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Some Perspectives on the Analysis and Control of
Complementarity Systems

Bernard Brogliato

Abstract—This paper is devoted to presenting controllability abstract problems. For instance minimum-time optimal control
and stabilizability issues associated to a class of nonsmoothyields cost functions which are both nondifferentiable and
dynamical systems, namely complementarity dynamical systems. yonconvex. Recently, mechanical systems subject to inequality
The main existing results are summarized, and some possible . . .
research directions are provided. Convex analysis and comple- .(or unlle_lteral) Constrqlnts haYe b(_aen the Ob](_eCt of renewgd
mentarity problems are claimed to be the main analysis tools for interestin the mechanical engineering and applied mathematics
control related studies. This paper mainly focuses on mechanical scientific communities; see [12], [14], [33], [35], [51], [63],
applications. [81], and [96]. In parallel, the analysis and control of hybrid

Index Terms_Comp|ementarity, control, convex ana|ysi5, dynamical Systems has become an active investigation area in
hybrid dynamics, measure differential inclusions, mechanical the systems and control scientific community [47], [3], [31],

systems, nonsmooth, stability. [48], [97], [87]. In particular, complementarity systems are an
interesting class of hybrid dynamical systems [20], [40]-[42],
NOMENCLATURE [89], [88]. Roughly speaking, complementarity systems consist
) o ) of a dynamical system that is coupled to a set of algebraic
DI Differential inclusion. conditions through a Lagrange multiplier (also called a slack
MDI Measure DI. variable in nonlinear programming). They can also be seen as
AC Absolutely continuous. o dynamical systems subject to a particular type of generalized
RCLBV  Right-continuous of local bounded variation.  gnsmooth constraint. Complementarity dynamical systems
cP Complementarity problem. find applications in mechanical systems (multibody systems—
CS Complementarity system. manipulators, bipedal robots [46], controlled structures,
ACS Affine complementarity system. tethered satellites [52], haptically augmented teleoperation,
LCS Linear complementarity system. part feeding, automatic assembly, material handling systems,
LCP Linear complementarity problem. etc., structural mechanics, elastohydrodynamics lubrication,
DES Discrete-event system. liquid slosh phenomena, collisions of fluids and solids, phase
Vi Variational inequality. changes, etc. [33]), electrical circuits (nonlinear circuits with
diodes, MOS transistors, operational amplifiers [41], [99]),
l. INTRODUCTION control theory (optimal control with state constraints, model

. J. MOREAU made fundamental contributions to convegredictive control [7], variable structure systems [87]), traffic
analysis and nonsmooth mechanics [64]-[73], which ha@ad oligopolistic market equilibrium problems [8], [75], eco-
had considerable influence in several branches of mechamecenics (production, comsumption, the theory of option pricing,
(discrete systems, fluid mechanics, elasto-plasticity, and frid/alrasian problems [32]), models for biological systems (ge-
tion) [53], [79], [39], [63], and for the numerical simulation ofnetic networks, bacteria growth, gene regulatory networks
nonsmooth mechanical systems [15]. The reader is referredhat describe the regulatory interactions between genes and
[25] for an introduction to nhonsmooth mechanics and to [82jene products in a cell [49]), etc. This paper is devoted to the
for a complete panorama of the topic in applied mathematicentrollability and the stabilizability of complementarity dy-
and mechanics. In addition, nonsmooth analysis has mauenical systems. Similarly to the fact that nonsmooth analysis
significant progress and has allowed researchers to solve isnot a straightforward extension of classical analysis [23], the
portant problems like in optimal control and calculation [100ontrol of such nonsmooth dynamical systems is by far not a
[74], by introducing tools like Clarke's generalized gradiendirect extension of the control of smooth systems. The same
[79], [23], nonsmooth versions of Newton's algorithms [2]can be asserted to numerical analysis and simulation [1], [15]
and complementarity problems [8], [74]. In this context, iand bifurcation analysis [55]. This paper does not pretend to
is worth recalling that nonsmoothness may not only arise strvey the wide area of nonsmooth systems. For more complete
the modeling level, but may also be necessary to solve sobibliographies, the reader is referred to [12] and [15]. It rather
concentrates on a specific class and mainly aims at pointing out
some open problems (marked BP?) and the main features
of the analyzed systems. The paper is organized as follows: In

The author is with INRIA Rhone-AlpeIRST Montbonnot, 38334 Saint  1Some of these open problems may be very challenging, and some others
Ismier Cedex, France (e-mail: Bernard.Brogliato@inrialpes.fr). more trivial. It is rather difficult to classify them at this stage. Other research
directions can be found in [41] and [15].



Section 1l the dynamics of complementarity systems is préet us briefly introduce complementarity problems (see more in
sented. Several typical examples are given in Section Ill, aAgpendix B).

the link with various nonsmooth dynamical systems and differ- Complementarity conditions have been introduced by
ential inclusions is made in Section IV. Section V is devoted fdoreau [64] in contact mechanics, and Karush et al. in
controllability issues, while Section VI focuses on stability anduadratic programming [74]. They yield CP of the form
stabilization. Conclusions end the paper, and some technital> y L z € V5: the m-dimensional vectorg and z have to
informations are provided in Appendices A and B. Convelzelong to the set®; and V5, respectively, and are orthogonal.
analysis, complementarity problems, generalized equatiotfsy; andV; are a pair of polar cones, thel; 5y L z € 4
impact Poincaré maps, measure differential inclusions, assa Cone CP [8]. Ify = Az + B for some matrix4 and vector
advocated to be important analysis tools. Though fundamentaand if V; = V, = (R*)™, then0 < y L z > 0 is equivalent
topics in control, observability (see [61]) and identificatiorno the Linear CP (LCPY > 0, Az + B > 0, 21 (Az + B) = 0,
problems are not discussed. Mechanical systems with unilatedahoted as LCR). A is the LCP matrix. If the matri is
constraints and friction are ubiquitous in everyday life and ia P-matrix (i.e., all its principal minors are positive), then
industry. Moreover, mechanics has always had a leading rolefie LCRz) has a unique solution independently Bf[74]. If
Science, and many results motivated by Mechanics have foune ¢(z) for some nonlinear functiog(-), then0 <y L z > 0
applications or extensions in other scientific fields. The mais a nonlinear CP (NCP). [ |
focus of this paper is, therefore, on mechanical systems, despit&/hen they exist, the left and right-limits of a functig(-) at
many other systems may be modeled in a complementaritsire denoted ag(¢~) and f(¢1), respectively.

