-step partition of the time
interval , let be a finite polyhedral partition of
associated with the time step . For any , if

i) the time step partition is uniform with ,
for , and

;
ii) for each time interval , is such

that for each , where

then

where and

.

Proof: The choice of in i) implies that
. Consequently, for each , we have

that

(12)

For any , since , it
follows from (12) and Lemma 9 that

(13)

Let . Then, (13) implies that

(14)

Using a set of normal vectors computed with our heuristic
in Section IV-A together with the hyperrectangle directions, the
flow-pipe segment is approximated by

(15)

where is defined as in Lemma 10. From (14) and (15), we
have that . The result
from Lemma 10 with the origin translated to implies that
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. In summary, we have that

(16)

By Lemma 4, we have .
Since the approximation error is withinfor each time interval

and each initial subset , we conclude by
Lemma 5 that the proposition holds.

The objective of the previous proposition is to demonstrate
that in principle the flow pipe for a Lipschitz system can be ap-
proximated arbitrarily closely. The flow-pipe construction out-
lined in the proof of the proposition may be used to compute the
flow-pipe approximation provided that the constantsand
are known. To obtain these constants, one may need to resort to
global optimization techniques, since the optimization problem
may be nonlinear and nonconvex in general.

Although Proposition 4 shows the flow-pipe approximation
can be made arbitrarily tight, it is often sufficient to know what
the approximation error is for a given time segment and set of
initial states. The following proposition gives a bound on this
approximation error.

Proposition 5: Given a set and an interval , let
. Then

where
for any .

Proof: By Lemma 9, we have that ,
, , which implies

that . By a similar argument
to the one that leads from (14)–(16) in the proof of Proposi-
tion 4, we have that

. We conclude by Lemma 4 that the proposi-
tion holds.

We note that the bound given in Proposition 5 can be com-
puted by simulating the system beginning atany initial state
in the set to find .

D. Global Optima in the Flow-Pipe Approximations

The approximation obtained from the flow-pipe approxima-
tion procedure is an outer approximation only if the optimiza-
tion software provides the global solution to (3). Since (3) is
not a convex problem in general, there may be multiple local
maxima. To guarantee a global maximum is found, one needs
to resort to a global optimization method.

Consider an optimization problem , where
is a given objective function and is a compact set

in . Let denote a global solution to the optimization
problem and let . General global optimization
methods calledbounding methods[28] rely on the ability
to compute the bounds on the objective function for any
compact subset of . Each method starts with a partition

of the feasible set and computes, for each compact
subset , the upper and lower bounds on the objective
function, denoted and , respectively, such
that for all . The upper
and lower bounds on the global maximum, denoted
and , can be established by computing the maximum over

Fig. 5. Batch evaporation system.

TABLE I
INPUT CONFIGURATIONS FOR THEBATCH EVAPORATORSYSTEM

all upper and lower bounds for all subsets , that is,
and . It is

clear that and, thus, any subsetfor which
is rejected, since it cannot possibly contain

the global solution. The remaining subsets are refined further
and the bounds are recomputed. The rejection and refinement
process continues until the difference between and
lies within some error tolerance , i.e., .

For our objective function in (3), we do
not have an explicit formula for since there is no closed-form
solution for in general. Nevertheless, we can compute
the bound on the objective function for a subset and
a time interval using the Lipschitz constant for the
vector field as follows. Let . By Lemma 9, we
have that

for some where
. Thus, all trajectories from during time interval

are contained in the-ball centered at . As-
suming that the face normal vectoris of unit length, the max-
imum and the minimum values of the objective function are
bounded by .

V. EXAMPLE: VERIFICATION OF A BATCH EVAPORATOR

We consider the verification problem for a batch evaporator
example presented in [12]. The evaporation system is shown in
Fig. 5. The controller is designed to implement the following
production sequence. First, tank is filled with a solution
which is evaporated until a desired concentration is reached.
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Fig. 6. Simulink block diagram for the batch evaporator system.

Tank is then drained as soon as tank is emptied from
the previous batch. For safety reasons, the heating is shut off
when the alarm temperature, , is reached. When the
temperature in tank falls below a certain temperature ,
crystallization will occur and spoil the batch. Our objective is
to verify that the alarm temperature is chosen appropriately
such that from a given set of initial conditions the temperature
in tank never falls below the crystallization temperature
before is completely drained.

