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Some Perspectives on the Analysis and Control of
Complementarity Systems

Bernard Brogliato

Abstract—This paper is devoted to presenting controllability
and stabilizability issues associated to a class of nonsmooth
dynamical systems, namely complementarity dynamical systems.
The main existing results are summarized, and some possible
research directions are provided. Convex analysis and comple-
mentarity problems are claimed to be the main analysis tools for
control related studies. This paper mainly focuses on mechanical
applications.

Index Terms—Complementarity, control, convex analysis,
hybrid dynamics, measure differential inclusions, mechanical
systems, nonsmooth, stability.

NOMENCLATURE

DI Differential inclusion.
MDI Measure DI.
AC Absolutely continuous.
RCLBV Right-continuous of local bounded variation.
CP Complementarity problem.
CS Complementarity system.
ACS Affine complementarity system.
LCS Linear complementarity system.
LCP Linear complementarity problem.
DES Discrete-event system.
VI Variational inequality.

I. INTRODUCTION

J . J. MOREAU made fundamental contributions to convex
analysis and nonsmooth mechanics [64]–[73], which have

had considerable influence in several branches of mechanics
(discrete systems, fluid mechanics, elasto-plasticity, and fric-
tion) [53], [79], [39], [63], and for the numerical simulation of
nonsmooth mechanical systems [15]. The reader is referred to
[25] for an introduction to nonsmooth mechanics and to [82]
for a complete panorama of the topic in applied mathematics
and mechanics. In addition, nonsmooth analysis has made
significant progress and has allowed researchers to solve im-
portant problems like in optimal control and calculation [100],
[74], by introducing tools like Clarke’s generalized gradient
[79], [23], nonsmooth versions of Newton’s algorithms [2],
and complementarity problems [8], [74]. In this context, it
is worth recalling that nonsmoothness may not only arise at
the modeling level, but may also be necessary to solve some
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abstract problems. For instance minimum-time optimal control
yields cost functions which are both nondifferentiable and
nonconvex. Recently, mechanical systems subject to inequality
(or unilateral) constraints have been the object of renewed
interest in the mechanical engineering and applied mathematics
scientific communities; see [12], [14], [33], [35], [51], [63],
[81], and [96]. In parallel, the analysis and control of hybrid
dynamical systems has become an active investigation area in
the systems and control scientific community [47], [3], [31],
[48], [97], [87]. In particular, complementarity systems are an
interesting class of hybrid dynamical systems [20], [40]–[42],
[89], [88]. Roughly speaking, complementarity systems consist
of a dynamical system that is coupled to a set of algebraic
conditions through a Lagrange multiplier (also called a slack
variable in nonlinear programming). They can also be seen as
dynamical systems subject to a particular type of generalized
nonsmooth constraint. Complementarity dynamical systems
find applications in mechanical systems (multibody systems—
manipulators, bipedal robots [46], controlled structures,
tethered satellites [52], haptically augmented teleoperation,
part feeding, automatic assembly, material handling systems,
etc., structural mechanics, elastohydrodynamics lubrication,
liquid slosh phenomena, collisions of fluids and solids, phase
changes, etc. [33]), electrical circuits (nonlinear circuits with
diodes, MOS transistors, operational amplifiers [41], [99]),
control theory (optimal control with state constraints, model
predictive control [7], variable structure systems [87]), traffic
and oligopolistic market equilibrium problems [8], [75], eco-
nomics (production, comsumption, the theory of option pricing,
Walrasian problems [32]), models for biological systems (ge-
netic networks, bacteria growth, gene regulatory networks
that describe the regulatory interactions between genes and
gene products in a cell [49]), etc. This paper is devoted to the
controllability and the stabilizability of complementarity dy-
namical systems. Similarly to the fact that nonsmooth analysis
is not a straightforward extension of classical analysis [23], the
control of such nonsmooth dynamical systems is by far not a
direct extension of the control of smooth systems. The same
can be asserted to numerical analysis and simulation [1], [15]
and bifurcation analysis [55]. This paper does not pretend to
survey the wide area of nonsmooth systems. For more complete
bibliographies, the reader is referred to [12] and [15]. It rather
concentrates on a specific class and mainly aims at pointing out
some open problems (marked byOP1 ) and the main features
of the analyzed systems. The paper is organized as follows: In

1Some of these open problems may be very challenging, and some others
more trivial. It is rather difficult to classify them at this stage. Other research
directions can be found in [41] and [15].
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Section II the dynamics of complementarity systems is pre-
sented. Several typical examples are given in Section III, and
the link with various nonsmooth dynamical systems and differ-
ential inclusions is made in Section IV. Section V is devoted to
controllability issues, while Section VI focuses on stability and
stabilization. Conclusions end the paper, and some technical
informations are provided in Appendices A and B. Convex
analysis, complementarity problems, generalized equations,
impact Poincaré maps, measure differential inclusions, are
advocated to be important analysis tools. Though fundamental
topics in control, observability (see [61]) and identification
problems are not discussed. Mechanical systems with unilateral
constraints and friction are ubiquitous in everyday life and in
industry. Moreover, mechanics has always had a leading role in
Science, and many results motivated by Mechanics have found
applications or extensions in other scientific fields. The main
focus of this paper is, therefore, on mechanical systems, despite
many other systems may be modeled in a complementarity
framework (like electrical networks) as the aforementioned list
shows.

II. COMPLEMENTARY DYNAMICAL SYSTEMS

A. General Dynamics

The class of finite-dimensional controlled nonsmooth dy-
namical systems on which we will focus in this paper can be
represented by the following set of differential and algebraic
equations and conditions:

almost everywhere,

State reinitialization rule

(1)

where is the state of the continuous dynamics,
is a real number, is some measurable output signal available
for feedback, is a control signal to be chosen in some
admissible set , the slack variable and the signal

constitute a pair of complementarity variables as indi-
cated in the third line of (1), where is some function. The
symbol means that and have to be orthogonal. The sets

and , are a pair of polar convex
cones, is the initial time. Let us note that the first equality
in (1) will generally be satisfied only almost everywhere in the
Lebesgue’s measure sense, because the solutionof (1) will
generally not be differentiable everywhere. Following [89], dy-
namical systems as in (1) may be namedcomplementarity sys-
tems[CS, or systems subject to generalized constraints, made
of the third and fourth lines in (1)]. In order to integrate the dy-
namical part of (1) (i.e., the first line), one needs to calculate

. It will be shown on several examples how the slack variables
, are calculated at each time. Finally a state

reinitialization rule will generally be needed to integrate trajec-
tories on a time interval of strictly positive measure. The inter-
play between the various ingredients in (1) may be rather com-
plicated, and this is what makes the study of such controlled dy-
namics challenging. Before examining some simple examples,

let us briefly introduce complementarity problems (see more in
Appendix B).

Complementarity conditions have been introduced by
Moreau [64] in contact mechanics, and Karush et al. in
quadratic programming [74]. They yield CP of the form

: the -dimensional vectors and have to
belong to the sets and , respectively, and are orthogonal.
If and are a pair of polar cones, then
is a Cone CP [8]. If for some matrix and vector

and if , then is equivalent
to the Linear CP (LCP) , , ,
denoted as LCP . is the LCP matrix. If the matrix is
a P-matrix (i.e., all its principal minors are positive), then
the LCP has a unique solution independently of[74]. If

for some nonlinear function , then
is a nonlinear CP (NCP).

When they exist, the left and right-limits of a function at
are denoted as and , respectively.
Example 1: Let us consider the following complementarity

systems:

(2)

where is a constant and or . Consider
, and let . Thus, initially so that de-

creases toward in finite time , i.e., . Notice
that due to the complementarity conditions, one has on

. In order to continue the integration for , there
must exist at least onesuch that both the differential equation
and the complementarity conditions are simultaneously satis-
fied. Let us propose . Then,
so that on one has . One notices that if

then , however if then
which is impossible. Notice that in the latter case

one has , consequently if ,
there is no nonnegative which allows to satisfy on
an interval , for any . Notice also that we
have written the right-limit for at because the solu-
tion we are looking for is indeed not differentiable at since

whereas . Thus, if , the in-
tegration cannot be continued after . If the previous
choice allows one to integrate over . Moreover, it can
be shown that this is the only possible solution. Actually the
proposed choice for comes from the following: assume that

on a nonzero time interval. Then
, from which it follows

that is the solution of the LCP . This
LCP always possesses a unique solution which is precisely the
previous one. And if the corresponding LCP has no
solution. Therefore, one sees that once the boundary has
been reached, we have been able to exhibit a new slack vari-
able such that integration of can be continued, and the
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complementarity conditions remain satisfied provided the LCP
matrix (which is here a scalar) is positive. Assume now that
at time the vector field switches to and is
right-continuous at . Then one looks for the solution of the
same LCP which gives . Thus, so
that leaves the surface at and reenters the domain

.
Consider now . This time the complementarity condi-

tions directly yield a LCP for the slack variable. If
then this LCP has no solution for any . It has the two
solutions or for (see, e.g., [12, fig.
5.19]). Consequently in this case there are two solutions
emanating from and at each timesuch that , and
uniqueness fails. Let . If the unique solution of
the LCP is . Then, increases toward
exponentially on with . If then

is the unique solution of the LCP and decreases
to exponentially on with .