framework (like electrical networks) as the aforementioned list Example 1: Let us consider the following complementarity
shows. systems:

i(t) = —z(t) +ar—a
0<ALy==z(t)>0
z(t) = —z(t) + A
0<ALly==z(t)+ar>0

IIl. COMPLEMENTARY DYNAMICAL SYSTEMS (51){
A. General Dynamics

The class of finite-dimensional controlled nonsmooth dy- (52){
namical systems on which we will focus in this paper can be

represented by the following set of differential and algebraic (3) () _
. " W) =A—a
equations and conditions: (S3) (2
0<ALy=¢(t)>0

= f(x, t, u, \), almosteverywhereg(ry) = xg
2= C(w, u, \) wherea > 0 is a constant and = 1 or « = —1. Consider
oo (S1), and letz (7o) > 0. Thus, initially A = 0 so thatz(-) de-
C*ayLAN)ecC (1)  creases toward in finite time ¢, 1, i.e., z(to.1) = 0. Notice
gy, A\, u, , ) =0 that due to the complementarity conditions, one has 0 on

[10, to,1). In order to continue the integration foe> ¢ 1, there
must exist at least onksuch that both the differential equation
wherez € R" is the state of the continuous dynamits; 7, and the complementarity conditions are simultaneously satis-
is a real number; is some measurable output signal availablied. Let us propose\(¢t) = (z(t) + a)/a. Then,z(t) = 0

for feedbacku € R' is a control signal to be chosen in someso that on(ty 1, +00) one hasz(t) = 0. One notices that if

Statez(-), reinitialization rule

admissible set/, the slack variable\ € R™ and the signal « = 1 thenA(t) = a/a > 0, however ifa = -1 then
y € R™ constitute a pair of complementarity variables as indix(¢) < 0 which is impossible. Notice that in the latter case
cated in the third line of (1), wher&(-) is some function. The one hast(tgfl) = —A —a < 0, consequently ik = —1,

symbol L means thay andA () have to be orthogonal. The setghere is no nonnegativé which allows to satisfyzr > 0 on

C* andC = {z|zTv < 0,Vv € C*} are a pair of polar convex an interval(to 1, to.1 + €), for anye > 0. Notice also that we
cones,r is the initial time. Let us note that the first equalityhave written the right-limit fori(-) at ¢o,1 because the solu-

in (1) will generally be satisfied only almost everywhere in théon we are looking for is indeed not differentiabletgt since
Lebesgue’s measure sense, because the soletipof (1) will ~ i(t;,) = —a whereasi(t{,) = 0. Thus, ifa = —1, the in-
generally not be differentiable everywhere. Following [89], dytegration cannot be continued aftgr;. If o = 1 the previous
namical systems as in (1) may be nanoedhplementarity sys- choice allows one to integrate oVes, +oc). Moreover, it can
tems[CS, or systems subject to generalized constraints, maoke shown that this is the only possible solution. Actually the
of the third and fourth lines in (1)]. In order to integrate the dyproposed choice fok comes from the following: assume that
namical part of (1) (i.e., the first line), one needs to calculatgt) = 0 on a nonzero time interval. Theid < A L y =

A. It will be shown on several examples how the slack variablegt) > 0) = (0 < A L 4(t) > 0), from which it follows

Ai,i € {1, ..., m} are calculated at each timeFinally a state that X is the solution of the LC® < A L A —a > 0. This
reinitialization rule will generally be needed to integrate trajed-CP always possesses a unique solution which is precisely the
tories on a time interval of strictly positive measure. The inteprevious one. And itx = —1 the corresponding LCP has no
play between the various ingredients in (1) may be rather cosslution. Therefore, one sees that once the bounda#sy) has
plicated, and this is what makes the study of such controlled dyeen reached, we have been able to exhibit a new slack vari-
namics challenging. Before examining some simple exampledle A such that integration of(-) can be continued, and the
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complementarity conditions remain satisfied provided the LCP A particular feature of CS compared to other classes of hybrid
matrix o (which is here a scalar) is positive. Assume now thatstems (see [3], [47], and [97]), is that CP and convex anal-
attimet; » > to,1 the vector field switches tez(t) + a and is ysis are at the core of their analysis. This is clear for both the
right-continuous at; ». Then one looks for the solution of themathematical [87], [42], [40] and numerical [15] aspects. One
same LCP which givea(t;,) = 0. Thus,i(t,) = a > 050 objective of this paper is to prove that this is also the case for
thatz(-) leaves the surface = 0 att, » and reenters the domaincontrol and systems analysis. As we shall see later, such systems

{z|z > 0}. o _ _can also be considered as differential inclusions. Models as in
~ Consider now(Sy). This time the complementarity condi-(1) are quite interesting because they are not too general, but yet
tions directly yield a LCP for the slack variable If « = —1  are rich enough to potentially present a lot of challenging prob-

then this LCP has no solution for amyry) < 0. It has the two |gms to systems and control theorists. Moreover, the engineering
solutionsA = = or A = 0 for z(r) > 0 (see, e.g,, [12, fig. gppjications are numerous. Let us notice that the discrete-time

5.19]). Consequently in this case there are two solutiefis ¢, nterpart to (1) exists [7], [43], but we shall focus on the con-
emanating from:(ro) and at each timesuch thati(¢) > 0,and 401 i< time case only.

uniqueness fails. Let = 1. If z(7) < 0 the unique solution of If z is a solution of this NCP, then it is also a zero of the

the LCP is\(r) = —a(ro) 2 0. Then,a(:) increases toward .04 complementarity functipfr) = min[z, g(z)]. The

exponentially or{ry, +00) with A = —z(t). If z(7p) > 0 then £ oi i i . A el

A(m9) = 0 is the unique solution of the LCP and-) decreases set of piecewise linear equatioptz) = 0 'S equiva ent @ <
g(z) L z > 0[8]. Other complementarity functions exist. The

to 0 exponentially orfro, +oc) with A = 0. constraintg(z) = 0 may be named a generalized constraint
In both (S;) and (S2) with @ = 1, we have exhibited a 9\2) = : '
(51) (52) with o W Ve Sl Remark 1:1f ¢* = R*, A(\) = —) and ify =

unique continuous solution that is almost everywhere differen- _ . )
tiable for(S; ) and everywhere differentiable f68.). Consider /(7 , u, A) it follows that the third and fourth lines of (1)
now (S3). If &(ro) > 0, £(10) = () = 0, then on a fi- €&n be rewritten ag(z, ¢, u, A) = 0 for some complemen-

nite time interval[ry, to), £(¢) decreases towaré(ty) = 0, tarity functiong. Thus, the dynamics in (1) may be seen as a
and \(t) = 0. One hasé(ty) = —(a/2)(to — 70)> < O, nonsmooth differential algebraic equation in this case.

