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Computational Techniques for Hybrid
System Verification

Alongkrit Chutinan and Bruce H. Kroghrellow, IEEE

Abstract—This paper concerns computational methods for ver- which are hybrid automata with invariants and guards defined
ifying properties of polyhedral invariant hybrid automatgPIHA),  py linear inequalities (see Section Ill). As with hybrid systems
which are hybrid automata with discrete transitions governed by in general, the PIHA transition system has an infinite (uncount-

polyhedral guards. To verify properties of the state trajectories . .
for PIHA, the planar switching surfaces are partitioned to define 20I€) State space. To apply standard model checking techniques

a finite set of discrete states in arapproximate quotient transition for verification [3], [4], a finite-state conservative approxima-
system(AQTS). State transitions in the AQTS are determined by tion to the hybrid system is constructed, calledaproximate
the reachable states, oflow pipes emitting from the switching sur-  quotient transition system (AQTE). If the verification is in-

faces according to the continuous dynamics. This paper presents a ., cjysive, the AQTS can be refined and the verification can be
method for computing polyhedral approximations to flow pipes. It attempted ’again

is shown that the flow-pipe approximation error can be made arbi- ] o .
trarily small for general nonlinear dynamics and that the computa- The main obstacle toward realizing the AQTS for hybrid sys-
tions can be made more efficient for affine systems. The paper also tems is the lack of effective methods for computftayv pipes
describesCheckMate a MATLAB-based tool for modeling, simu-  that is, the set of continuous state trajectories emanating from a
lating and verifying properties of hybrid systems based onthe com- oot o initial states [6]. We propose a procedure for computing
putational methods previously described. . . . .

conservative polyhedral approximations to flow pipes for con-
tinuous dynamic systems [7]. The procedure differs from most
other approximation methods (e.g., [8]-[11]) in that it deals di-
rectly with the dynamics described by continuous state equa-
|. INTRODUCTION tions and the approximation error for a single flow pipe does not

HE growing use of computers in modern control systen?érow Vg'th smjulauhonﬂtlme. .We . show Fhat for gene{;)al nor:j—
results in complex dynamical systems callebrid sys- Inear dynamics, the flow-pipe approximation error can be made

tems which contain both discrete and continuous dynamicg.s small as desired, albeit at the expense of more computation

This paper concerns formal verification of such systems. Givgme' We extend'the .results'ln [7] for efficient computation of
a desired property, calledspecificationwe would like to guar- '°""'P'pe appr OX|mat|_ons folinear systems_ t@ffinesystems.
antee that all of the hybrid system behaviors satisfy the specifi—ThIS paper is organized as follows. Section Il presents the ele-
cation. This is a very important problem in the validation of thents ofCheckMateto provide a contgxt fo_r the formal models
system design, especially for safety-critical applications. and gomputatl_onal procedures described n .the rest of the paper.
This paper describes computational procedures implemen%%‘:t'on Il defines the PIHA and the transition system seman-

in CheckMate: a MATLAB-based tool for verification of hybrid tics used for verification. This section also describes the AQTS

systemsCheckMatemodels are constructed as Simulink bIOCIgnd the role that reachability computations for continuous-state

diagrams, using the Stateflow Toolbox to represent the discreﬁ;g-nam'c systems plays in building finite-state systems for ver-

state transition logic. The verification proceduredheckMate ' ication. we then focus on the problem.of approximating flow
is based on the general theory of hybrid automata with tran8iPes for nopllnear and I!near system; In Sectlon IV. As an ex-
tion system semantics [1], [2]. To apply this thedBheckMate ample, Secthn V describes the applicationGifeckMateto
converts Simulink-Stateflow models into a class of hybrid alfE"y Properties of a batch evaporator system [12]. The con-

tomata called @olyhedral-invariant hybrid automata (PIHA) cluding section summarizes the contributions of this paper.

Index Terms—Hybrid systems, model checking, reachability,
verification.
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Fig. 2. Overview ofCheckMateverification procedure.