In both and with , we have exhibited a
unique continuous solution that is almost everywhere differen-
tiable for and everywhere differentiable for . Consider
now . If , , then on a fi-
nite time interval , decreases toward ,
and . One has ,

. Clearly, at , the value of has to
change in order to keep nonnegative. Even more,
on for some , implies that both and

jump to nonnegative values at. This implies that
cannot be a function, but must be a distribution involving both
the Dirac distribution and its derivative . At this stage,
one needs some rule to perform the calculation of the jumps in

and . If this rule says that then
the integration can continue on with , so that

on . Using the fact that
on a nonzero time interval together

with , we conclude that holds.
Consequently is calculated at time as the unique solu-
tion of this LCP. If the rule states that , ,
then bounces on the boundary at and on

for some .
These examples do not encapsulate all the features of comple-

mentarity systems and are not meant to be rigorous proofs for
existence and uniqueness of solutions. However they do illus-
trate some basic peculiarities. One notices that the vector field
remains continuous in , until some boundary is reached by
the state . Then the multiplier is calculated and modi-
fies the vector field of the continuous dynamics, in such a way
that the integration of proceeds. It is noteworthy that the
leading Markov parameter [93] of the system with output
and input plays a significant role in the analysis and that
it is closely related to the existence and uniqueness of solu-
tions of some LCP constructed from the complementarity con-
ditions and the dynamics. The well-posedness results in [20],
[40], [42], [89], and [88] are based on this observation. When

, , and , (1)
is named a LCS. LCS have been presented for the first time in
[89]. If is a matrix then is the unique solution of the LCP

at each .

A particular feature of CS compared to other classes of hybrid
systems (see [3], [47], and [97]), is that CP and convex anal-
ysis are at the core of their analysis. This is clear for both the
mathematical [87], [42], [40] and numerical [15] aspects. One
objective of this paper is to prove that this is also the case for
control and systems analysis. As we shall see later, such systems
can also be considered as differential inclusions. Models as in
(1) are quite interesting because they are not too general, but yet
are rich enough to potentially present a lot of challenging prob-
lems to systems and control theorists. Moreover, the engineering
applications are numerous. Let us notice that the discrete-time
counterpart to (1) exists [7], [43], but we shall focus on the con-
tinuous-time case only.

If is a solution of this NCP, then it is also a zero of the
nonsmooth complementarity function . The
set of piecewise linear equations is equivalent to

[8]. Other complementarity functions exist. The
constraint may be named a generalized constraint.

Remark 1: If , , and if
it follows that the third and fourth lines of (1)

can be rewritten as for some complemen-
tarity function . Thus, the dynamics in (1) may be seen as a
nonsmooth differential algebraic equation in this case.

B. Associated Hybrid Automaton

The time-integration of the systems in (2) suggests that
there is a natural connection between the dynamics in (1) and
so-calledhybrid dynamical systems, i.e., dynamical systems
whose evolution is the result of the interplay betweencon-
tinuous and discrete-eventdynamics [87], [41]. In (1), the
continuous part is in the first two lines, the third and fourth
lines describe the discrete-event part (the modes and the
conditions for transitions between modes to occur). The last
line describeshow transitions between modes occur. The state
of the system, therefore, consists of a variable that takes its
values in a continuous space, and variables that take their value
in a finite set , i.e., . The DES state for CS as
in (1) can be in a first instance constructed from themodesthat
correspond to the values of the variables, .
Let us consider the case of a LCS. For each component,
the complementarity conditions yield two modes: or

. Hence, one hasa priori . The events (or
transitions) correspond to trajectories passing from one mode
to another one, implying a change in the structure of the vector
field . In there are such events at times
and , and in at time .

Let us denote the states of the DES part as ,
, and a trajectory (also named a path) as. A path

thus consists of a finite number of DES statestogether with
transition rules which allow the system to evolve from one state

to another state . One may consider that a mode is active, if
and only if has remained during a time interval of positive
Lebesgue measure in this mode. The reinitialization of the state
implies a discontinuity in . In general, the activation of a
new mode cannot be done without a reinitialization of the state

, hence, the fifth line in (1). See, e.g., where the state
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has to jump at to continue the integration. However, in some
cases a nondifferentiable state may suffice for a trajectory
to pass from one mode to another one, see examplesand

in (2). Transitions may even occur smoothly, as in the case
of a mechanical system if the constraint is attained tangentially
in the phase space.

Generically event times which correspond to a trajectory
passing from the mode to the mode are denoted as ,
and reinitialization times are denoted as, .

The complexity of CS is further illustrated by simple mechan-
ical systems, where an infinity of events can occur in finite time
(finite accumulation of impact times, i.e., a particular type Zeno
behavior [87, p. 10]), and several such finite accumulations may
be repeated (possibly an infinity of times as ). A
well-known example is the bouncing-ball dynamics ,

, , , ,
and . There is a se-

quence of impact times , that is followed by a switch
from mode to mode at time [notice
that so that this transition occurs without
velocity jump]. Consequently on the system evolves al-
most all the time in the mode . Obviously, in some cases,
a time is also a mode switching time (see , and plastic
impacts in mechanics).

The distinction between the times and is not neces-
sary from a general hybrid dynamical systems point of view,
because they can all be embedded into transition or event times
[87, Chs. 1 and 2]. However, it may sometimes be convenient to
distinguish between state jumps and variations of the structure
of vector fields since they may not have the same consequences
on control properties.

Remark 2: The associated automaton has nodiscrete con-
trol. In other words the transitions between the modesas
previously defined, are only function of the continuous part of
the system. This may have important consequences on control
properties.

In this paper, we will not provide many details on the
well-posedness problems [existence and uniqueness of solu-
tions for all and in a suitable
function space]. Examples in (2) provide a rapid overview for
some CS.

Assumption 1:There exists and such
that (1) possesses a unique solution on

for some , , . Depending on
the ingredients in (1), solutions may be of different nature (AC,
RCLBV, piecewise continuous, etc.). The least requirement is
that solutions possess a right limit everywhere.

In other words assumption 1 states that there exist an initial
state and a control input (possibly ) such that (1) can be
integrated on a nonzero time-interval. Otherwise we consider
that the model can be rejected. Clearly the space in which the
solution lives, may influence control studies. In particular the
input has to take its values in a suitable space, and this has
consequences on controllability. Also notice that assumption 1
includes possible initial state jumps and that the solutions may
be discontinuous with respect to initial data. Such evolution
problems may be namedprospective[73], because at eachone
looks for right limits of the solution.

C. Basic Notions From Convex Analysis

The following notions [44], [65], [86] are fundamental tools
for the analysis of complementarity systems, and we will use
most of them. Let denote a closed convex set. Its in-
dicator function is defined as if and

if . The subdifferential of a lower
semicontinuous (lsc) convex function at is denoted
as and is the set of subgradients, i.e., vectorssat-
isfying for all . The subdifferen-
tial replaces the derivative, for nonsmooth convex functions.
If for , for , ,
then is convex lsc and . The subdif-
ferential of the indicator of (which is convex if and only
if is convex) is given by if ,

if , if , where
is the boundary of , and ,

is the outwards normal cone to at . The
inwards tangent cone is the polar cone to and
is defined as , . Both
the normal and tangent cones are convex and are defined at
points of the boundary where the normal direction is
not uniquely defined [see Fig. 4 in a simple case where the
sets are depicted]. Polarity is a generalization
of orthogonality, for convex cones. In mechanics with bilateral
holonomic constraints, the admissible velocities and the contact
reaction belong to orthogonal spaces. Roughly, this generalizes
to unilateral constraints by replacing these orthogonal spaces
by the tangent and normal cones, respectively [70]. General-
izations of these notions to nonconvex setsand functions
exist [79], [23], allowing, e.g., to state that if
for , for , then .