&(ty) = —a(to — 10) < 0. Clearly, atty, the value of\ has to
change in order to keef(-) nonnegative. Even moré(t) > 0  B. Associated Hybrid Automaton

on (fo, fo + ¢) for somee > 0, implies that both{(-) and  The time-integration of the systems in (2) suggests that
¢(+) jump to nonnegative values &f. This implies that\(fo) here is a natural connection between the dynamics in (1) and

cannot be a function, but must be a distribution involving bo%-calledhybrid dynamical systems, i.e., dynamical systems
the Dirac distributiond;, and its derivative),,. At this stage, whose evolution is the result of the interplay betw i

g(n;: gﬁsgﬁ)s OIT;{:E:Z gzggrtwa?&;)alim?&% Oitr(])etjhuerzpstfﬂuqus and discr_ett_a—event?iynamics. [871, [41].. In (1), the

the integration can continue fy, +00) ith A = a, so that gontmuous _part is in _the first two lines, the third and fourth
£(t) = £(t) = £(t) = 0 on (to: +o0). Using the fact that Imes.plescrlbe the.qhscrete-event part (the modes and the
€(t) = £(t) = é(t) = 0ona nonzero time interval together‘?ond't'ons_ for transmo_n_s between modes to occur). The last
with0 < A L ¢ > 0, we conclude thai < A 1 ¢®) > 0 holds. line describehow transitions between modes occur. The state

Consequentiy\ — a is calculated at time as the unique solu- of the _system, _therefore, consists of_ a variable that tal_<es its
tion of this LCP. If the rule states thé(tar) >0, é:(tar) > 0, yalue.s.m acont.lnuous space, and variables that take their value
thené(-) bounces on the boundagy= 0 att, and¢(t) > 0on I a finite setl?, |.e._,ca?d(L) < 4o00. The DES state for CS as
(to, to + €) for somee > 0. m N (1) canbein afirstinstance cons'Fructed from thedeghat
These examples do not encapsulate all the features of comg@respond to the values of the variablesi € {1, ..., m}.
mentarity systems and are not meant to be rigorous proofs k&t Us consider the case of a LCS. For each compopgnt
existence and uniqueness of solutions. However they do illi§€ complementarity conditions yield two modes: = 0 or
trate some basic peculiarities. One notices that the vector fieid> 0. Hence, one haa priori card(L) = 2™. The events (or
remains continuous in(-), until some boundary is reached bytransitions) correspond to trajectories passing from one mode
the stater(-). Then the multiplier) is calculated and modi- to another one, implying a change in the structure of the vector
fies the vector field of the continuous dynamics, in such a wdleld f(z, ¢, u, A). In (S1) there are such events at timgs;
that the integration of(-) proceeds. It is noteworthy that theand¢; 2, and in(Ss) at timet,.
leading Markov parameter [93] of the system with output Let us denote the states of the DES partSase L, 1 <
and inputA plays a significant role in the analysis and that < card(L), and a trajectory (also named a path)Sa#\ path
it is closely related to the existence and uniqueness of sothus consists of a finite number of DES stafesogether with
tions of some LCP constructed from the complementarity cotransition rules which allow the system to evolve from one state
ditions and the dynamics. The well-posedness results in [26],to another stat§;. One may consider that a mode is active, if
[40], [42], [89], and [88] are based on this observation. Wheand only ifz(-) has remained during a time interval of positive
i = Az + EXNy=Cz+ D)\A(N) =-XandC* =RT, (1) Lebesgue measure in this mode. The reinitialization of the state
is named a LCS. LCS have been presented for the first timeimplies a discontinuity inz(-). In general, the activation of a
[89]. If D is aP matrix then) is the unique solution of the LCP new mode cannot be done without a reinitialization of the state
0 < XL Cx(t)+ DX > 0 at each. x(t), hence, the fifth line in (1). See, e.gS3) where the state
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has to jump at, to continue the integration. However, in somé&. Basic Notions From Convex Analysis
cases a nondifferentiable staté) may suffice for a trajectory
to pass from one mode to another one, see exanfflgsand
(S2) in (2). Transitions may even occur smoothly, as in the ca
of a mechanical system if the constraint is attained tangentia Yeator function is defined agic(z) = 0 if = € K and

in the phase space. k(x) = 400 if z ¢ K. The subdifferential of a lower

ngerlcally event times which correspond to a traJeCtorgemicontinuous (Isc) convex functiofi(-) at y is denoted
passing from the mods; to the modes; are denoted as; j, ¢ df(y) and is the set of subgradients, i.e., vectgrsat-

and relnltlallzat!on t|me§ are dengted as k> 0.. isfying f(z) — f(y) > % (x — y) for all . The subdifferen-

. The complexity ofCS.|s.fu.rther|IIustrated bys'mP'e T“.eCh.a ial replaces the derivative, for nonsmooth convex functions.
ical systems, where an infinity of events can occur in finite tim f(z) = 400 forz < 0, f(z) = w forz > 0,z € R
(finite accumulation of impact times, i.e., a particular type Ze Qen () is convex Isc ar;ch(O) = (oo 1]— Tr’1e subdi%—
behavior [87, p. 10]), and several such finite accumulations MAY ntial of the indicator of (which is co7nvéx it and only
be repeated (possibly an infinity of times as— +o0). A it K is convex) is given by (z) = {0} if = € Tnt(K)
well-known example is the bouncing-ball dynamjcs —g+ A, Dpre(x) = Ny () if = € OK (;;/)K(QT) —0ifrgK wher’e

. < > . + — _ . —
9(0) >0, 4(0) < 0,0 <AL g =0 q(t) eq(ty.), JK is the boundary of, and Nk (z) = {z|zT({ — z) <0,

e € (0,1) andlimy—oo tr = too < 4o0. There is a se- .
quence of impact time§t; }.>o, that is followed by a switch ,VC € K} is the outwards normal cone i ats € K. The

from modeg > 0 to modeg = 0 at timeto; = ., [notice !nwarQS tangent con& (z) is the polar cong toNk (z) and
that(t%) = ¢(t=) = 0 so that this transition occurs without'S defined asV(z) = {[V¢ € Nk (z), ("= < 0}. Both
velocity jump]. Consequently o, £..) the system evolves al- thg normal and tangent cones are convex and are Qeflqed at
most all the time in the mode > 0. Obviously, in some cases,po'”tsx of the boundaryp K where the normal direction is

a timet, is also a mode switching time (sé8s), and plastic not uniquely defined [see Fig. 4 in a simple case where the
impacts in mechanics). setsz, + Ng(z,) are depicted]. Polarity is a generalization