Eacheventinput must be a logical function of the outputs of
PTHBs. Each data input must be a logical function of the outputs
and the MLD-verifier includes discrete-time linear dynamicof PTHBs or FSMBs. Only one discrete-valued output signal is
In contrast to these tools, tigheckMatdool for hybrid system allowed. The Stateflow diagram must contain no hierarchy and
verification will accept arbitrary nonlinear continuous stateach state must assign a unique value to the data output in its
equations [19]. entryaction. No other action is permitted on any state or transi-
CheckMates implemented in MATLAB, using the Simulink tion label string.
graphical user interface. Fig. 1 illustrates the three major blocksThe CheckMateverification procedure, shown in Fig. 2,
used to build a hybrid system model @heckMate The first starts with the conversion of the Simulink model into an equiv-
two blocks are custonCheckMateblocks implemented with alent PIHA (defined in Section IIl). The analysis of the PIHA is
Simulink masking [20]. The third block is a standard StatefloWmited to a user-specified polyhedral region calledaalysis
block. These three blocks are used with other standard Simulnegion in the continuous state space. A finite-state AQTS is
blocks to build hybrid system models that can be simulated esnstructed to verify properties of the PIHA state trajectories
well as verified. The three blocks in Fig. 1 are described as f¢b] (see Section 1lI-C). The discrete states in an AQTS are
lows. defined by an initial partition of the switching surfaces (i.e., the
Theswitched continuous system block (SC&&nes a con- boundaries of the polyhedra defined in the threshold blocks)
tinuous dynamics system whose dynamics depends on a disastructed according to parameters specified by the user.
crete-valued input. Fig. 1(a) depicts an SCSB whelis the Transitions between states in the AQTS are computed using
discrete input and the outputis the continuous state vector forthe flow-pipe approximations (see Section IV). The AQTS
the dynamics in the block. The continuous dynamics is selectisdthen verified against a given specification using standard
by the value ofu according tai = f,(z). The discrete input model checking techniques for finite-state transition systems.
u to an SCSB can only come from finite-state machine blocRé$he user defines specifications to be verified using ACTL,
(described later). The following three types of ordinary differa restricted class afomputation tree logi¢CTL) [3]. If the
ential equations can be specified for each value of the discretification fails due to the coarseness of the discretization in
input u: nonlinear, wherei = f(z) for an arbitrary contin- the AQTS, the partition for the AQTS is refined to give a tighter
uous nonlinear functiorf; 1inear, wherei = Az + b for a approximation. The process can be repeated until the AQTS
constant matrix4d and vectol; andclock, wherez = ¢ for a  satisfies the specification or the user terminates the verification.
constant vector. In each case;heckMatauses a flow-pipe ap- Remark: When the ACTL expression is found to be true,
proximation procedure that is optimized for the specified tygecan be concluded that the specification is true for the given
of dynamics. (The flow-pipe representation is exact in the caB&HA. Since PIHA verification problems are undecidable in
of clock dynamics.) general [22], however, it is impossible to determimeriori
The polyhedral threshold block (PTHB) Fig. 1(b) defines whether or not the procedure described above will terminate.
a convex polyhedron parameterized by a matrix-vector pdihatis, if the verification is inconclusive for a given AQTS, the
(C,d). The input is a continuous state vectoand the output user usually cannot determine if further refinement will help. In
is a Boolean signal indicating whether or noties within the our experience, the verification is often successful after two or
convex polyhedron defined bg'z < d. The input must be three refinements, and even when the verification fails, the user
constructed from the outputs of SCSBs. typically gains valuable knowledge about the hybrid system be-
Thefinite-state machine block (FSMB) Fig. 1(c) is imple- haviors from the construction and simulation of tPleeckMate
mented by &tateflowf21] block with the following restrictions. model.
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Section Ill presents the formal model of hybrid systems uséjectory in location: by (., .)(-) where(,, .,,(0) = o and
in CheckmateWe then focus on the theory behind the flow-pipé(m;u)(t) = fu(C(zo,u)(t)), VT > 0 (until a discrete transition
approximation in Section IV. Section V presents an applicatiastcurs). Given a PIHAH, the set of states through which the
of CheckMateo a batch reactor. PIHA can enter a location, called teatry statesis defined as
Kentry = {(2/,v/) € X |forsome(z,u) € X and(u,v’) €
E,z" € G((u,u))}. We now define the discrete-trace transi-
tion system for a PIHA.

To develop effective computational tools for verification, we D€finition 2: Given a PIHAH, its discrete-trace transition

focus on a particular class of hybrid systems called PIHA.  Systems given byTy = (Qu,—m, Qo) whereQo = Xo,
Qr = Xo U Xentry UueXD {g}, and the transition relation

— g is defined as follows.

Ill. POLYHEDRAL-INVARIANT HYBRID AUTOMATA (PIHA)

A. PIHA
. . _ . i) Discrete Transitions(z,u) —g (2/,4/) iff v # u
We define a PIHA using the formalism from [23] (with some and there exist = (u,u’) € E andt; > 0 such that
restrictions). _ Ca,u) (t1) = 2, 2" € G(e), and(( () € I(u)\ O (u),
Definition 1: A PIHA is atupleH = (X, X, F,E,I,G) i.e., the interior off (u), for all t € (0,¢);
where i) Null Transitions: (z,u) — g g5 iff Cpu(t) € I(u)\
* X = X¢ x Xp, whereXs C R" is the continuous OI(u) forall ¢ > 0.
state—space anllp is a finite set of discrete locations; |y pefinition 2, the discrete transitions comprise all contin-
* I is afunction that assigns to each discrete locatian ous-state trajectories in the PIHA between location transitions.
Xp avector fieldf,(-) on Xc; The null transitions comprise all continuous-state trajectories

form I(u) C X< wherel(w) is a nondegenerate convex
polyhedron; C. AQTSs

« F C Xp x Xp is a set of discrete transitions;
« G: E — 2%c assignste = (u,v') € E a guard set that The standard approach to verification of hybrid systems is to

is a union of faces of (u); construct a finite-statbisimulationof the infinite-state transi-

« X, C X is the set of initial states of the fordi, = tion system [1], [24]. Bisimulations are constructed using a fi-
U;(P;,u;) where eachP; C I(u;) is a polytope and nite partition of the original state space, leading to a so-called
u; € U; here, the notatiofiP, «) means the seff(z,u) € guotient transition systeQTS). The difficulty is that finite-

X|z € P}, state bisimulations are known to exist only for hybrid systems
« I, G, and E must satisfy the following cov- Withtrivial continuous dynamics (e.g., see [25]). In general, fi-
erage equirements 1) for each u, dI(u) = hite bisimulations do not exist, which means that verification

UeeR | e=(u,u'Yfor somewe X, G(€), that is, the guards problems for hybrid systems are usually undecidable (e.g., see
for u cover the faces of the invariant far and 2) for all [22]). Nevertheless, the quotient transition system computed for
e = (u,u') € E, G(e) C I(u/), that is, events do not any partition of the transition system state spacesigrailation
lead to transitions that violate invariants. of the transition system. This means ifiaiversal specification