A super-potential(or pseudopotential) of dissipation [66],
[79], [39] is a convex lsc proper mapping , ,
such that , where and are a pair of dual
variables (in mechanics, force, and velocities). The conju-
gate of the lsc convex function is defined as

; see (16) for an example. One
has . Bilateral constraints with Coulomb friction
can be expressed this way, as well as many other physical laws
[33]. Nonconvex superpotentials can be defined using Clarke’s
gradient [79]. There is also a strong apparatus of numerical
algorithms associated to such analytical tools [2], [92], [74],
[15].

The conventional notation. for boundaries of sets, partial
differentiation and subdifferential, is kept throughout the paper.
The gradient if

. If is differentiable, then .

III. EXAMPLES

Some examples of systems that may be recast into the
framework of (1) are presented. In view of the list provided in
the introduction, the following examples are only a few cases
of CS (see [87, Ch. 4] for other examples). We omit to indicate
initial conditions. Let us notice that when solutions possess
jumps, then the initial data in (1) have to be taken as a left-limit

to allow for initial jumps [71].
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Example 2: (Mechanical system with frictionless unilateral
constraint)

Collision mapping.

(3)

In (3) and the other terms may be iden-
tified easily. The second line in (3) may be called the Hertz–Sig-
norini–Moreau conditions [25]. According to the discussion in
Section II-B, the associated automaton has states. When

, then one may define , and
write the complementarity relation as with

and ,
. The dynamics in (3) encompasses manipulators per-

forming complex robotic tasks (e.g., models for deburring tasks
which have considerable importance in manufacturing industry
[85] and many other machining tasks) as well as controlled
Lagrangian CS. Important applications also exist in aerospace
(pick up tasks with autonomous robots in zero-gravity fields,
tethered satellites, landing aircrafts). The first use of (3) in Con-
trol and Robotics can be found in [45]. Models as in (4) in-
cluding also Coulomb friction have been proved experimen-
tally quite valuable for somewhat complex systems ( ,

) in industrial applications for virtual prototyping of
circuit breakers [1]. The existence and uniqueness of solutions

, is guaranteed if and only if all data are
piecewise analytic [5].

If then . If on , ,
then , and , ,

on . Thus, is calculated on from the LCP
, , which involves both the com-

plementarity conditions and the continuous dynamics [similarly
as for systems and in (2)]. The LCP matrix is
equal to so the LCP has at least
one solution [64]. If , detachment from the boundary

occurs if , , . If
and , then jumps at ,

which is an impact time . At impact times is a Dirac mea-
sure and the Lagrange dynamics becomes algebraic [12].

When is convex, the dynamics in (3) can
be equivalently rewritten as

when (4a)

(4b)

with , so that (4b) is Moreau’s collision mapping
[70]. In (4) is the convex tangent cone toat .
If this mapping reduces to Newton’s law in (9), with

. A coefficient of restitution can be introduced in the map-
ping in (4b); see [71], [59], and [12]. It is crucial to recall that

in (4) is a solution of a nonlinear equation depending on the
state [12, Sec. 1.3.1] and is most often only implicitly defined.
One may also replace the right-hand side of (4a) by the (more re-
strictive) inclusion [70], which
incorporates the collision mapping in (4b). Actually the term

can be interpreted as a displacement potential, whereas

can be interpreted as a velocity potential [35].
Both are associated to the unilateral constraints , and
physically state the impenetrability of the bodies in contact. The
notion of MDIs is introduced in Appendix A. From (4) one can
obtain Moreau’s second-order sweeping process [53], i.e., the
MDI

(5)

where , and the measure can
be chosen as indicated in Section VI-B. This formalism is
the proper extension of Lagrange equations to systems with
unilateral constraints. It may be more useful than the comple-
mentarity one when dealing with existence of fixed points or
stability considerations. The domain may be described as
in (3) without being convex. One may then use the notion of
nonconvex superpotential or generalized gradient [79] to write
(4a), see, e.g., [23, Prop. 2.4.12]. The right-hand side of the
inclusion (5) encompasses both cases whereis continuous
[in which case ] and discontinuous (in which case

for some ). At then the MDI in (5) becomes the
classical algebraic shock dynamics.

Remark 3: Nondifferentiable points are those configurations
where the normal direction to is not uniquely de-

fined, however the normal cone exists. The formalism in (3) pre-
cludes so-called reintrant corners, or “peaks” [35], but does not
imply convexity of . For instance, the domain in defined
as , , , is not convex, but locally
around and it is convex (in the terminology of
[23, def. 2.4.6], the set is regular at and ).

Example 3 (Mass Linear Spring-Damper):The dynamics
of a mass with position , that rebounds on a spring-damper
system with position , and where the contact force has
to remain nonnegative and satisfies a complementarity relation
with the distance , is given by

(6)

where , the stiffness and the damping coeffi-
cients

The contact and noncontact phases correspond to
and , respectively. When

the graph of the piecewise-linear relation betweenand is
depicted in Fig. 3(a). Notice that in this case ,
and “ ” relations possess a complementarity formalism [41].
This example shows that unilaterality does not imply rigidity.
However, it implies impenetrability.

If on , then the complementarity condition
holds on . Since ,

is at time the unique solution of the LCP
. Transitions from noncontact to contact occur with a

continuous state .
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Fig. 1. Systems with a piecewise linear interconnection.

Fig. 1 illustrates the cascade connection of two linear sys-
tems with transfer functions and , and with a piece-
wise linear interconnection between the first system’s output
and the second system’s input. Some typical piecewise linear
characteristics are depicted in Fig. 3.

Example 4 (Dead-Zone, MOS Transistor):Let us consider a
dynamical system as depicted in Fig. 1 with the piecewise linear
characteristic in Fig. 3(b) with . The dynamics is given by

(7)

where . In (7) , and
. The three modes are and ,
and , . When

and , Fig. 3(b) represents the characteristic of a MOS
transistor (with a control voltage).

Example 5 (Saturation, Elasto-Plasticity):The dynamics of
the CS in Fig. 1 where the piecewise-linear relation is as in
Fig. 3(c) is given by

(8)

Here, and the nonfeasible mode is and
. The three feasible modes are the same as in example

4.
In both examples 4 and 5, the multiplieris calculated at time

as the unique solution of a LCP whose matrix is the identity,
similarly as in in (2) with .

Example 6 (Painlevé System):Coulomb friction lends itself
to a representation by complementarity relations, since the
graph in Fig. 3(f) is monotone with [so that
for some convex ]. Consequently the dynamics of a slender
rod subject to a unilateral point-contact with Coulomb friction
(coefficient ), as in Fig. 2, is given by

Newton's impact law:

(9)

Fig. 2. Painlevé system.

where , ,
, , , and

are the center of mass coordinates andis the rod ori-
entation, , . The vector is
the generalized contact reaction and is the friction cone in
generalized coordinates [12, p. 328]. In (9), there may exist ve-
locity jumps during sliding regimes and and

may diverge to infinity in the vicinity of some critical points
(the state remaining however continuous at such critical points).
These two phenomena are a consequence of the coupling be-
tween complementarity conditions and Coulomb friction, which
yields a very particular type of singular differential equation and
may destroy the convexity of the underlying quadratic program
for calculating (see Appendix B) [12], [34]. One notes that

in (9) is nonlinear in . Though solutions of (9) are
such that AC and RCLBV [95], uniqueness fails [34],
and a complex behavior similar to that of example with

in (2), can occur [55].
The multiplier in (9) does exist as a measure. Compared

to (3) the coupling between Coulomb friction and unilaterality
complicates the definition of (9) as a hybrid dynamical system
since it creates new modes. As a consequence state (velocity)
reinitialization may occur at impacts but also in the sliding-
motion mode.

Example 7 (Square Relation):Let us consider now the
system in Fig. 3 with the set-valued relation whose graph is the
square characteristic in Fig. 3(d)

(10)

Here, : and
, , , ,

, and
, , , and so on

for and . Notice that the characteristic does not span the
whole -axis, i.e., PL . This is quite
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Fig. 3. Graphs of the piecewise-linear relations.

similar to the corner law characteristic PL ,
as in Fig. 3(g) with (the case represents adhe-
sive contact which may be encountered with rubber support, or
in micro-robotics where van der Waals forces play a role in the
contact). Let us say that such graphs contain someunilateralef-
fects. Clearly similar developments can be made for the graphs
in Fig. 3(e) (fluid with two viscosity ranges [79]) and Fig. 3(f)
(rigid viscoplastic material characteristic; the case repre-
sents relaxation effects and the graph is non longer monotone,
indicating a loss of dissipativity with consequences on stability);
Fig. 3(h) (unilateral and adhesive effects [30] whereis a dis-
placement and is a contact impulse).