The distinction between the times; and#; is not neces- of orthogonality, for convex cones. In mechanics with bilateral

sary from a general hybrid dynamical systems point of vielolonomic constraints, the admissible velocities and the contact
because they can all be embedded into transition or event tini@action belong to orthogonal spaces. Roughly, this generalizes
[87, Chs. 1 and 2]. However, it may sometimes be convenienttfp unilateral constraints by replacing these orthogonal spaces
distinguish between state jumps and variations of the structd¢ the tangent and normal cones, respectively [70]. General-
of vector fields since they may not have the same consequenigééions of these notions to nonconvex sétsand functions
on control properties. exist [79], [23], allowing, e.g., to state that f{z) = |z| + 1
Remark 2: The associated automaton hasdiscrete con- for x < 0, f(z) = z for z > 0, thend f(0) = (—o0, 1].
trol. In other words the transitions between the modess A super-potential(or pseudopotential) of dissipation [66],
previously defined, are only function of the continuous part ¢¥9], [39] is a convex Isc proper mapping-) > 0, ¢(0) = 0,
the system. This may have important consequences on contwth thatF' € 9p(v), where F' and v are a pair of dual
properties. B variables (in mechanics, force, and velocities). The conju-
In this paper, we will not provide many details on theyate of the Isc convex functiofi(-): R" — R is defined as
well-posedness problems [existence and uniqueness of sqltty) = sup, g~ [z7y — f(z)]; see (16) for an example. One
tionsz(t) = ¢(t; 10, T, u) for all ¢ > 7o and in a suitable hasv € dy*(F). Bilateral constraints with Coulomb friction
function space]. Examples in (2) provide a rapid overview fafan be expressed this way, as well as many other physical laws
some CS. [33]. Nonconvex superpotentials can be defined using Clarke’s
Assumption 1:There existszo andu: [ro, T] — R’ such gradient [79]. There is also a strong apparatus of numerical
that (1) possesses a unique solutigh) = ¢(t; zo, u, 70) ON  algorithms associated to such analytical tools [2], [92], [74],
[0, 70+¢) for somes > 0,V 79 > 0,7 > 79+¢. Dependingon (15,
the ingredients in (1), solutions may be of different nature (AC, The conventional notatiofi. for boundaries of sets, partial
RCLBYV, piecewise continuous, etc.). The least requirement dferentiation and subdifferential, is kept throughout the paper.

that solutions possess a right limit everywhere. B The gradientVh(q) = (0h/dqu, ..., Oh)dg,)T if ¢T =
In other words assumption 1 states that there exist an init-{‘?}ll. e an) I R() s differentiabie tHera)h(q) = Vh(q).

state and a control input (possibly= 0) such that (1) can be
integrated on a nonzero time-interval. Otherwise we consider
that the model can be rejected. Clearly the space in which the
solution lives, may influence control studies. In particular the Some examples of systems that may be recast into the
inputwu(-) has to take its values in a suitable sp&cand this has framework of (1) are presented. In view of the list provided in
consequences on controllability. Also notice that assumptiorttie introduction, the following examples are only a few cases
includes possible initial state jumps and that the solutions maf/CS (see [87, Ch. 4] for other examples). We omit to indicate
be discontinuous with respect to initial datg Such evolution initial conditions. Let us notice that when solutions possess
problems may be namegulospectivg73], because at eac¢tone jumps, then the initial data in (1) have to be taken as a left-limit
looks for right limits of the solution. z(7y ) = o to allow for initial jumps [71].

The following notions [44], [65], [86] are fundamental tools
for the analysis of complementarity systems, and we will use
ost of them. LetK denote a closed convex set. Its in-

I1l. EXAMPLES
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Example 2: (Mechanical system with frictionless unilateraky- 4+, (4(¢t™)) can be interpreted as a velocity potential [35].
constraint) Both are associated to the unilateral constrafrity > 0, and
. N physically state the impenetrability of the bodies in contact. The
M(q)i+ F(g, §) = Eu+ Vh(g)A notion of MDls is introduced in Appendix A. From (4) one can

0<ylA>0 obtain Moreau’s second-order sweeping process [53], i.e., the
(3) MDI
y—hlg)=0
Collision mapping. _M(q(t))j_“ — F(q(t), v(t))j—t + Euj—f
1 i 1
In(3)z” = (¢*, ¢*') € R"™ and the other terms may be iden- € Dy gy (@(tT))  (5)
tified easily. The second line in (3) may be called the Hertz—Sig- . !
norini-Moreau conditions [25]. According to the discussion iwhere ¢(t) — ¢(0) = [, v(z)dz, and the measuréy can
Section 1I-B, the associated automaton R&s states. When be chosen as indicated in Section VI-B. This formalism is
h(q) = Cq, then one may defing = ¢, A(\) = —CT )X and the proper extension of Lagrange equations to systems with

write the complementarity relation € > ¢ L A()\) € C with  unilateral constraints. It may be more useful than the comple-
C* = {¢ € RY?|Cq > 0} andC = {v € R"?[vTq < 0, mentarity one when dealing with existence of fixed points or
V q € C*}. The dynamics in (3) encompasses manipulators pstability considerations. The domai may be described as
forming complex robotic tasks (e.g., models for deburring tasks (3) without being convex. One may then use the notion of
which have considerable importance in manufacturing industapnconvex superpotential or generalized gradient [79] to write
[85] and many other machining tasks) as well as controlldda), see, e.g., [23, Prop. 2.4.12]. The right-hand side of the
Lagrangian CS. Important applications also exist in aerospaoelusion (5) encompasses both cases whéreis continuous
(pick up tasks with autonomous robots in zero-gravity field§in which casej(¢t*) = ¢(¢)] and discontinuous (in which case
tethered satellites, landing aircrafts). The first use of (3) in Coh= t;, for somek). At ¢ = t;, then the MDI in (5) becomes the
trol and Robotics can be found in [45]. Models as in (4) inclassical algebraic shock dynamics.
cluding also Coulomb friction have been proved experimen- Remark 3: Nondifferentiable points are those configurations
tally quite valuable for somewhat complex systemgX~ 10, ¢ € 0® where the normal direction 9® is not uniquely de-
m = 20) in industrial applications for virtual prototyping of fined, however the normal cone exists. The formalism in (3) pre-
circuit breakers [1]. The existence and uniqueness of solutiotisdes so-called reintrant corners, or “peaks” [35], but does not
q € AC, ¢ € RCLBYV is guaranteed if and only if all data areimply convexity of®. For instance, the domain iR? defined
piecewise analytic [5]. asq” = (x, y),z®> +y> > 1,y > 0, is not convex, but locally