As previously defined, the PIHA differs from general hybri(fhat is, a specification that must be true for all possible trajecto-

automata [2] in the following respects: 1) there are no so-callé'_&s) is true for the QTS, itis also true for the infinite-state tran-
reset mappings associated with the discrete transitions, wh flon system (that is, for thg hyb”d. system). 'Ijhgrefore,. even
means there are no discontinuities in the continuous-state traj 6__problerqs that are gndeudlable n general, itis possible to
tories; 2) the invariants are defined by linear inequalities (hentg/1TY certain specifications. Itis not possible, however, to pre-
the name “polyhedral invariant”); and 3) the guards are facesft whether or notagiven spemﬁcgtlon is going to be.\./erlflable.
the invariants, which means that a discrete-state transition oc:r he state—spage for the PIHA dlscretg-stgte transition ;ystem
curs immediately when the continuous-state trajectory reach@dl® Set of continuous states on the invariant boundaries. To

a guard set. Point 3) is reflected in the semantics defined for ffStruct the QTS for a partition of this transition system, it is
PIHA Section I1I-B. necessary to compute the transitions between elements of the

partitions. This involves computing the sets of continuous states
that are reached starting from an element of the partition (a set of
continuous states on the boundary of an invariant) and finding
A hybrid system can be thought of astransition system out where the set of reachable states intersects with other ele-
T = (Q,—, Qo) where( is the set of states is the tran- ments of the partition (other subsets of the invariant boundary).
sition relation, and), is the set of initial states [1], [2]. In this We call this set of reachable states flwav pipefor the contin-
paper, we are interested in the transition system that abstragss dynamics corresponding to the invariant.
away the continuous dynamics and retains the hybrid systenflow pipes can be represented and computed exactly only for
behaviors only at the instants of discrete transitions. We calrticular types of simple dynamics (e.g., filock dynamics).
this the discrete-trace transition systeriio define this tran- In general, one must settle for a conservative approximation of
sition system, we use the following notation and definitionshe flow pipe, leading to an approximation of the QTS called an
Given an initial PIHA statdz,,«), we denote the continuousAQTS. Fig. 3 illustrates the computation of AQTS transitions

B. Discrete-Trace Transition Systems
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A. Approximating a Flow Pipe Segment

We use the following notation to describe the polyhedral ap-
proximation of a flow-pipe segment. Given a pa®,d) €
R™™ x R™, we write POLY(C,d) to denote the polytope
{z|Cx < d}. Eachrowel, i = 1,...,m of C is the unit
invariant set normal vector to théth face of the polytope. Given a polytope
P, we writeV(P) to denote the set of vertices Bf Given a fi-
flow pipe segment  nite set of pointsl’, we writeC H(Y') to denote theonvex hull
member of of T [26]'
entry set partition The polyhedral approximation of a flow-pipe segment
. Ritp_1.4,)(Xo) is computed as a matrix-vector pdit’, d) €
randtion syem BT R™, such thalRy, |, 4,(Xo) C POLY(C,d). We are
also interested in making the approximation error as small as
possible.
There are two steps in the procedure for findfag d). First,
the rows ofC are selected. This determines the normal vectors
for the faces of the polyhedron to approximé@e, , ;,1(Xo).
using flow-pipe approximations. In this example, one elememhen, givenC, we computel as the solution to the following

Fig. 3. lllustration of the construction of transitions in the AQTS.

of the partition is mapped to two other elements. optimization problem:
The general theory of using the AQTS for verification of in-
finite state systems is developed in a companion paper [5]. Sec- Hldin volumgPOLY(C, d)]
tion IV presents the details of a particular way to construct the st R, ,.n(Xo) C POLY(C,d), )

flow-pipe approximations for general continuous dynamics.

This optimization problem finds the polyhedron that min-
imizes the approximation error foRp, . +1(Xo) given
that the normal vectors for the polyhedron are speci-
fied by the rows ofC. We denote the set POLY' d*),

This section describes our method for computing flow-pip&n€re d* is the solution to (1), ?}}’Sg}m@[tmhu](XO))-_
approximations, presented originally in [7]. We consider an abi€nce. our apprOXImitilr?n for the™ flow-pipe segment is
tonomous dynamical system with state equafion = f(x(t)) Rle—i.t)(Xo) = SE"(Ri_, 4,1(Xo)). Throughout the
in the bounded and connected dom&iinh c R™. We assume "€mainder of the paper, the notatidhwill stand for approxi-
that vector fieldf is Lipschitz that is, there exists a constait Mations computed using this particular procedure.

IV. COMPUTING FLOW PIPE APPROXIMATIONS

such thaf| f(z1) — f(22)|| < L|jz1 — 2| for all z1, 25 € W. Thg componeqtsmf" sollvi.ng ('1) can be found by solving the
The solution to the state equation starting from the initial stat@/lowing constrained optimization problems foe 1,. .., m:
xo at timet is denoted byx(t,xp). The Lipschitz condition T

implies that for every initial state,, there is a unique solu- max. ¢ T

tion x(¢, zo) to the state equation. The set of reachable states at st € Ry, .4,)(Xo). 2

time ¢ from a set of initial states(, is defined asR(X,) =
{xf|xf = x(t,m0), for somezxy € Xo}. The flow pipe from Using the definition ofR;, , +,1(Xo), we can rewrite (2) as
Xy in the time intervallt,, t,] is defined asRy, +,)(Xo) = -
Uity 1) Re(Xo)- max ¢ w(t, 7o)