Example 8 (Electrical Circuit With Ideal Diode):A simple
electrical circuit containing an ideal diode whose characteristic
is a corner law as in Fig. 3(g) with , a current source and an
inductor mounted in parallel, possesses the following dynamics:

State reinitialization rule

(11)

where is the inductor current, is the voltage
across the diode, is the current across the diode, is

the current variable of the current source. Interestingly enough
the dynamics of a yo-yo [56] and (11) are also quite similar,
since the input acts directly in the constraint .

Example 9 (Generalized Nonholonomic Constraints):The
dynamics of a particle in with coordinates , sub-
ject to the nonholonomic constraint

(12)

is studied in [24]. It is shown that the loss of rank of when
the trajectories enter some subset, implies the need for a state
reinitialization to integrate the motion. Also the multiplieras-
sociated to the constraint may diverge to infinity when the tra-
jectories approach the singular set . This
is therefore an example of a system with a bilateral constraint
(however, it can be easily recast in the framework of unilater-
ally constrained systems by expressing the equality in (12) as
two inequalities), that yields a behavior conformable to that of
the Painlevé system in example 6.

OP 1: In view of examples 6 and 9, extend the studies on
singular differential equations to link Painlevé-like problems,
dynamical systems with generalized constraints, and singular
systems , where rank is not constant [84].

Other examples of dynamical systems that can be cast in a
complementarity framework can be found in [8], [87], [41],
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[40], and [99]. From examples 3–5, 7, and 8, it follows that an
important subclass of systems as in (1) is given by

State reinitialization rule.

(13)

Systems as in (13) may be named ACS. It may be assumed that
to avoid meaningless complementarity conditions. How-

ever, as example 7 shows,is not necessarily full rank.
Remark 4: Some of the presented examples have already

been thoroughly studied in the control literature without re-
sorting to any complementarity framework (e.g., example 3 with

, or examples 4 (dead-zone), 5 with PL at the input [98]).
However, on the one hand this is not true for all CS (by far).
On the other hand, it is expected that the existing works, when
replaced in a more general context, may provide some useful
insights for the analysis of other systems. The fact that all these
systems share a common structure cannot be passed over.

State reinitializations: The examples in (2) have shown that
some CS can be integrated without state jump, whereas others
have discontinuous solutions. As alluded to in example 6, the
fact that a discontinuous state reinitialization is needed or not,
may not always be evident. Let us consider (1) disregarding state
reinitialization (consequently excluding initial state jumps), and
such that assumption 1 holds. By construction the system is ini-
tialized in a certain mode . The central question is: if the con-
ditions for transition into another mode are met, can one inte-
grate the system without reinitializing ? In other words, is
continuation in another mode possible with a continuous
or not? There are two main steps in this problem: determine the
conditions such that state jumps are necessary, then define a rule
for state reinitialization. As the mechanical systems (3) and (6)
show, the relative degree between and plays a major role
in the need for state jump. In (3) , so at no bounded
exist to solve if . In (6), and
the LCP always has a unique bounded solution,
which allows the system to satisfy without state jump.
Consider now (7). Then one can always compute a uniqueas
a solution of a LCP , since the LCP matrix
is the identity matrix so that . Thus, no state reinitial-
ization is needed to respect the condition : a bounded

suffices. This can be generalized to (13), where
the matrix should be a -matrix.

A geometric approach has been presented in [26] for systems
, , which brings an answer

to the first step. The theory is based on the use ofrelative degrees
between and to characterize the set and builds up
possible reinitialization mappings. General state reinitialization
rules are proposed in [42], [20], [21], and [24], for ACS as in
(13), with , , , , . They ex-
tend Moreau’s rule in (4). They can be formulated as quadratic
programs or Cone CP, which is of great usefulness for numer-
ical simulations. The principle of maximal dissipation (see (9),

sixth line) that is used to avoid penetration of the state into in-
consistent zones for the Painlevé system in example 6, is another
example of state reinitialization rule.

The choice of a suitable reinitialization map is a crucial step.
Simple examples show that one has to choose it in accordance
with the continuous dynamics (consider e.g., two masses which
collide, moving on a straight line: linear momentum conserva-
tion precludes the use of some “imaginary” impact law such
that both masses stop after any shock).

IV. RELATIONSHIPS BETWEEN CS AND OTHER

HYBRID MODELS

Differential Inclusions: It has already been pointed out in
example 2 that there is a strong link between CS and some kind
of DI. The dynamics in (13) can be equivalently rewritten as a
differential-algebraic inclusion

State reinitialization rule.

(14)

The DI almost everywhere, with upper-semi-
continuous, is convex and compact for all, and

satisfies linear growth conditions [i.e.,
for some and ], is widely studied, see [28].

Then AC solutions exist. In general, such DI and CS as in (1)
are quite different. A case when they drastically differ is unilat-
erally constrained mechanical systems, since the linear growth
and compactness conditions fail. Another example is in (11),
which can equivalently be rewritten as .
Therefore, it can be recast into Moreau’s first-order sweeping
process [68], [63], [53], i.e., DI of the form
where is a convex set depending on time.

However, for certain CSs, they coincide. This is the case of
the following one degree-of-freedom mechanical system with
Coulomb friction (corresponding to the graph in Fig. 3(f) with

)

(15)

where , and the analogy with (13)
or (14) can be made. The dynamics in (15) can be equivalently
written as [71]

(16)

where is the conjugate function of the indi-
cator and satisfies the aforementioned standard
hypotheses on . It is a convex superpotential. Notice that
(16) can also be cast into the framework of Filippov’s systems,
i.e., a special sort of DI. The Zhuravlev–Ivanov transformation
can be used to transform mechanical systems as in (3) and with

into Filippov’s inclusions [12].
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OP 2: Determine the conditions on the matrices in (13) such
that indeed (14) is a DI: with satisfying
some standard hypotheses [28, Secs. 5 and 6], with an AC so-
lution. Uniqueness is more complex to establish but is also an
important and largely open issue [83].

Due to the numerous studies on the sweeping process [68],
[63], [53], the following is of interest.

OP 3: Determine the conditions such that (14) is a first-order
sweeping process, and derive well-posedness results for such
ACS (in particular the nature of solutions depending on the set
of admissible controllers).

OP 3may be a preliminary step into some cross-fertilization
between mathematical studies on various types of DI ([10], [53],
[63], [50], [28], and the references therein), and complemen-
tarity approaches [20], [21], [40]–[43], [89], [88].

Measure Differential Equations (MDE):Specific notions
of solutions have been introduced for MDE of the form

with RCBLV [78], or even with
quadratic terms in [9]. Other types of MDEs are consid-
ered in [4] with piecewise continuous solutions, of the form

if , if
for some sequence . It is clear that such models
and (1) are of different nature. Significant differences between
MDE and CS are stated in [12, Sec. 1.4.2, Ch. 7], and in [15].
Actually, the complementarity conditions in (1) play a major
role in the dynamics and in all the properties of such systems.
This does not prevent some analytical tools (like stability
notions) to apply both to such MDE and certain CS, as pointed
out in [12, Remark 8.12]. But this is not true in general [87,
Sec. 1.2.5].

Piecewise Smooth Systems (PSS):PSS may be defined as
if , , each has a nonempty

interior, is either a zero-measure set included in or
in (e.g., and ), or (e.g., and ). The

are smooth vector fields,is an index (positive integer).
Mimicking OP 2 and OP 3, let us state the following.

OP 4: What CS can be represented equivalently as PSS, and
vice versa?

Consider examples 3 (with ), and 4 (with ) and
5 with no input (i.e., ). They are PSS [such is not the case
for (3)]. Certainly the definition of the vector fields on the inter-
sections plays a role, since it is related to graphs (filling
the gaps at discontinuity points) and maximality for monotone
operators. This is clearly illustrated by the various definitions
one may give to the signum function.OP 4has been clarified in
[43] when the continuous dynamics is in a discrete-time repre-
sentation. Related results are also in [22]. It follows from a result
in [99] that all systems with a piecewise linear connection (see
Fig. 1) can be represented as an ACS in (13).

OP 5: Study conditions on the Cone CP:
and on the function , for (1) to be PSS. Discover
state variable changes (possibly nonsmooth, noninvertible) such
that the transformed trajectories are time-continuous. How may
one use conjugacy of convex functions in this setting?

More generally, there is certainly a strong need for clarifying
the links between numerous models of hybrid and nonsmooth
systems. This section only aims at pointing out possible paths
for few of them.