If h(g) > 0then) = 0. If h(q(t)) = O on[t', t"], " >/, around(—1, 0) and(1, 0) it is convex (in the terminology of
then(dh/dt)(q(t), 4(t)) = 0 and(d?h/dt?)(q(t), 4(t), G(t)) = [23, def. 2.4.6], the seb is regular a{—1, 0) and(1, 0)).
0 on (¢, t"). Thus,\ is calculated on(#', t’) from the LCP  Example 3 (Mass- Linear Spring-Damper): The dynamics
0 < AL A(q(t), 4(t), d(t)) > 0, which involves both the com-of a mass with positior, that rebounds on a spring-damper
plementarity conditions and the continuous dynamics [similarlsystem with positior§, and where the contact foreec R has
as for systemgS;) and (S3) in (2)]. The LCP()\) matrix is to remain nonnegative and satisfies a complementarity relation
equal toVh(q)TM~1(q)Vh(q) > 0 so the LCP has at least with the distance, is given by
one solution [64]. IfA(¢"”) = 0, detachment from the boundary i = Az + B\
h(q) = 0 occurs if (d®h/dt?)(q(t"), ¢(t"), G(")) > 0. If {
h(q(t)) = 0 and Vh(q(t))T4(t™) < 0, theng(-) jumps att, 0<y=CrlA>0
which is an impact time;,. At impact times\ is a Dirac mea- wherez? = (q, ¢, £), k the stiffness and the damping coeffi-
sure and the Lagrange dynamics becomes algebraic [12]. cients

1 1
m Cc )

When® = {z|h(q) > 0} is convex, the dynamics in (3) can 0 1 0
A={0 0 B" = (0
0 0

(6)

be equivalently rewritten as 0
—k/c
i(tH)=arg min 1Z7M(q(tx)Z, k>0  (4b) ¢=(1 0 -1).

{ —M(q)§j—F(q, )+ Eu € 0Ys(q) whent #t;, (4a)
=€V (q(t)) 2

The contact and noncontact phases correspogcHd(=A =
with Z = =z —¢(t,, ), so that (4b) is Moreau’s collision mapping—cg — kg > 0) andy > 0(=X = 0), respectively. When = 0
[70]. In (4) V(q(tx)) is the convex tangent cone dat ¢(¢;). the graph of the piecewise-linear relation betweeand q is
If m = 1 this mapping reduces to Newton’s law in (9), withdepicted in Fig. 3(a). Notice that in this case= max(kgq, 0),
e = 0. A coefficient of restitution can be introduced in the mapand “max” relations possess a complementarity formalism [41].
ping in (4b); see [71], [59], and [12]. It is crucial to recall thaiThis example shows that unilaterality does not imply rigidity.
tx in (4) is a solution of a nonlinear equation depending on théowever, it implies impenetrability.
state [12, Sec. 1.3.1] and is most often only implicitly defined. If Cz(¢t) = 0 on[t/, ¢’], then the complementarity condition
One may also replace the right-hand side of (4a) by the (moreée< Cz L A > 0 holds on(#', t"’). SinceCB = 1/c¢ > 0, A
strictive) inclusione vy ;1)) (4(t1)) € 9Ya(q) [70], which s at timet the unique solution of the LCP< A L CAx(t) +
incorporates the collision mapping in (4b). Actually the termi’BX > 0. Transitions from noncontact to contact occur with a
13 (q) can be interpreted as a displacement potential, whereasmtinuous state(-). [ ]
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Fig. 1. Systems with a piecewise linear interconnection.

Fig. 1 illustrates the cascade connection of two linear sys- Coulomb friction ™~
tems with transfer functiond, (s) andH-(s), and with a piece- 7
wise linear interconnection between the first system’s output _
and the second system’s input Some typical piecewise linear
characteristics are depicted in Fig. 3.

Example 4 (Dead-Zone, MOS Transistof)et us consider a T
dynamical system as depicted in Fig. 1 with the piecewise linedperer” = (Ar, Az, Aa), Ae = (1As/2)(A2 = Ar)s A+ Ao =

characteristic in Fig. 3(b) with = a. The dynamics is given by 2 Y1 — ¥2 = @1 + 0sin(f), h(q) = ys = g2 — Isin(6), and
(¢q1, q2) are the center of mass coordinates érnslthe rod ori-

Fig. 2. Painlevé system.

&y = A1xy + Biu entation,g” = (q1, g2, 8), ¢ € [0, 1]. The vectorF' € R? is
Zo9 = Asxo + aBy(Ciz1 + Fiu+d) + EX the generalized contact reaction aHd) is the friction cone in
y1 =M — Crzy — Flu—d @) generalized coordinates [12, p. 328]. In (9), there may exist ve-

locity jumps during sliding regime§y; = 0 andy, > 0} and
A3 may diverge to infinity in the vicinity of some critical points
0<yLlA>0 (the state remaining however continuous at such critical points).
whereE = aBs(=1, 1).In(7)27 = (2T, 2T), andeard (L) = These two phenomeha are g'consequence of thg goupling be-
3. The three modes a® = {y > OandIyZ >0}, 85 = {y1 = tvyeen complemgntanty condlthns and (.Zoulom.b frlctlon., which
0andys > 0}, S3 = {y1 = y» = 0}. When0 < b < +oc yields avery paruculartype ofsmgulardﬁferenual quatlon and
anda = +oo, Fig. 3(b) represents the characteristic of a MOZ1aY destroy the convexity of t.he underlying quadratic program
transistor (withz; a control voltage). for calculating\ (see Appendix B) [12], [34]. One notes that

Example 5 (Saturation, Elasto-Plasticity)the dynamics of /(#; u, A)in (9) is nqnlinear im\. Though solutions of (9) are
the CS in Fig. 1 where the piecewise-linear relation is as fych thay € AC andg € RCLBV [95], uniqueness fails [34],

Yo = Ao — Cr21 — Flu+d

Fig. 3(c) is given by and a complex behavior similar to that of exampfg) with
. a = —1in (2), can occur [55].
&1 = A1z + Biu The multiplier\ in (9) does exist as a measure. Compared
@y = Apwo + Ba(—=1+ A1 — A2) to (3) the coupling between Coulomb friction and unilaterality
=M — Cizq — Flu—1 (8) complicates the definition of (9) as a hybrid dynamical system

since it creates new modes. As a consequence state (velocity)
reinitialization may occur at impacts but also in the sliding-
0<yLlA=0. motion mode.