To construct the AQTS, it is necessary is to compute st o€ Xo
flow-pipe approximations that are conservative. That is, given et bl 3)
a polyhedral set of initial continuous staté§ and a final k=1 Tkl
time ¢, we must compute a flow-pipe approximation, denoted Proposition  1: Let (z%,,t) be solutions to (3)
by Rio,t,1(Xo), such thatRpj(Xo) S R, (Xo)- OUr for j° = 1. m. The solution to (1) is given by
approximation method construciy ;,1(Xo) as the union of dr = cTa(tr, oy ), fori=1,...,m.
convex polyhedra, where each polyhedron is an over approx- Pproof: To show this, first note that sinegtF, z§ ;) is the
imation to a flow-pipe segment corresponding to an intervabjution to (2) fori = 1, . .., m, we have that* is feasible, i.e.,
of time. If the time interval0, t;] is divided intoN time seg- Rite_1.0)(Xo) C POLY(C,d*). Now, consider an alternative
ments, [0, 1], [t1, 2], ..., [tn—1, 1], the complete flow-pipe solutiond # d*. For anyi such thatd; # dz, if d; < d7, then
approximation fromt = 0 to¢ = ¢y is the union of allN  there exists a state ¢ Rite 1.0, (Xo) such thatelz > d;,
flow-pipe segment®R o +,)(Xo) = Up=1._ ~ Riti_r.t:)(Xo0), namely the state* such thatc! z* = d*. This implies that
where R, _, +1(Xo) € Riy_,.+(Xo). As illustrated in Ry, _, +,(Xo) € POLY(C,d) andd is not feasible. Ifd; >
Fig. 3, the AQTS transition relation is computed by finding/;, assume that; > d7 for all j # 7 so thatd is a feasible
intersections of flow-pipe segment approximations with thgolution. Then, POLYC, d*) C POLY(C, d). Thus, no solution

faces of the associated polyhedral invariant. produces a feasible set smaller than PQLYd*). [ |
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Lemma 1: Given an affine system(t) = Az(t)+bandh >
0, 2(t + h,x¢) = etx(h,z0) + v(t), wherev(t) is previously
defined.
We introduce the following notation. Given a s€t a matrix
M, and a vectow, we write the set” obtained by applying
the affine transformatiod/(-) + v to each element € X
asY = MX +v = {yly = Mz + v, forsomezr € X}.
A polytope described by a set of inequality constraints can be
transformed by applying Lemma 2 to each inequality constraint
in the set.
Lemma 2: Given a setX = {z|cTz < d}, an invertible
linear transformatiord/, and a vectop, the sey’ = M X + v
can be written a8 = {y | ¢Ty < d} where¢ = (M ~)T¢ and
d=d+cTM 1y
Proof: y € Y <— 1= M1ly—-v) e X —
IM Yy —v)<d <= TMly<d+ M 1o [
The following proposition states that when the dynamics are
affine, the set of reachable states for any time inteitvaH A]
is equal to an affine transformation of the set of reachable states
for the time interval0, A].
Proposition 2: Given an affine systeni(t) = Axz(t) + b,
(b) R[t,t+A](X0) = eAtR[OYA] (Xo) + v(¢).
Fig. 4. Flow-pipe approximation procedure for one segment. Proof: First, note that since* is invertible, the affine
transformation fronRp o) t0 R+ 4] IS @ bijection. Thus, for
chz € Ry o) thereis &’ € Ry 44 a] Such that’ = ez +
?t) andvice versaln particular, for each € Ry A}, we have

To solve (3), one needs to solve the state equation to fiff
14

2(t,@o) for eacht and zo. The solutionz(f,z) can be thatz = x(h, zo) for somez, € Xo andh € [0,A] and we

computed numerically using an ordinary differential equati P T
(ODE) solver. Thus, by embedding numerical simulation Cc)l)}:ave by Lemma 1 that _,x(t + h, zo). Similarly, for each
€ Ryt,1+4], We have that’ = xz(t+h, zo) for somezy € X

the continuous state equations into the routine for computiﬁ%

the objective function, one can use a software package suct‘?agﬁeefgl)l’oA].;]andr;\'eozat.\é?] bs};:;irsnmgtltéga;f'ﬁéhériz)s.fo.rma-
the MATLAB Optimization Toolbox to solve (3) numerically. Wing proposit '

Note that (3) is not a convex optimization problem in generagggs'qopfrlgsvcf;'igznsi ;rfgn"jtfp“es to the polyhedral approxima-

We discuss this issue in Section 1V-D. " o A
We have found the following heuristic effective for com- F'0POSition 3: Rip.e+a](Xo) = e Rjo.0)(Xo) + v(1).
Proof: We compare the procedure for computing the

puting the set of normal vectors (the rows of the matri . - - .
C) used in (3). We begin by computing the séfs_, (X,) ﬁow—pme segment&y, 5 (Xo) andRy, 1) (Xo). Forthe time
and V, (Xo), where V,(Xo) = {w(t,v)|v € ViXo)} intervals[0, A] and [¢,t + A], we construct the convex hulls
k ] ) )
of vertices of X, at times ¢;,_; and ¢; using numer- ®p0,41(Xo) = CH(Vo(Xo) U Va(Xo)) and @;r1.41(Xo) =
ical simulations. We then use these points to forrfi2 (V:(X0) U Vira(Xo)), respectively. Proposition 2 im-
i b plies that ;4 )(Xo) = e P a)(Xo) + v(t). Thus,

a convex hull &y,  ,1(Xo) = POLY(Csp,ds) =

[t;\,l,tk] 0 o, 0d _
CH(W,_,(Xo) U V4, (Xo)), as illustrated for a 2-D case”c ®19,4)(Xo) = POLY(C, d)A trlen yve pave by I__itmma 2
in Fig. 4(a). Finally, we use theutward pointing normal that @p; 1a1(Xo) = POLY(C,d) with € = Ce and

vectors from this convex hull to solve (3), as illustrated iff = @ + Ce™'v(t).
Fig. 4(b). For the time interval0, A], we useC' andR o, A)(Xo) to solve

(1) and write the optimization problem (3) corresponding to the
i*® normal vector inC' as
B. Flow-Pipe Approximations for Affine Systems
T
The procedure described above applies to arbitrary nonlinear I}:}Jaf ¢ (7 @)
systems. It is computationally expensive, however, since a sim- s.t. zg € Xy, T € [0, A]. 4)
ulation of the state equations is embedded in the optimization
problem for each face of the polyhedral approximation. The Similarly, for the time intervalt,t + A], we useC and
computations can be reduced significantly for affine dynami®; ;1 4j(Xo) to solve (1) and write the optimization problem
systems with dynamics of the forir{t) = Az (t) + b, whereA  (3) corresponding to théh normal vector inC' as
is ann x n constant matrix andlis ann x 1 constant vector. In
this case, the analytical solution to the state equation is given by max  &Ta(t + 7 20)
z(t,mg) = eMag + v(t), wherev(t) = et fg e 47bdr, and wo, ! o
Lemma 1 follows from time invariance. s.t. zg € Xy, T € [0,A]. (5)
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Substitutingz(t + 7, z0) = etz (7, 20) + v(t) (using Lemma we use theHausdorff distancéetween two setd, V C R",