For instance, let us notice in passing the following equiva-
lences:

(17)

with in in (2) and is a linear projection.
The last-but-one equivalence is between a differential inclusion
and alinear evolution variational inequality[37]. The last for-
malism is called aprojected dynamical system(PDS) [75] and
the equivalence uses basic convex analysis [44, Prop. A5.3.3].
VIs are another type of dynamical system which is widely used
in some branches of applied mathematics [37], [75]. As (17)
shows, in some cases DI, VI, CS, PSS, and PDS are only dif-
ferent formalisms for the same system.

V. CONTROLLABILITY ISSUES

The system (1) is controllable on if for any pair
of states, there is an admissible input such that

. There is a unique notion of
controllability for linear time-invariant systems. However, such
is not the case for nonlinear systems. Many relaxed notions of
controllability exist in this case, which are not in general equiv-
alent. Roughly, the controllability properties are characterized
by the reachable sets [77]

such that the

evolution of (1) satisfies

for all

and (18)

where is a neighborhood of . It is assumed in this definition
that assumption 1 holds at least on . The system isacces-
sible from when contains a
nonempty open set for any and sufficiently small . A
Lagrangian system is said to beequilibrium controllable[54] if
for any two equilibrium points and , there exists an input

, and a solution , , such that ,
, for all , and .

A. Example

Let us illustrate briefly on an example how the complemen-
tarity relations and the state reinitialization rule, may influence
the controllability properties of a dynamical system. To this
end, let us first consider the controllable dynamics .
Let us add a unilateral constraint and an impact law

, with . As a consequence all states
with cannot be reached from any ad-

missible state , using bounded inputs. If is RCLBV,
then the states with cannot be reached neither, so
that only the origin is reachable on . However, the CS
( , , and ) is equilibrium con-
trollable. Let us now modify the controlled dynamics by adding

, . Then, in , .
Consequently the system may be rendered controllable only if
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negative jumps in are introduced on , which may not be a
good idea. Otherwise, the system is accessible only. As we have
seen in example in (2), the external action can be used to
steer inside .

B. Admissible States and Inputs

Let us first propose the following.
Definition 1: Let be a control input such that assumption

1 is satisfied. Then, is admissible for (1)
at time if such that

and . The set is
the admissible set.

Therefore, clearly appears that one interpretation of the third
and fourth lines in (1) is that they form a generalized constraint.
Due to assumption 1, the right-limit always exists. From
definition 1 admissibility applies to the right limit. One notices
that admissibility does not preclude accumulations of jumps in

. At times admissibility may be stated as: belongs
to the domain of the state jump mapping. The notion of admis-
sibility is a static notion to be checked at a time instant. For
instance, the left limit may be nonadmissible, so
that the solution has to instantaneously jump to an admissible
right limit. In in (2) with , only is ad-
missible. In with , all are admissible. In (3),

has to be admissible since is AC. How-
ever one may need to consider higher derivatives of the signals
to verify the admissibility. This is the case of example 2 in which
one needs to differentiatetwice to enable the calculation of
during phases where , by constructing a suitable LCP.
Consider example 5. Thencan be calculated as the solution of
the LCP: , which always possesses a unique so-
lution since the LCP matrix is positive definite (it is the
identity matrix). In both cases, one sees thatdoes not depend
on . Let us consider now example 6 with . The mathe-
matical analysis [95], [34] shows that and can be Dirac
measures so thatmay jump, during sliding modes and

. Such discontinuities are a consequence of the coupling
between the complementarity relations and
Coulomb friction. They arenot due to any impact between the
rod’s tip and the ground, in which case would be a Dirac
measure. They prevent the system from violating the constraint

and from penetrating into an inconsistent subspace of the
state space. Such inconsistencies are not rare, and practical ex-
amples show that they do occur for reasonable values of physical
parameters [15], [12]. When and differentiating twice ,
one obtains that the contact force is the solution of a LCP of
the form . Consequently
the domain ofinconsistent (see [12] or [34, Fig. 2]) de-
pends on . Moreover, if depends on , then the LCP ma-
trix is modified also. This may have important con-
sequences on the controllability of the system, since the states
which area priori reachable must belong to. In the latter case,
one might even imagine a boundedsuch that .

OP 6: Determine conditions on , ,
such that does not depend on. Start with ACS as in (13).
Classify CS for which does not modify the properties
of the CP to calculate, systems for which is forbidden,
systems for which may modify the shape of .

Fig. 4. Controllability in the normal cone.

OP 7: Determine the set of admissible inputs such that
, or such that , where is a given subset of the

state space, for all .
The notion of admissibility does not at all replace nor imply

the uniqueness of solutions. Actually, a statemay be admis-
sible, and be unique while nonuniqueness of solutions ema-
nating from holds, or may not be unique while solutions
are, see [12, Sec. 5.4]. However. it is a preliminary notion which
may help the control designer in planning which states area
priori reachable or not. It is thus advocated that the accurate
characterization of is an important step in a control study. One
should always speak of controllability over(independent of

) for constrained systems, since for any ad-
missible . Admissible sets have been characterized in [20] for
passive LCS and in [22] for a special class of piecewise linear
systems.

Remark 5: The notion ofviability of the input [16] also
has to be considered. Let us consider and .
Roughly a control input is said to be viable on ,

, if the trajectory .
Consider again , , with , , ,

, see Fig. 4. If then at the orbit hits
the boundary whatever . Thus, no input is viable for

.
Viability of the input may be crucial in some control studies

[60]. Let us introduce the following notion.
Definition 2: Let for (1), with differen-

tiable components , . Let us denote the projec-
tion of a solution on the boundary
as . Let us also denote the projection
of the trajectories on as .

Then, if the mapping is surjective for any
, the system is said to be normal controllable (NC).

In other words, NC means that trajectories can be controlled
in the normal direction to , see Fig. 4. The NC property im-
plies the existence of a viable input, and the work in [26] can be
used to characterize it. This notion is quite consistent with via-
bility of sets in DI theory and is natural since the orbits evolve
in some admissible sets. The novelty is that the set of forbidden
states may not be constant.
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C. Complementarity Mechanical Systems

From the previous developments, it follows that solutions of
CS possess the generic form (we drop all arguments for clarity
of writing)

(19)

where the DES path is and
each transition is a priori done through a state
reinitialization mapping . The solution between two switches
in a mode is denoted as ,
where is the transition instant, and

. In case of a finite accumulation of transitions, one
has in (19). Notice that there may be several infini-
ties of events, even in simple systems (think of a bouncing ball).
From (19) it follows that the controllability of (1) depends on
(what sequence?), the mappings, (do they help, bother,
or are not concerned? Does bijectivity of these mappings allow
one to ignore their effect on controllability?), the controllability
properties in each mode in [recall the , , in (19)
depend on ], and combination of all these ingredients. Some
peculiarities of controllability of systems in (1) have been high-
lighted in the foregoing section. Let us consider (3). Then preim-
pact states with and , are not reachable
since is right-continuous. More generally the work in [26]
can be used to characterize reachable subsets of.

The work in [19] considers the controllability properties of a
mechanical system in each mode and combines them in order
to check the equilibrium controllability. However it is assumed
in [19] that at any state , one can switch to any mode in-
stantaneously, i.e., there is a nonempty set of discrete controls
for the event times . Consequently, the derived criterion ap-
plies to systems with clamping devices (bilateral constraints that
can be activated or deactivated at will), rather than to mechan-
ical systems as in (3), see Remark 2. The work in [38] is also
based on the controllability properties of a mechanical system
in each mode. It applies to quasistatic systems (no drift, no colli-
sions, inputs are velocities). The interest of this study mainly lies
in the fact that it shows how to characterize the controllability
properties by switching between the modesof the associ-
ated automaton. The natural notion of controllability restricted
to constraint surfaces of the configuration space is also intro-
duced in [38]. The previous studies use the geometric structure
of nonsmooth mechanical systems [24].

OP 8: Depending on the input matrix in (3), the uncon-
strained system may not be controllable [e.g., underactuated
systems with , or the structure in (20)]. Can the addition
of complementarity conditions and state reinitialization improve
its controllability properties? So what is the relation between the
controllable subspaces of the dynamics in each mode, the state
reinitialization rule and the set of admissible controls, so that
the CS is controllable? A path for local controllability study may
be to use the linearization of the solution in (19) which incorpo-
rates the so-calledsaltation matrix[27].