Yo = 0} The three feasible modes are the same as in examﬁyétem n Flg 3 with the set-valued relation whose gl’aph is the
4. square characteristic in Fig. 3(d)

In both examples 4 and 5, the multipliers calculated at time )
t as the unique solution of a LCP whose matrix is the identity, [ #1 = 4171 + Biu
similarly as in(S3) in (2) witha = 1. fg = Aoy + Bo(—1 4 2X1 — 2Xo — 2X3 + 2)))

Example 6 (Painlevé System{oulomb friction lends itself 0<ul >0
to a representation by complementarity relations, since the =Y -
graph in Fig. 3(f) is monotone with > 0 [so thatus € dg(z1) Ae—y2 =M -y~ 1 (10)
for some convey(-)]. Consequently the dynamics ofaslender | A3 —ys =X\ —y1 — 2
rod subject to a unilateral point-contact with Coulomb friction
(coefficienty, > 0), as in Fig. 2, is given by

Y2 = X — Croy — Flu+1

Aa—ya=M—y1—3
As—ys= 1 —y1 — 4
(1 — 2X0 + 2A3 + 2X4 — 25 = Ci1z1 + Fiu.

(mGL = At
mgs = —mg + A3
16 = u + U] cos(0) A3 + sin(6)\,] Here,card(L) = 4: 51 = {Ciz1 + Fiu = 1 and-1 <
up <1} ={y1 = 0,92 € [0, 1), y3 € [1,2),ys € [2,3),

O<yl )\.Z 0 . © Y5 € [3, 4)}, Sy = {u2 = land-1 < Ciz; + Fju <
Newton's impact lawg” () Vh(q(tx)) 1}={y =y =0,y3 =1,y = 2,45 € [3,4)} and so on
= —eq" (t;)Vh(q(tr)) for S5 and S,. Notice that the characteristic does not span the
| F = argmax,ec(q)[—2"q] whole z-axis, i.e., Plkguare: [—1, 1] — [—1, 1]. This is quite
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Fig. 3. Graphs of the piecewise-linear relations.

similar to the corner law characteristic Rl.e,: Rt — IR, the current variable of the current source. Interestingly enough
as in Fig. 3(g) witha = 0 (the casex < 0 represents adhe- the dynamics of a yo-yo [56] and (11) are also quite similar,
sive contact which may be encountered with rubber support,since the input.(¢) acts directly in the constrairi(-).

in micro-robotics where van der Waals forces play a role in the Example 9 (Generalized Nonholonomic Constraint§he
contact). Let us say that such graphs contain senilateralef- dynamics of a particle iiR* with coordinate€q:, g2, ¢3), sub-
fects. Clearly similar developments can be made for the graghst to the nonholonomic constraint

in Fig. 3(e) (fluid with two viscosity ranges [79]) and Fig. 3(f)

(rigid viscoplastic material characteristic; the case 0 repre-

sents relaxation effects and the graph is non longer monotond(9)” 4 = (65 —¢i—a3) g1+ (43— 45 —q192)G2+q143 = 0 (12)
indicating a loss of dissipativity with consequences on stability);

Fig. 3(h) (unilateral and adhesive effects [30] wherés a dis- Lo ,
placement and, is a contact impulse). is studl_ed in _[24]. Itis shown that the_loss_of rank4fq) when
Example 8 (Electrical Circuit With Ideal Diode)A simple the trajectories enter some subset, implies the need for a state

electrical circuit containing an ideal diode whose characterisfiginitialization to integrate the motion. Also the multiplieas-
is a corner law as in Fig. 3(g) with — 0, a current source and ansouated to the constraint may diverge to infinity when the tra-

oo ) - o :
inductor mounted in parallel, possesses the following dynamidgctories approach the singular §gt = 0, g3 = ¢3}. This

is therefore an example of a system with a bilateral constraint
(however, it can be easily recast in the framework of unilater-

T =A ally constrained systems by expressing the equality in (12) as
y=x+u two inequalities), that yields a behavior conformable to that of
b= )\ (11) the Painlevé system in example 6. |

OP 1: In view of examples 6 and 9, extend the studies on
singular differential equations to link Painlevé-like problems,
State reinitialization rule dynamical systems with generalized constraints, and singular
system& ()4 = f(z), where rankE(x)) is not constant [84].
wherez(t) € Ris the inductor current\(¢) € R isthe voltage  Other examples of dynamical systems that can be cast in a
across the diode;y(t) is the current across the diodet) is complementarity framework can be found in [8], [87], [41],

0<yLA>0
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[40], and [99]. From examples 3-5, 7, and 8, it follows that asixth line) that is used to avoid penetration of the state into in-

important subclass of systems as in (1) is given by consistent zones for the Painlevé system in example 6, is another
example of state reinitialization rule.
i=Az+Bu+ E\N+¢ The choice of a suitable reinitialization map is a crucial step.

Simple examples show that one has to choose it in accordance
(13) Wwith the continuous dynamics (consider e.g., two masses which
0<ylLlA=>0 collide, moving on a straight line: linear momentum conserva-
Statez(-) reinitialization rule. tion precludes the use of some “imaginary” impact law such
that both masses stop after any shock).

Gy+Cr+Fu+D\X+d=0

Systems as in (13) may be named ACS. It may be assumed that
G # 0to avoid meaningless complementarity conditions. How- IV. RELATIONSHIPS BETWEEN CS AND OTHER
ever, as example 7 show, is not necessarily full rank. HYBRID MODELS

Remark 4: Some of the presented examples have alreadyDifferential Inclusions: It has already been pointed out in
been thoroughly studied in the control literature without reexample 2 that there is a strong link between CS and some kind
sorting to any complementarity framework (e.g., example 3 withf DI. The dynamics in (13) can be equivalently rewritten as a
c = 0, or examples 4 (dead-zone), 5 with PL at the input [98]}lifferential-algebraic inclusion
However, on the one hand this is not true for all CS (by far).
On the other hand, it is expected that the existing works, when —% + Az + Bu + € € EdYg+ym (y)
replaced in a more general context, may provide some useful =
insights for the analysis of other systems. The fact that all these Gy+Co+ Fut d € =Dy (y) (14)
systems share a common structure cannot be passed over. Statex(-) reinitialization rule.