1) andeT = cFe~ 4t into (5), we obtain which is defined as
max ¢l z(T,z0) + ¢f e Mu(t) dist(U, V) =inf{e|U CV + eBandV C U + eB}.
To,T
St @ € Xo, T €[0,A] (6) We define the metric on the size of a connected et R™ as

Ul = 01— . The following lemmas are used
We observe that (4) and (6) differ only by the constant ter t|r|1e Sségﬁéi“w oy = 2] g

¢l e=*'y(t) in the objective function. Thus, we conclude that Lemma 3: GivenU,V,W C R*, (UUV)+ W = (U +
if d¥ is the solution to (4) for the intervéd, A], thend} = d* + W)U (V + W)_ T ’

cf e~ 4'y(t) is the solution to (6) for the intervéd, ¢ + A]. This Proof: (UUV)+ W C (U+ W)U (V + W): Suppose
implies thatR(o,4)(Xo) = POLY(C, d*) andRy.+4)(X0) =, ¢ (UUV)+W. Thena = o/ +w for somesr’ € U UV and
POLY(C,d"). By Lemma 2, we have thaRp; .+ a](Xo) = 4 ¢ W.Thusy = u+w orz = v+w forsomeuw € U,v € V,
e Rpo,a1(Xo) + v(1). B andw e W, which implies that: € (U + W) U (V + W).

Proposition 3 implies that our computational procedure for (;7 y V) + W 2 (U + W) u (V + W): Suppose: € (U +
each flow-pipe segment depends only onthe size of the time sign (v + w). Then,z = u+w orz = v+w for someu € U,
A. To compute the segment between tit@nd? + A, we may 4 ¢ V, andw € W. Thus,z = 2’ + w for somez’ € UUV
apply our computational procedure for the time intefl@A]  andw € W, which implies that: € (UUV)+W. m
and then apply the transformatiefi’(-) + v/(¢), which depends  Lemma 4: GivenU.V c R", = € R", ande > 0, if U C
on the starting time of the segment, to the resulting polytopg.E/Z(x) andV C BE/Z/(x)v thendist(U, V) < . B
The matrixe*t and the vector(t) can be computed numeri- Proof: First, note that for all:; € U andz, € V, ||z1 —
cally (using numerical integration far(¢)). This suggests that 23] < e. We show thal/ C V + eB andV C U + eB.
the efficiency of the flow-pipe computation can be improved bife showl/ C V + ¢B by contradiction. Suppose, € U but
caching the resulting polytopes (before the transformation) for ¢ v+ ¢B. Then there exists, € V such that|z, — || > e,

differentA’s and transforming them to the starting times of thg contradictionV’ C U + ¢B follows from a similar argument.
segments as needed. Examples of flow pipes computed for ngn-

linear and linear systems can be found in [7]. Lemma 5: GivenUs, Us, V1, Vo C R", if dist(Uy, V1) < e
anddist(U27 va) <, thendist(U1 U []27 Viu ‘/2) <.
C. Error Analysis for the Flow Pipe Approximations Proof: Sincedist(Uy, V1) < e anddist(Us, V2) < ¢, we

In this section, we show that it is always possible to maktave that/y C Vi +eB,Vy C Ui + eB,U; C V2 + B, and
the approximation error arbitrarily small using the polyhedrdlz € Uz + €B. These results imply thdt; U U C (V1 +
approximations to flow-pipe segments to approximate the cos3) U (V2 + eB) andVi UVa C (Ur 4+ eB) U (U2 + €B). It
plete flow pipe for a time intervaD, ¢]. For the affine system then follows from Lemma 3 thdf, UU, C (V1 UV3) +€B and
case, one can see that the accuracy of the approximation caybe V2 € (U1 UUs) + €B. u
improved by simply using smaller time steps. This is becauseLémma  6:  Gronwall-Bellman  Inequality [27]Let
the reachable set at any tirf& (X,) is a polytope which is an A : [@,b] — R be continuous ang : [a,b] — R be continuous
affine transformation aXo. The flow pipe is simply the union of and nonnegative. If a continuous functign: [a,b] — R
all these polytopes over the time inter@l¢,]. Each segment Satisfiesy(t) < A(t) + [, u(s)y(s)ds fora < < b, then on
beginning at time;, approachefR;, (X,) asAy gets smaller the same interva(t) < A(t) + fﬂ’ /\(S)N(S)e[fs u(r)dr] ds.
and smaller. Lemma 7: [27] Let f(z) be Lipschitz inz on W with a Lip-

For nonlinear systems, reducing the lengths of the time s&gitz constant,, wherel’ c R™ is an open connected set. Let
ments (i.e.A) may not be sufficient to guarantee the approxiz, ., be initial conditions such that(¢, z.1), z(t, z3) € W for
mation converges to the flow pipe. The reason is that the reaglf-; ¢ [0, 27]. Then,||z(t, z1) — z(t, 2)|| < eL|ja1 — z,]|.
able set at a given time starting from a polyhedral set of initial | emma 8: Let f(x) be Lipschitz inz on W with a Lipschitz
state will not necessarily be a polyhedron [7]. In order to appnstantZ, whereW C R™ is an open connected set. Lgtbe
proximate the flow pipe with an arbitrarily small approximatioryn initial condition such that(t, z,) € W for all ¢ € [0, tf].
error, itmay be necessary to partition the initial Sgtas well as | et (¢) = z(t,zo). Then, fort, ¢, € [0, %] such thatt > t,
the time interva(0, ¢] and into subsets that are small enoughyy (¢) — 4 (t,)|| < (|l £(y(to))ll/L) (X410 — 1).