The control inputs to the system are the states of the heater
(on/off) and valves and (open/closed). A given set of
values for the three control inputs is referred to as aninput con-
figuration, denoted by the discrete variable. Table I lists the
three input configurations used by the controller.

The continuous state variables are the heights of the liquid in
tanks and , denoted and , and the temperature in
tank , denoted . The continuous dynamics depends on the
input configuration. Let

For configuration , the state equations are

Fig. 7. Stateflow diagram for the blockcontroller in Fig. 6.

For , the state equations are

where denotes the standard step function. Finally, the
state equations for are
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Fig. 8. Quotient systemT=P .

Figs. 6 and 7 show the Simulink and Stateflow diagrams in
CheckMatecorresponding to the production sequence described
above. The discrete states, , correspond directly to the
input configurations . Discrete states and are
used to indicate thefailure andsuccessof the production se-
quence, respectively.

The system starts with the discrete stateand the continuous
states m, m, and K.
Since the liquid level in each tank in the ODE model can only
reach zero asymptotically, we approximate the event that a tank
is empty by small thresholds . The numerical
values for the thresholds in the system are

m tank empty

m tank overflow

K crystallize and

K alarm

The problem is to verify that all trajectories from the initial
continuous state set

and the initial discrete state eventually reach
the discrete state .

CheckMateconstructs the initial AQTS from the partition of
the threshold hyperplanes shown in Fig. 8, where the state
represents the set of initial continuous states. Each continuous
subset in the partition is referred to as a patch. For this partition,
the AQTS does not satisfy the specification because the crys-
tallization temperature is reachable, as indicated in the figure.
After three iterations of the verification procedure, we have the
partition in Fig. 9 that satisfies the specification. For this parti-
tion, all paths from eventually reach the empty threshold
for Tank 1 without reaching the overflow and crystallization
threshold. Further details about this example are given in [29].

VI. DISCUSSION

Thispaperpresentscomputationalmethodsforconstructingfi-
nite-stateapproximations,calledAQTSs,foraclassofhybridsys-
tems to verify properties of the hybrid system behaviors. Repre-
sentingandcomputingtheflowpipesforcontinuousdynamicsys-
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Fig. 9. Quotient systemT=P .

tems is the fundamental problem in constructing the AQTS. We
propose a method for constructing flow-pipe approximations as
the union of convex polyhedra. We show that proposed flow-pipe
approximations can be made arbitrarily accurate for general non-
linear systems. We also present extensions and new results on ef-
ficient flow-pipe computations for affine systems.

To guarantee the flow-pipe approximation is conservative, we
show that, in principle, we can use a global optimization method
to compute the flow-pipe approximations. Implementation of
the proposed global optimization remains a topic for future re-
search, however. Experiments with global optimization routines
are needed to assess the tradeoffs between computational cost
and the guarantees provided by the global optimization.

The study of hybrid systems has stimulated considerable
interest in the problem of representing and computing sets of
reachable states for continuous dynamic systems. Alternatives
to the approach proposed in this paper include: grid-based dis-
cretizationsof thecontinuousstatespace,whichcanbeautomated
quite easily and robustly, but can lead to enormous finite-state

approximations[9], [30];ellipsoidalapproximationsofreachable
sets (at a given time), for which exact analytical expressions are
available for linear dynamic systems [31]; orthogonal polyhedra,
for which there are efficient canonical representations and com-
putational procedures for general nonlinear dynamics [32], [33];
interval arithmetic to compute conservative approximations to
differential inclusions [34]; computing conservative projects
of reachable sets onto lower-dimensional subspaces [35]; and
dynamic programming (solving the Hamilton–Jacobi–Bellmen
equation), which leads to explicit analytical representations
of reachable sets (at a given time) for certain linear systems
with bounded inputs [36]. Comparisons and refinements of the
methods proposed thus far, including the approach proposed in
this paper, are required to assess which approaches are best. It
is likely that no single approach will be best for all situations.
Future computational tools for hybrid systems should probably
be “hybrid”, incorporating multiple methods and techniques for
reachability computations so that the best approach can be used
for each application.
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