State reinitializations: The examples in (2) have shown that
some CS can be integrated without state jump, whereas other§he DI € F/(z) almost everywhere, witl'(-) upper-semi-
have discontinuous solutions. As alluded to in example 6, tR@ntinuous,F’(z) # § is convex and compact for all, and
fact that a discontinuous state reinitialization is needed or nét(-) satisfies linear growth conditions [i.e.€ F'(x) = ||z|| <
may not always be evident. Let us consider (1) disregarding stéte? ||+ for somea > 0 andb > 0], is widely studied, see [28].
reinitialization (consequently excluding initial state jumps), an§hen AC solutions exist. In general, such DI and CS as in (1)

such that assumption 1 holds. By construction the system is i€ auite different. A case when they drastically differ is unilat-
tialized in a certain mods;. The central question is: if the con-€rally constrained mechanical systems, since the linear growth

ditions for transition into another mode are met, can one int@jd compactness conditions fail. Another example is in (11),

grate the system without reinitializing(-)? In other words, is which can equivalently be rewritten as: € O u(t), +00) ().
. T , . . Therefore, it can be recast into Moreau'’s first-order sweeping
continuation in another mode possible with a continue(s

or not? There are two main steps in this problem: determine Rcess [63]’ [63], [53], i.e., DI of fche fom.” € e (w)
wﬁgre(l(t} is a convex set depending on time.

conditions such that state jumps are necessary, then define aru owever, for certain CSs, they coincide. This is the case of

for state reinitiglization. As the mechanical systems (_3) and (@e following one degree-of-freedom mechanical system with
show, the relative degreg, betweeny and\ plays amajorrole ¢, 1omp friction (corresponding to the graph in Fig. 3(f) with
in the need for state jump. In (8), = 2, so att;, no bounded\ = _ 0)

existto solved <y L A > 0if g(¢;) < 0.In(6),7y» = 1 and

the LCPO < i L A > 0 always has a unique bounded solution, mi=u+ 29 (g — Ap)

which allows the system to satisfy > 0 without state jump. 2

Consider now (7). Then one can always compute a unijas Y1 —y2=—¢ A+Ar=2 (15)
a solution of a LCR) < y L XA > 0, since the LCP matrix 0<yLA>0

is the identity matrix so that,, = 0. Thus, no state reinitial- . . ]
ization is needed to respect the conditign> 0: a bounded WhereA™ = (A1, A2),y" = (y1, y») and the analogy with (13)
A(z1, u) > 0 suffices. This can be generalized to (13), wher®’ (14) can be made. The dynamics in (15) can be equivalently

the matrix—G~' D should be aP-matrix. written as [71]

A geometric approach has been presented in [26] for systems
i = f(x)+g(x)u,y = h(x),C* = RT which brings an answer —mq +u € pmgoP_q 11(4) (16)
tothe first step. The theory is based on the uselative degrees
betweeny andu to characterize the sé{x) = 0 and builds up Wheredf[*_l_ 41(-) = | -] is the conjugate function of the indi-
possible reinitialization mappings. General state reinitializatiq;ator,l/,[_L 1’] 8.) andd| - | satisfies the aforementioned standard

rules are proposed in [42], [20], [21], and [24], for ACS as imypotheses o (-). It is a convex superpotential. Notice that
(13), withe = 0, G = —1I,,,d = 0, F = 0, B = 0. They ex- (16) can also be cast into the framework of Filippov’s systems,
tend Moreau’s rule in (4). They can be formulated as quadratie., a special sort of DI. The Zhuravlev—lvanov transformation
programs or Cone CP, which is of great usefulness for numean be used to transform mechanical systems as in (3) and with
ical simulations. The principle of maximal dissipation (see (9 = 1 into Filippov’s inclusions [12].
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OP 2: Determine the conditions on the matrices in (13) such For instance, let us notice in passing the following equiva-
that indeed (14) is a D& € F(x, u) with F(z, u) satisfying lences:
some standard hypotheses [28, Secs. 5 and 6], with an AC so- )
lution. Uniqueness is more complex to establish but is also an (51) & & +u+a € —g+(r)
important and largely open issue [83]. (+r+a,v—2)>0, YoeR"’

Due to the numerous studies on the sweeping process [68], z(-) >0
[63], [53], the following is of interest. o

OP 3: Determine the conditions such that (14) is a first-order i =-Pre(v+a) (17)
sweeping process, and derive well-posedness results for sugih o = 1 in (S;) in (2) and Pg+ is a linear projection.
ACS (in particular the nature of solutions depending on the sEfe last-but-one equivalence is between a differential inclusion
of admissible controllers). and alinear evolution variational inequality37]. The last for-

OP 3may be a preliminary step into some cross-fertilizatiomalism is called grojected dynamical syste(RDS) [75] and
between mathematical studies on various types of DI ([10], [53he equivalence uses basic convex analysis [44, Prop. A5.3.3].
[63], [50], [28], and the references therein), and complemeyis are another type of dynamical system which is widely used
tarity approaches [20], [21], [40]-{43], [89], [88]. in some branches of applied mathematics [37], [75]. As (17)

Measure Differential Equations (MDE)Specific notions shows, in some cases DI, VI, CS, PSS, and PDS are only dif-
of solutions have been introduced for MDE of the formierent formalisms for the same system.

& = f(z, t) + g(z, t)4 with v € RCBLV [78], or even with
quadratic terms ini [9]. Other types of MDEs are consid- V. CONTROLLABILITY |ISSUES
ered in [4] with piecewise continuous solutions, of the form

& = f(z, 1) if t # t(x), 2(t) = gla(ty)) it t = ty(z) - B
for some seQUencéﬁk(w)}mofc it is clear that such models Of States, there is an admissible inprifro, 7] — R” such that

+) — +. . _ . i i i
and (1) are of different nature. Significant differences betwediy. ) = (T 70, %o, u) = w1. There is a unique notion of
MDE and CS are stated in [12, Sec. 1.4.2, Ch. 7], and in [1 ontrollability for linear time-invariant systems. However, such

Actually, the complementarity conditions in (1) play a majo not the case f_or _nonl!near systems. Many r_elaxed noﬂon; of
ntrollability exist in this case, which are not in general equiv-

role in the dynamics and in all the properties of such systen?f. S . .
This does not prevent some analytical tools (like stabilig ent. Roughly, the controllability properties are characterized
notions) to apply both to such MDE and certain CS, as point 4| the reachable sets [77]
gLJt inl[;Zs,] Remark 8.12]. But this is not true in general [87, RV (y, T)={z € R"| Ju: [y, T] — U such that the

ec. 1.2.5].

Piecewise Smooth Systems (PSBES may be defined as A
i = fi(z, t) if z € D;, U;D; = R", eachD; has a nonempty =(tT; 70, wo, u) € V, forall
interior, D; N D; is either a zero-measure set included; or t € [0, T), andz(T") = z} (18)
indD; (e.g.,x > 0andz < 0),orf) (e.g.,z < 0andz > 0). The ] , , o o
#:(-, -) are smooth vector fields,is an index (positive integer). whereV isa n_elghborhood afy. Itis assumed in this qefmmon
Mimicking OP 2 and OP 3, let us state the following. that assumption 1 holds at least[eg, T']. The system iscces-

i o 4 _ Vi i
OP 4: What CS can be represented equivalently as PSS, aif€ rom @o WhenR” (zo) = Ur,<i<r R (2o, t) Contains a
vice versa? nonempty open set for arly and sufficiently smalll’ > 0. A

Consider examples 3 (with= 0), and 4 (witha < +00) and Lagrangian system is said to bquilibrium controllablg54] if

5 with no input (i.e.z = 0). They are PSS [such is not the casf?’ @nY two equilibrium pointsj, andqy, there exists an input
(t), and a solutiony(t), t € [rp, T, such thatg(ry) = qo,

for (3)]. Certainly the definition of the vector fields on the inter . !

sectionD; ND; plays arole, since it is related to graphs (fiIIindJ(T) = qu,q(t) € Viorallt € [r, T], andg(o) = ¢(T) = 0.

the gaps at discontinuity points) and maximality for monoton&

operators. This is clearly illustrated by the various definitions’

one may give to the signum functioBP 4 has been clarifiedin ~ Let us illustrate briefly on an example how the complemen-

[43] when the continuous dynamics is in a discrete-time repr@”ty relations and the state reinitialization rule, may influence

sentation. Related results are also in [22]. It follows from a resiifte controllability properties of a dynamical system. To this

in [99] that all systems with a piecewise linear connection (se@d, let us first consider the controllable dynam{c?;ﬁz.