The precise definition of “small enough” is presented in Propo-  p,qof: First, we note thag(t) — y(to) = ft Fy(r))dr.
sition 4. Thus K

Before stating and proving Proposition 4, we introduce some
notations and mathematical preliminaries from [9] and [27]. For t
avectorz € R", ||z|| denotes the Euclidean norm. A unit ball lly(t) = y(to)ll < /t lf(y(T))||d. (7)
centered at the origin is denoted By= {z | ||z|| < 1}. For sets ’
UVCR"U+V={u+v|lueUandv eV} Fora € R, From the Lipschitz condition, we hayg (y(7)) — f(y(t0))]| <
aU = {au|u € U}. Fore > 0, B.(z) is ae-ball centered at, L||y(7) — y(to)l|, which implies that
i.e.,B.(z) = {a'|||2' — z|| < €}. If the ball center is the origin,
we simply write B.. As the metric for the approximation error, 1 (oD < |1 f(y(to)ll + Llly(T) — y(to)

. ®
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Therefore, we have from (7) and (8) thig(t) — y(to)|| <

£ (y(to)II(t = to) + [, Llly(r) = y(to)lldr. By the Gron-
wall-Bellman inequality (Lemma 6), we have

I9(6) = w(to)l < )2 = )
+ / 17 (o)) I(s — to)LeLS: ¥47] as

The second term on the right-hand side of the afor
mentioned inequality reduces te||f(y(to))||(t — to) +
(I1F (y(to))lI/L) (e"(10) —
the right-hand side of (9) with this simplification, we have th
desired result. [ |

Lemma 9: Let f(x) be Lipschitz in: on W with a Lipschitz
constantZL, whereW C R™ is an open connected set. Laf
andz} be initial conditions such that(¢, zo), z(t, z3) € W
forall ¢ € [0,¢f]. Fort',t € [0,t7] andzg,z§ € W such that
t' >ttt —t < b and||zg — 2§l < xy

|1/ (2t 25))l
L

9)

lz(t', zo)—z(t, zd)|| < (eL‘St—l)—i-eL(H"si)ézo

Proof: Sincex(t',z¢) — z(t,z8) =[z(t',x0) — z(t, z0)]
+ [x(t, z0) — z(t, z§)], we have that|x(t', o) — z(t,28)]| <

llz(t',z0) — (t, zo)||+||z(t, 20) — x(t,x8)|. By Lemmas

7 and 8

|z, o) — z(t,zy)|| < M (eL(t’*ﬂ B 1)
+elt|zg — 28] (10)

From the Lipschitz condition, we have th@f (x(t,z¢)) —
flzt,z5)l < L|lxz(t,zo) — x(t,x3)||, which implies that
1t zo))| < [[f(2(t,2))I| + Llla(t, z0) — x(t,x5)]|- It

then follows from Lemma 7 that
1 (2t zo)ll < 1f(x(t, 25)) | + Le™||lzo — a5 |-
From (10) and (11), we have that

% (eL(t’—t) _1

(11)

ot z0) = a(t.ai)] < (
) + w0 — il
Simplifying the right-hand side of this inequality, we have

1/ (a(t, )l
L

% (eL(t'ft) _1

ot 20) ~ a(t,53)] <
) + € flzg = 3.

The proposition then follows from the fact thiat— ¢ < 8, and
llzo — 2| < -

Recall that given a sef and a matrixC' containing a set of
normal vectors in its rows, we denote the smallest polyhedr
with face-normal vectors given by the rows@fthat contains
P with S2in(P). Let I,, denote thex x n identity matrix. We

define a special matrix BOXthat gives the normal vectors for
I,

a hyper-rectangle i®™ as BOX, = [—I

) Replacing the second term on
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Lemma 10: Given a matrixC, Sg,i“(BE) C Sggx (Be) C
o n
A
B /.. whereC" = BOX,

Proof: The first containment follows immediately be-
cause SZ"(B.) has more constraints thaﬁggx (Be).

The second containment follows becal% (B.) is the
hyperrectangld—e, ¢]* and the maximum Euclldean norm of
n - € OCCUIS at corner points. [ |

" The following proposition demonstrates that the flow-pipe
approximation error can be made arbitrarily small by using ap-
propriate partitions of the time intervl, ¢ /] and the initial state
theet x,.
Proposition 4: Given a connected sé/ C R"™ such that
Rio,;(Xo) © W, let f(x) be Lipschitz inz on W with a
Lipschitz constant. and defineM = sup,cyy || f(z)||. For a
time-step partitiofi0 = to, 1], ..., [tn—1,tn = ts] of the time
interval [0, %], let P}‘;-O be a finite polyhedral partition ok
associated with the time stéf._1, tx]. For anye > 0, if
i) the time step partition is uniform with = ¢;/6,, t, =
tp—1+ o6 fork=1,...,N,and0 < é; < (1/L)In(1 +
(¢/2/n)(L/M));

i) for each time interval [ty_1,t], P%,
that for eachP e PL, ||P| <
0 < 6k < e Lte((e/2y/m) — (M/L)(e*

then

is such
sk where

- 1))

dist(’/é[oytf] (Xo), R[o,tf](XO)) Se

where Ry, tf](XO) Uiv 1 UPeP* Rite_,.0(P) and

Riv(Xo) = Uy Upepy, Rite . 01(P).