Some preliminary answers have been given for juggling sys-
tems [58], [16], [17], [94], which are a subclass of mechanical
CS as in (3) that possess the following general form:

Collision rule

(20)

with . Examples of mechanical jugglers
are running biped robots, hoppers, controlled structures, non-
prehensile manipulation systems, manipulators with dynamic
passive environment, systems with dynamic backlash or liquid
slosh phenomena [60], tethered satellites [52], etc. Provided
the dynamics is controllable, the unconstrained system
with is therefore written in an uncontrollable canonical
form. The only way to control is through the collisions, i.e.,
by using as an input. The basic idea in [16] and [17] is to
study the controllability properties of a partial impact Poincaré
map with state and input
(see, e.g., [16, Lemma 3]). Reachable sets and accessibility
are defined accordingly. The Poincaré section is chosen as

, . This
controllability problem may be stated as follows [17].

Problem 1: Given with , and
, find , ,

and , such that and
.

In other words, one looks for a sequence of impacts to
join the initial and end points. The locations, velocities, and
number of impacts, are unknown of the problem. Denote

, ,
, .

Let us denote as an input vector , and
. As shown in [17] when the vector fields

, and in (20) possess some linearity, finding a
solution to problem 1 is equivalent to finding a solution to the
constrained equation

(21)

where the matrices , , and depend nonlinearly on
the initial state and on . If (21) possesses a solution

, then is reachable from . The example of
an impacting pair (modeling dynamic backlash [60]) is treated
in [17], and some general results are given which make use of
the particular structure of the constrained equation in (21) and
of CP constructed from the Karush–Kuhn–Tucker conditions
[74]. Comparing the constrained equation in (21) with the linear
system of equations that characterizes the controllability of dis-
crete-time invariant linear systems [93, Sec. 3.2], shows how
nonlinear jugglers are.

OP 9: Investigate the structure of the reachable sets. How
may one use tools from linear and nonlinear programming to
get a general criterion on accessibility of jugglers? Can local
controllability criteria be set up, and if so are they always rele-
vant? Indeed in certain casesglobalcriteria may be needed.
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It is particularly interesting to note that jugglers may not
be locally accessible, but onlyglobally accessible [17], [58].
In other words, problem 1 may not possess any solution for

and all intermediate locations and velocities lying
in a neighborhood of . This is the case of a planar
juggler ( , ) whose reachable sets have been fully
characterized in [58].

OP 10: Characterize the controllability of (20) from. The
major ingredients are: the controllability of the-dynamics,
the controllability of the -dynamics in the sense of problem
1, the invertibility of the collision mapping. Use the aforemen-
tioned framework to study the influence of various characteristic
physical of systemical constants (restitution coefficient, Dar-
boux–Keller shock dynamics [12, Sec. 4.2.5], [96], relative de-
grees between, , , etc.) on the controllability.

D. Affine Complementarity Systems

1) General Considerations:Let us consider the ACS in
(13). It is crucial to note that the slack variableis not an
exogenous disturbance, so even when a matching condition
between and is satisfied, one may not compensate for
directly with . The switches between the modes play a
crucial role. If is a function, instantaneous switches at
arbitrary time are impossible in general. In other words, in
most CS the event times are not directly controllable.

OP 11: Is it possible to include distributional inputs in,
whose action would be similar to a discrete control by taking
instantaneously the state from one mode to another one?

As we shall see in Section V-D-2, in some cases of ACS,
bounded discontinuous inputs can act as discrete controls
and help invert some nonsmooth characteristics. The application
of distributional inputs (e.g., Dirac measures and deriva-
tives) to a CS, certainly requires much care. Until now we have
only considered state jumps which are ruled by a reinitialization
mapping. Applying distributional inputs to ACS [even if solu-
tions are AC for all bounded ] certainly is a delicate matter
in general since they become complex MDE (see Section IV).
The case where both reinitialization mapping and distributional
input coexist, is by far not yet well understood. Notice that such
questions may be fundamental when dealing with optimal con-
trol problems.

Remark 6: Consider example 8. The dynamics in (11) can be
rewritten as a first-order sweeping process [53]

(22)

The right-hand side of the inclusion in (22) is noncompact and
depends on both and , whereas in (16) it is compact and de-
pends on the state only, and in (4) it is noncompact and depends
on the state only. Which are the consequences of these properties
on controllability? It is important to remark here that the nature
of (continuous, piecewise continuous, RCLBV function)
influences much the nature of in the sweeping process. If

is Lipschitz, then is Lipschitz. If is RCLBV then
is RCLBV [53]. Therefore, controllability may be more dif-

ficult to study, since modifying the input space implies modi-
fying the solutions as well (especially introducing jumps).

OP 12:The controllability of the ACS in (13) with
and AC solutions may be attacked as follows. Assume thatis

full-column rank and let , . Then,
one obtains

(23)

where and is the solution
of the LCP: , and

(24)

How may one use the CP in (23) and the reduced-order dy-
namics in (24) (that may be a mixed or a simple LCP in) for
controllability purpose? Can one formulate similar conditions as
(23) and (24) from a time-discretization of (14) and then deduce
some properties of the continuous-time system by studying the
limit of the discrete-time solutions [59], [63]? What is the influ-
ence of the convergence (strong, weak, weak[5], [95], [90])
on such a study? Is it possible to formulate someverification
or feasibilitycriterion [6] that would allow the designer to test
numerically some approximate controllability properties from a
time-discretization?

It is known that mere LCPs may be quite simple or almost un-
tractable problems [8], depending on the properties of the LCP
matrix. This is expected to impose severe restrictions on the data
in (23) and (24) to get solutions of OP 12.

OP 13: Since and can be seen as an exogenous and a
state (and ) dependent inputs, respectively, what is the role of
the pairs , and in the controllability of
(13)?

The study of simple first-order examples as in (2), with the
input acting both in and in the vector field , might consti-
tute a good starting point.

OP 14: Let us consider an ACS in (13) with , ,
, , . Then from (14) its DI formalism

reads . Mimicking linear
invariant systems [93], its conjugate (or adjoint) system may be
defined as , , where is the conjugate
of . How is controllability of the system
related to observability of the system?

2) Inversion of Piecewise Linear Characteristics:The in-
version of the operator PL , PL , whose graph is
as in Fig. 1 is certainly an important property for the controlla-
bility of the overall system. The problem here is to find asuch
that PL for some desired signal . The deadzone of
Fig. 3(b) with is invertible on : let us denote its
output as and let us consider ,

. Then for all . Actually, one
sees that the graph of PL: is exactly the inverse graph
[86, p. 219] of the deadzone graph. The trick is that such aal-
lows the system to jump between modesand , avoiding
mode : it acts as a discrete control. This is closely linked
to having in (13), see (7). One sees that the comple-
mentarity formalism clearly shows why some nonlinearities are
invertible: directly acts inside the complementarity condi-
tions and allows one to impose switches of.

OP 15:Determine the conditions on the subsystem in
Fig. 1 and/or the set of admissible inputssuch that invertibility
of PL implies controllability of the overall system.

In conclusion, the controllability of CS as in (1) is a dif-
ficult problem because they possess no discrete control, and
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steering trajectories with the input involves an in-
terplay between the continuous dynamics and complementarity
conditions.

VI. STABILIZATION AND FEEDBACK CONTROL

Consider for instance an ACS ,
. As shown in [75, ex. 3.2], the stability of

the system does not imply that of this ACS [which is
an evolution variational inequality (EVI)]. Stabilization of CS is
therefore a subject that requires full attention. The characteriza-
tion of invariant sets is a prerequisite to stabilization. The first
section provides some insights on fixed points calculation for
CS. Then we discuss stability, dissipativity, and optimal control.
Finally the tracking control of two classes of CS (Lagrangian
systems and jugglers) is briefly reviewed.

A. Existence of Fixed Points

Let us consider the system in (4) with . Then the point
is a fixed point of this MDI if and only

if the generalized equation (see Appendix B)

(25)

holds. The function is the potential energy of the system
and , where denotes
Coriolis and centripetal torques. We also used the fact that

in the impact law, since .
Let us notice that the condition (25) does not imply at all
the uniqueness of the fixed point (for instance systems with
clearance in which there is an infinity of fixed points [60]).

Example 10: Let us consider the simple example

(26)

Obviously is the unique fixed point and
one can check that condition (25) is satisfied. The same dy-
namics with no longer possesses any fixed point.

Lemma 1: Assume that in (3) one has ,
, , , ,

and constant, and is full row rank.
Then equilibrium points satisfy the Extended LCP :

and ,
where and ,

.
The proof proceeds as follows. The equilibrium

has to satisfy the generalized equation
, since . Hence, multi-

plying both sides of this generalized equation by and
one gets and

. The first generalized equation is a LCP:
, and the second condition is the

equality . This can be written as the ELCP
(see Appendix B): , ,

, , with ,
, , .

Algorithms to solve ELCPs exist [92]. The results in [36] may
also be used to study and solve (25) (if then this
ELCP has one solution from [36, Th. 2.2]).