Proof: The choice ofé, in i) implies that (¢/2\/n) —
(M/L)(e** — 1) > 0. Consequently, for eachf’ , we have
that

M
L

Lty 6k

m0—2\/—

For anyz}, € P € Pk , since| f(z(tp—1,z}))|| < M, it
follows from (12) and Lemma 9 that

(BL&

—1)+e (12)

Vzge P Vte[tk,htkL
€
lz(t, z0) — x(t—1,27)| < N (13)
Letzp, = #(tk—1,2p). Then, (13) implies that
Rity_,02)(P) € B(ejaym)(@p)- (14)

Using a set of normal vectoi8 computed with our heuristic
in Section 1V-A together with the hyperrectangle directions, the
flow-pipe segment is approximated by

on . )
R[tkﬂ—l;tkﬂ]<P) = Sg’ln<R[tL.71;tk]<P)) (15)
whereC"” is defined as in Lemma 10. From (14) and (15), we
have thatR[,A L] (P) C Sg,ln(Be/w—(ka)) The result

from Lemma 10 with the origin translated tdj, , implies that
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Sg‘,in(BE/Qﬁ(x*P’k)) C B.j2(zpy,). In summary, we have that s
* 5 _a
Tpk ER[t.k_htk](P) - R[tk—l,tk](P) L\EL\\{”Q v13+ Cooling
min * * [ —— agent
CSE" (B(esaym) (@) S Bep2(zp)- (16) : \ﬁt ------ —>
By Lemma 4, we havdist(fz[tk_htk](P)?R[tk_htk](P)) <e. v l
Since the approximation error is withirfor each time interval i -

[tk—1,tk] and each initial subseP € P}“(O, we conclude by S
Lemma 5 that the proposition holds. [ | ""'
The objective of the previous proposition is to demonstrati,e,,, —
that in principle the flow pipe for a Lipschitz system can be ap-
proximated arbitrarily closely. The flow-pipe construction out-
lined in the proof of the proposition may be used to compute th
flow-pipe approximation provided that the constahtand M
are known. To obtain these constants, one may need to resort
global optimization techniques, since the optimization problen
may be nonlinear and nonconvex in general.
Although Proposition 4 shows the flow-pipe approximation
can be made arbitrarily tight, it is often sufficient to know whatig 5. Batch evaporation system.
the approximation error is for a given time segment and set of
initial states. The following proposition gives a bound on this TABLE |
approximation error. INPUT CONFIGURATIONS FOR THEBATCH EVAPORATOR SYSTEM
Proposition 5: Given a setP and an intervalt, ¢ + &, let
6o = ||P||- Then

dist(Rpp,145,)(P), Ripags (P)) < €

wheree = 2 z(t, zE))||/L)(eX® — 1) + eLt+o)g,
foran;x;‘; e\/;z((ﬂf(x( oI/ L)(e )te 0) us off | open |closed | cool/drain T}

Proof: By Lemma 9, we have that = € P,V t €

[t,t + 6, [l2(t', w0) — (t, 25)[| < (€/2v/n), which implies all upper and lower bounds for all subsefs€ F, that is,
thatR 1 146, (F) € B(ejaym((t, x5)). By asimilar argument j  — maxger Joax(S) andJ* . = maxge s Jmin(S). Itis
to the one that leads from (14)—(16) in the proof of Proposiear that/*. < J* < J*

( - o ax @nd, thus, any subsstfor which
tion 4, we have thatrj € Ry r1s,)(P) C Rpets,)(P) S Joae(S) < J*. is rejected since it cannot possibly contain

Biey2)(x(t, 27)). We conclude by Lemma 4 that the proposithe global solution. The remaining subsets are refined further
tion holds. o N B and the bounds are recomputed. The rejection and refinement
We note that the bound given in Proposition 5 can be corprocess continues until the difference betweén, and.J*

min

Config. | Heat | V5 Vis Description

Uy on | closed | open heating T}

Ug off | closed | open | cool T;/drain T

puted by simulating the system beginningayinitial statez;  lies within some error toleranee> 0, i.e.,.J%, — J&,, < e.
in the setP to find z(, z7). For our objective functiod (¢, zo) = ¢Lz(t, z) in (3), we do

not have an explicit formula faF since there is no closed-form
solution forz (¢, zo) in general. Nevertheless, we can compute
The approximation obtained from the flow-pipe approximahe bound on the objective function for a subgetC X, and
tion procedure is an outer approximation only if the optimizaa time intervalt, ¢t + 6] using the Lipschitz constauit for the
tion software provides the global solution to (3). Since (3) iector field f(z) as follows. Letd,,, = || P||. By Lemma 9, we
not a convex problem in general, there may be multiple lochhve that
maxima. To guarantee a global maximum is found, one needg ;. ¢ P V¢ € [t, ¢t + 6], ||x(t, 7o) — x(t, 23| < v
to resort to a global optimization method.
Consider an optimization problemax.cr J(z), where

D. Global Optima in the Flow-Pipe Approximations

for somez}; € P wherey = (|| f(x(t,z))||/L) (e™* — 1) +

. . L . ’ L(t+6:) . . . . .

J()) is a given objective function and is a compact set e 0z,- Thus, a_II tra!ector|es fron® during time interval
r{t’t + 6;] are contained in thg-ball centered at:(t, z). As-

in R™. Let z* denote a global solution to the optimizatio | . )
problem and let/* — J(=*). General global optimization suming that the face normal vecigris of unit length, the max-

methods callecbounding methodg28] rely on the ability imum and thTe mini:num values of the objective function are
to compute the bounds on the objective function for arjPunded by o(t,25) £ 7.

compact subset of’. Each method starts with a partition
F of the feasible sett’ and computes, for each compact
subsetS € F, the upper and lower bounds on the objective We consider the verification problem for a batch evaporator
function, denoted/.x(S) and Juin(S), respectively, such example presented in [12]. The evaporation system is shown in
that Ji,in(S) < J(2) < Juax(S), forall z € S. The upper Fig. 5. The controller is designed to implement the following
and lower bounds on the global maximufi, denotedJ,. production sequence. First, taflk is filled with a solution
andJ}, . can be established by computing the maximum overmich is evaporated until a desired concentration is reached.

V. EXAMPLE: VERIFICATION OF A BATCH EVAPORATOR
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Fig. 6. Simulink block diagram for the batch evaporator system.

Tank T} is then drained as soon as taik is emptied from
the previous batch. For safety reasons, the heating is shut o
when the alarm temperaturé...,, is reached. When the
temperature in tank; falls below a certain temperatuie, .,
crystallization will occur and spoil the batch. Our objective is
to verify that the alarm temperature is chosen appropriately
such that from a given set of initial conditions the temperature
in tank 77 never falls below the crystallization temperature
beforeT; is completely drained.

The control inputs to the system are the states of the heate
(on/off) and valved/;; andVig (open/closed). A given set of
values for the three control inputs is referred to agauit con-
figuration, denoted by the discrete variahle Table | lists the
three input configurations used by the controller. Fig. 7. Stateflow diagram for the blodontrollerin Fig. 6.

The continuous state variables are the heights of the liquid in
tanks1} and1;, denotedH; and H,, and the temperature in For u,
tank T, denotedl’. The continuous dynamics depends on the ’

T1_empty

overflow_or_cryétalize

the state equations are

input configuration. Let Hy =0
Hy, = —3.333-107%/19.62H,
o(T) = —1.327-10°T~* + 2.819 - 10°T~! _ —24(T — 283)
T = _
+6.433 - 10% — 10.5137. 1.23-105Hy + step(T — 373) - o(T)

wherestep(-) denotes the standard step function. Finally, the

For configuratioru, the state equations are .
state equations fars are

Hy =0 Hy = — 6.667 - 10~ 4\/19.62H,
H, = —3.333-107%\/19.62H, H, =3.333-10"4\/19.62H,
o 5000 — 24(T — 283) jr _ ~0-036(T — 283)(0.03 + 0.628Hy)
1.23-10°H; + o(T)" - 29.1H, )
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Fig. 8. Quotient systerii’/ Py .

Figs. 6 and 7 show the Simulink and Stateflow diagrams h3, T = 373} and the initial discrete state eventually reach
CheckMateorresponding to the production sequence describttk discrete states.
above. The discrete states, us, us correspond directly to the  CheckMateconstructs the initial AQTS from the partition of
input configurationsuy, us, u3. Discrete states, andu; are the threshold hyperplanes shown in Fig. 8, where the sStgte
used to indicate thé&ailure and succes®f the production se- represents the set of initial continuous states. Each continuous
quence, respectively. subset in the partition is referred to as a patch. For this partition,

The system starts with the discrete statand the continuous the AQTS does not satisfy the specification because the crys-
statestH; € [0.2,0.22] m, H, € [0.28,0.3] m, andT = 373 K. tallization temperature is reachable, as indicated in the figure.
Since the liquid level in each tank in the ODE model can onlifter three iterations of the verification procedure, we have the
reach zero asymptotically, we approximate the event that a tgrdetition in Fig. 9 that satisfies the specification. For this parti-
is empty by small threshold&l; .,;n,7 = 1,2. The numerical tion, all paths fromX, eventually reach the empty threshold
values for the thresholds in the system are for Tank 1 without reaching the overflow and crystallization

Hywin = 0.04 m (tank empty threshold. Further details about this example are given in [29].

H; max = 0.4 m (tank overflow)

Terys =338 K (crystallize and
Tolarm = 395 K (alarm).

VI. DISCUSSION

This paperpresents computationalmethods for constructing fi-
nite-state approximations, called AQTSs, foraclass of hybrid sys-
The problem is to verify that all trajectories from the initiakems to verify properties of the hybrid system behaviors. Repre-
continuous state set, = {0.2 < H; < 0.22,0.28 < H, < sentingandcomputingthe flowpipesforcontinuous dynamicsys-
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Fig. 9. Quotient systeri’/ Ps.

tems is the fundamental problem in constructing the AQTS. Vé@proximations[9], [30]; ellipsoidal approximations ofreachable
propose a method for constructing flow-pipe approximations asts (at a given time), for which exact analytical expressions are
the union of convex polyhedra. We show that proposed flow-pig&ailable for linear dynamic systems [31]; orthogonal polyhedra,
approximations can be made arbitrarily accurate for general ndor which there are efficient canonical representations and com-
linear systems. We also present extensions and new results opatational procedures for general nonlinear dynamics [32], [33];
ficient flow-pipe computations for affine systems. interval arithmetic to compute conservative approximations to

To guarantee the flow-pipe approximation is conservative, vadéifferential inclusions [34]; computing conservative projects
show that, in principle, we can use a global optimization methad reachable sets onto lower-dimensional subspaces [35]; and
to compute the flow-pipe approximations. Implementation afynamic programming (solving the Hamilton—-Jacobi—Bellmen
the proposed global optimization remains a topic for future requation), which leads to explicit analytical representations
search, however. Experiments with global optimization routine$ reachable sets (at a given time) for certain linear systems
are needed to assess the tradeoffs between computational witht bounded inputs [36]. Comparisons and refinements of the
and the guarantees provided by the global optimization. methods proposed thus far, including the approach proposed in

The study of hybrid systems has stimulated consideralilés paper, are required to assess which approaches are best. It
interest in the problem of representing and computing setsisflikely that no single approach will be best for all situations.
reachable states for continuous dynamic systems. AlternatiV@gure computational tools for hybrid systems should probably
to the approach proposed in this paper include: grid-based die-“hybrid”, incorporating multiple methods and techniques for
cretizations ofthe continuous state space, which can be automathability computations so that the best approach can be used
quite easily and robustly, but can lead to enormous finite-stdte each application.
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