Generally, the fixed points of CS are the solutions of general-
ized equations .

B. Dissipative Systems

1) Lagrange–Dirichlet Theorem:It is crucial to develop
a stability analysis framework for systems as in (1). For
Lagrangian mechanical systems as in (3), the mathematical
results of [95] and [5] provide a nice ground. In summary, they
imply (under some conditions which are not recalled here) the
following.

a) , (hence any quadratic function of
is RCLBV as well [63]).

b) Therefore, the distributional derivative can be decom-
posed as the sum of three terms: an atomic measure, a
Lebesgue integrable function , and a nonatomic mea-
sure singular with respect to the Lebesgue measure.

c) The set of impact times is countable, and there
exist possible left-accumulations

.
These very specific features are at the core of the develop-

ments in [12], [13], [11], [18], and [101]. Item b) is crucial,
since it means that despite the time derivative of a Lyapunov
function isnot a function, it is ameasure. Conse-
quently, characterizing the sign of makes perfect sense, and
if the measure , the function is decreasing [29] (in
other words, RCLBV functions are the primitive of their distri-
butional derivative). Such conclusions would not have been pos-
sible if had been proved to be measurable only. Item c) secures
that the set is an admissible event times set [21, Def.
3.3.4]. The measure in (5) can be chosen as .
We note that without Coulomb friction and if all data are piece-
wise analytic, then [5]. It is noteworthy that the fact
that velocities are RCLBV does not preclude some very com-
plicated phenomena like accumulations or accumulations of im-
pacts (concretely, let and be two sequences of impacts
with limits and , respectively, and let tend toward
so that both accumulations are merged into a single one). So
far, it has not been proved that such phenomena do not occur in
mechanical systems with unilateral constraints and nonpurely
elastic collisions.

Lemma 2: Consider a mechanical system as in (5) where
consists of Coriolis, centripetal and conservative gen-

eralized forces with a smooth potential , . Then, if
has a strict minimum at , the equilibrium point

satisfying (25) is stable in the sense of Lyapunov.
Items a) and b) are in force here. The proof [18] is based on

the use of the nonsmooth Lyapunov candidate function

(27)

and on basic nonsmooth and convex analysis. Since
for all , it follows that RCLBV and one has along
trajectories of (5)

(28)
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where and Moreau’s rule for differentiation of
quadratic function of RCLBV functions [63] has been used. The
advantage of using the MDI formalism, is that it might be a pow-
erful tool in studying systems such that the measureis more
complex [e.g., stochastic friction models inherently containing
nonzero measures as in item b), or such that the support
of is not contained in ]. It is of primary im-
portance to note that the mapping in
(5) is monotone, since and are polar cones.
Lemma 2 brings an answer to whether or not the system

Collision mapping

(29)

where , , , , are constant, has bounded solutions
for all . The reader may check its application on simple
systems like one degree of freedom jugglers [16], impacting
pair modeling backlash [60], with collocated PD feedback con-
trollers.

OP 16: Extend Lemma 2 to systems with unilateral con-
straints and Coulomb friction, with nonconvex and .
Extend it to all mechanical systems subject to set valued force
laws that derive from a superpotential.

It is likely that solving OP 16 requires first modeling investi-
gations [33], [35].

2) Absolute Stability:Let us now turn our attention to a class
of ACS. The absolute stability problem (see, e.g., [57]) consists
of studying the stability of a the negative feedback interconnec-
tion of (a positive real transfer function ) with a
sector static nonlinearity with slope in . Usu-
ally, is required to be piecewise continuous inand lo-
cally Lipschitz in . It is of interest to extend this result to the
case where the feedback nonlinearity is a maximal monotone
multivalued mapping.

A multivalued mapping is monotone if
for any couples and in its graph. Mono-

tone mappings correspond to completely nondecreasing curves
in . Maximality of multivalued monotone operators refers to
graph inclusion (i.e., the gaps are filled in). The relay function
defined as , if , is not max-
imal. However, the graphs in Fig. 3(e), (f), and (h) are maximal
monotone.

The considered state-space equations are

(30)

where a.e. is almost everywhere because solutions are ex-
pected to be AC. The link with CS is clear (choose, e.g.,

, ). The system in (16) fits
within (30) with and , as well as in (2) with

, see (17). The fixed points of (30) can be characterized
as in Section VI-A. Let us assume that
is a strictly positive real transfer function [57], that is lsc
and convex, so that is a maximal monotone multivalued
mapping [86], and that the graph of contains .

Lemma 3 [18]: The solutions of (30) satisfying
are AC and uniqueness holds. The fixed

point of the system in (30) is unique and is globally
asymptotically stable.

The stability proof relies on a quadratic Lyapunov func-
tion with the solution of the
Kalman–Yakubovic–Popov lemma conditions [57]. Related
results can be found in [20] (passive LCS) and in [75, Ch. 3]
(evolution VI). Passive LCS have the property that the transfer
function is positive real. Passifiability by pole shifting
is an interesting result for stabilization by feedback [20]. The
well-posedness proof of Lemma 3 requires some manipulations
and the fixed point is the solution of the generalized equation

. It seems that Brézis’ theorem on global
existence and uniqueness of solutions [10] to DI ,

a maximal monotone operator, is central in the study of
interconnections as in (30). The PR condition on
can be relaxed when [83], at the price of restricting
the set of solutions to piecewise differentiable functions. Let us
notice that (30) is a particular DI. Many extensions exist, e.g.,
considering , where is a monotone operator.
When and the identity, (30) corresponds to the DI
studied in [50]. Therefore, infinite dimensional generalizations
of lemma 3 should be possible.

OP 17:A next step is also to extend Lemmas 2 and 3 toward
ACS as in (13). Then, extend toward dissipative nonlinear dy-
namics , .

Actually, Lemma 3 readily extends to nonlinear systems of
the form , , ,

, with storage function . The operator
is strictly passive with dissipation function

[57].
Remark 7: The following is an issue [12], [20]: Since the

supply rate may be meaningless in the sense
of Schwarz’ distributions at times , how to extend the dissipa-
tion equality (integrated or infinitesimal forms) to CS? Possible
paths have been pointed out in [12, Sec. 1.2.2].

Finally, a natural extension of lemmas 2 and 3 is:
OP 18: Characterize classes of CS such that the

Krakovskii–LaSalle invariance lemma applies.
The invariance lemma relies on properties of the positive limit

sets (compactness, invariance) which in turn are a consequence
of properties of solutions like uniqueness, continuous depen-
dence in the initial data, as well as properties of the Lyapunov
function itself. By far, not all CS meet all these requirements.

C. Optimal Control

Let us focus on mechanical systems as in (3), to which items
a), b), and c) apply. As pointed out in [12, Sec. 3.5.4] the fol-
lowing problem remains unsolved.

OP 19: Find that is critical for some action integral
, under the dynamics

, , . How do the
number of impacts and the restitution influence ? In which
space should one consider? Then generalize to higher order
systems.

Applications are in the optimal control of all mechanical sys-
tems subject to impacts and unilateral constraints. It is note-
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worthy that the optimal control of MDE (see, e.g., [91]), does
not solveOP 19. The optimal control of a time invariant linear
system with virtual state constraints yields optimality
conditions [87]

(31)

for some and matrices , , . Notice the striking similarity
between (31) and (6), though both systems represent quite dif-
ferent problems.

A prerequisite to a better understanding of optimal control for
the aforementioned classes of systems, is a better understanding
of the dynamics of CS. The optimal control of a simple ACS has
been solved in [23, Sec. 5.3] and extensions toward more general
ACS may be an objective. Applications are in optimal control
of electrical networks with diodes and/or MOS transistors.

D. Tracking Control for Lagrangian Systems

This problem has been studied in [13], [11], and [62], for sys-
tems as in (3), with a single constraint, andthe identity matrix.
In [62], planar systems inside a disc are considered, with elastic
impacts. PD inputs are shown to asymptotically stabilize partic-
ular impacting trajectories. The objective in [13] and [11] is to
design a controller that assures stable tracking of some reference
trajectory , relying on a suitable stability framework that
encompasses both unconstrained, persistently constrained, and
impacting orbits. Features a), b), and c) enumerated in the intro-
duction of Section VI-B hold, and the goal is to extend lemma
2 to the case of tracking control. There are four main features in
this extension.

i) Impacts have to be included in any stability analysis, and
the designer should take advantage that impacts imply a
loss of kinetic energy in the stabilization.

ii) There are two antagonist facts: robustness of the stabi-
lization process on requires that a “bouncing-ball”-
like dynamics be realized in closed loop [notice that
in (26) needs not to be known to get stabilization], but
asymptoticstability implies that velocity jumps vanish
asymptotically.

iii) Requiring that for all [see item b)] is
too stringent in most cases, especially during transition
phases including rebounds.

iv) The underlying nature of the evolution process and the
trajectories has to be taken into account.

Item i) leads to the choice of a Lyapunov function which is
as close as possible to the process total energy. The function

is a
suitable one, . Item ii) implies a specific transi-
tion phase in order to stabilize the system on. The dynamics
should be similar to (26) during the transient, whereas a tan-
gent approach should be asymptotically guaranteed. Attaining
the constraint tangentially, and without incorporating impacts
in the stability analysis, cannot work neither theoretically nor
in practice. The main source of difficulty for stability lies in the
coupling between normal and tangential directions to, i.e.,
the generally cannot be transformed in a block-diagonal
matrix via a suitable generalized coordinate change. When the

Fig. 5. Transition phase trajectory.

dynamics is decoupled, the control problem is much easier [12,
Sec. 8.6.3]. Item iii) means that it is often more convenient to
think of the dynamics during the transition phase, in terms of an
impact Poincaré map with Poincaré section as in problem
1. Item c) secures that such a discrete-time system can be con-
structed. Then stability may be characterized as the Lyapunov
stability of with Lyapunov function the restriction of to

. Item iv) means that the dynamics in (26) and

(32)

are of different natures. In (26), the invariant set is the solution of
the generalized equation (25) and is, therefore, characterized by
all the ingredients of the dynamics (including the impact law). In
(32), the invariance is simply that of the continuous dynamics,
since . The stability framework and the
controller proposed in [11] and [13] take these peculiar features
into account. The proposed controller is based on the Paden and
Panja controller [57, Sec. 6.2.5] for unconstrained systems. In
particular the transition phase uses a signal as depicted in
Fig. 5, with a closed-loop dynamics similar to (32) in the normal
direction to , to cope with item ii). The design of during
the stabilization phase on is a crucial step. The use of the
(fixed parameter) Slotine and Li controller might be of interest
too in this context [101], since it possesses the advantage over
the Paden and Panja’s one of assuring , ,
on free motion phases. However, the function is less close
to the mechanical energy for this controller. In fact, Moreau’s
MDI in (5) has not yet been fully exploited in this setting.

The tracking problem for fully actuated complementarity La-
grangian systems is not a simple extension of the unconstrained
case. The design of a suitable desired trajectory during transi-
tion phases, is a crucial step.

The aforementioned results apply to the case , i.e., a
unique constraint with in (3) continuously differentiable.
Let .

OP 20: Study control strategies that stabilize the system on
the codimension surface ,
with any initial conditions. In particular, the transition phase
controller should be robust with respect to all types of uncertain-
ties that may modify some dynamical properties. Then extend
the tracking controllers of [11] and [13] which concern (3), to
the case .
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The impact with the surface is called a multiple impact.
Let us recall that Lyapunov stability is equivalent to some conti-
nuity of solutions with respect to initial data, on an infinite time
interval. Multiple impacts may destroy this property, see [42],
[90], [12]. This depends a lot on the domaingeometry, the
mass matrix and the impact law. Therefore uncertainties
on these physical data may drastically modify the trajectories
which collide in the neighborhood of . OnceOP 20has been
solved, proceed to the following.

OP 21:Extend the results in [13] and [11] to the case of joint
flexibilities.

Both OP 20 and21 have important practical consequences.
Indeed in most mechanical systems . Concerning flexi-
bilities, it is expected that the effect of vibrations in the struc-
ture due to the impacts, may be modeled this way. The conse-
quences on stabilization may be crucial. The control of biped
robots in a walking motion seems quite particular and its link
with OP 20 needs to be clarified. Indeed the basic stability of
a walking biped requires that at each instant the state and the
input satisfy inequalities outside impacts
and at impacts [46], for some matrices and
vectors , and . Designing such a feedback control is an
open problem. The extension toward higher order CS asin
(2) is challenging as well.

Control of Jugglers: Quite interesting stabilization results
have been obtained in [58] for a planar juggler, using ideas of
control recurrence. A framework for the control design of me-
chanical systems as in (20) has been proposed in [16], and the
control of an impacting pair modeling dynamic backlash has
been studied in [60]. A feedback stabilization technique using
the linearization of (19) is used in [27]. An interesting problem
is in the control of buildings subject to earthquake excitations,
modeled with the rocking block approach [12]; where should
the actuators be placed so as to avoid overturning, and minimize
the angular motion magnitude? This is thought to be a tough
problem (including multiple impact and friction).

OP 22: Characterize classes of tasks in terms of the
closed-loop invariant sets to be stabilized, and derive a general
stability and controller design framework.

VII. CONCLUSION

The class of nonlinear nonsmooth controlled dynamical sys-
tems considered in this paper (namely CS) is quite interesting,
since it still offers many challenges to various scientific com-
munities (including systems and control) and at the same time
finds many applications. Such systems may be recast in the class
of hybrid dynamical systems, but can also be seen as measure
differential inclusions. The adopted formalism depends on the
objective of the study. The goal of this paper is to expose the
difficulties and main problems associated to such complex dy-
namics. Several notions which are peculiar to complementarity
dynamical systems are introduced, such as sets of admissible
states and inputs, normal controllability, viability of controls.
One interesting question is whether it is possible to classify
complementarity dynamical systems into subclasses with spe-
cific control properties, or not. Until now, the studies have fo-
cused on linear CS [20], [21], [40]–[42], [89], nonlinear CS [88]
and mechanical systems [11]–[13], [16], [45], [56], [58], [62],

[61], [76], [82]. Complementarity dynamical systems do rep-
resent a very specific class of hybrid systems for which many
problems heavily rely on the use of complementarity problems
and convex analysis. This peculiar structure is very useful since
it allows one to deeply investigate their properties, and at the
same time is not restrictive in terms of potential applications
which are numerous. The possible relationships with other types
of nonsmooth evolution problems are pointed out. Some open
problems are proposed; clearly many others exist and will hope-
fully be given solutions. Finally, it is worth noting that the nu-
merical simulation of complementarity systems is also a hard
problem and that most available software packages do not allow
to treat correctly neither complementarity problems nor finite
accumulation of events [15].

APPENDIX A
MEASUREDIFFERENTIAL INCLUSIONS

The classical equation of dynamics is an equality of func-
tions, like . Imagine now that the ve-
locity has jumps at times . Then, the left- and right-hand sides
are measures instead of mere functions, and one may rewrite
such dynamics as an equality of measures

, where is an atomic measure with atoms at. In this
case, writing the dynamics as is meaning-
less because at a jump time has no density with respect to
the Lebesgue measure (it has a density with respect to the
Dirac measure which in turn is singular to ). Now if the
right-hand side is a multivalued function , one may write
the dynamics as . The concept of MDI merges
both equality of measures and inclusion and has been coined by
Moreau [70] and Schatzman [90]. This is an evolution problem
of the form ,
where is a positive measure and is a cone,
is Lebesgue integrable, and the inclusion holdsalmost ev-
erywhere. The notation generalizes that of a derivative,
for measures. For instance if and if jumps at

, then . The fact that
can be any positive measure comes from the fact that
is a cone. If is merely convex this no longer holds.
If is discontinuous and is continuous at , , one
may choose and write the dynamics
as . At one has

for some whereas
. Outside impacts and .

Finally the functions are evaluated at their right limits because
the solutions of Moreau’s MDI are right continuous.

APPENDIX B
COMPLEMENTARY PROBLEMS (CONTINUED)

Solving the quadratic program ,
, subject to , is equivalent [74, Sec. 9.3.1] to

solving a LCP with , . This
has important practical consequences, e.g., for numerical calcu-
lations [15], [21], [72]. An ELCP is a complementarity problem
that can be written as , ,

, for some matrices , , vectors
, , and subsets of ; denotes
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the th component of the vector. Many other types of comple-
mentarity problems exist [92] which cannot be described here
for the sake of briefness of the presentation. Ageneralized equa-
tion is an equation of the form , where is a mul-
tivalued mapping [79] [i.e., and does not
imply ; the mappings whose graphs are in Fig. 3(d), (e),
(f), (g) and (h) are multivalued]. In particular the complemen-
tarity condition can equivalently be rewritten
as the generalized equation , which also
shows the link between complementarity and convex analysis
[86, p. 226]. This will also be useful to transform complemen-
tarity systems into various sorts of differential inclusions.

Therefore, one sees that there are strong links between
generalized equations, convex analysis, and complementarity
problems.
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