Fig. 1) can be represented as an ACS in (13). Let us add a unilateral constrain{ > 0 and an impact law
OP 5: Study conditions onthe Cone GP € y L A(X) € C  a5(t]) = —exa(t;), with e = 0. As a consequence all states

and on the functiog(y, A, u, z, t), for (1) to be PSS. Discover (z1,z2) = (0, b) with b > 0 cannot be reached from any ad-

state variable changes (possibly nonsmooth, noninvertible) sumlssible stater; > 0, using bounded inputs. If, is RCLBYV,

that the transformed trajectories are time-continuous. How mien the stated, b) with b < 0 cannot be reached neither, so

one use conjugacy of convex functions in this setting? m that only the origin0, 0) is reachable oA®. However, the CS
More generally, there is certainly a strong need for clarifying\ > 0, Az1 = 0, 1 > 0 andis = u + ) is equilibrium con-

the links between numerous models of hybrid and nonsmotihilable. Let us now modify the controlled dynamics by adding

systems. This section only aims at pointing out possible pathis > ¢, ¢ > 0. Then,z; > 0 in Int(®), ® = {z|z, > e}.

for few of them. Consequently the system may be rendered controllable only if

The system (1) is controllable dR" if for any pair(z, x1)

evolution of (1) satisfies (t)

Example
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negative jumps im:; are introduced on®, which may not be a < 4
good idea. Otherwise, the system is accessible only. As we have z
seen in exampl€Sy) in (2), the external actioa can be used to

steerz(-) inside ®. X No(Xp)

x
e
A

B. Admissible States and Inputs (=)

Let us first propose the following. dxn%) s /
Definition 1: Letu(-) be a controlinput such that assumption ! AN
1is satisfied. Theng(-) = o(+; 70, xo, u) is admissible for (1) b %
attimet € (7o, 70 + ¢) if z(¢tT) € ® = {v| 3\ such that
g9(y, A, u(t), v, t) = 0andC* 5y L A(X) € C}. The set® is 0 a x
the admissible set. ] No(%p)
Therefore, clearly appears that one interpretation of the third \{
and fourth lines in (1) is that they form a generalized constraint.
Du.e tO assumpti_on. 1_’ .the right'”mﬂ(t—l_) _alwa_yS.eXiSts' Frqm Fig. 4. Controllability in the normal cone.
definition 1 admissibility applies to the right limit. One notices
that admissibility does not preclude accumulations of jumps in _ o
x(t). Attimest;, admissibility may be stated as(t; ) belongs _ OP 7: Determine the sel/ of admissible inputs such that
to the domain of the state jump mapping. The notion of admi$- # ¥, or such thatb 5 R, whereR is a given subset of the
sibility is a static notion to be checked at a time instant. F&tate space, for all € . u
instance, the left limit:(7, ) = zo may be nonadmissible, so The notion of admissibility does not at all replace nor imply
that the solution has to instantaneously jump to an admissi uniqueness of solutions. Actually, a stagemay be admis-
right limit. In (S;) in (2) with « = 1, only 2(7) > 0 is ad- sible, and\ be unique while nonuniqueness of solutions ema-
missible. In(S,) with « = 1, all z(7) are admissible. In (3), nating fromz, holds, orA may not be unique while solutions
q(75)(= q(7h)) has to be admissible singét) is AC. How- are, see [12, Sec. 5.4]. However. itis a preliminary notion which
ever one may need to consider higher derivatives of the signaiay help the control designer in planning which statesaare
to verify the admissibility. This is the case of example 2 in whicpriori reachable or not. It is thus advocated that the accurate
one needs to differentiagetwice to enable the calculation af characterization of is an important step in a control study. One
during phases wherg = 0, by constructing a suitable LCP.should always speak of controllability ovér(independent of
Consider example 5. Thencan be calculated as the solution ot,) for constrained systems, siné&’ (z(, 7)) C @ for any ad-
the LCP:0 <y L X > 0, which always possesses a unique senissiblez,. Admissible sets have been characterized in [20] for
lution A(1, ) since the LCP matrix is positive definite (it is thepassive LCS and in [22] for a special class of piecewise linear
identity matrix). In both cases, one sees thatoes not depend systems.
onwu. Let us consider now example 6 with= 0. The mathe-  Remark 5: The notion ofviability of the inputu [16] also
matical analysis [95], [34] shows thag and A, can be Dirac has to be considered. Let us consiges h(z) andC* = R*.
measures so thatmay jump, during sliding modelg; = 0and  Roughly a control input is said to be viable ¢fy, 7o + 77,
y2 > 0}. Such discontinuitie; are a consequence of the coupling > ), if the trajectoryz(t) = ¢(t; 10, T, u) € Int(®).
between thg (_:omplementarlty relations< .)\3 Lys >0and consider agaiti, = 22, #» = u, With z; < a, 22 > b, a > 0,
Coulomb friction. They ar@otdue to any impact between they, (1 see Fig. 4. Ifz1(0) = 0 then att < a/b the orbit hits

rod's tip and the ground, in which casg would be a DiraC he poundary:; = a whateveru. Thus, no input is viable for
measure. They prevent the system from violating the constragat, -

ys > 0.and from penetrating into an inconsistent subspace of they ;5 ity of the input may be crucial in some control studies
stateI spar::e. Srlljchr;ncodnastenc]lces are not Lallre, almd pr?cﬂca.tcggr Let us introduce the following notion.
ampess OWfSattlzeyW%OCC“roorrdefj‘?’f?”a o values ot pnys! Befinition 2: Letd = {z|h(z) > 0} for (1), with differen-
parame ?rs[ ], [12]. When 7 and dinerentiating twicgs, iap)e components;(-), 1 < i < m. Let us denote the projec-
one obtains that the contact fordgis the solution of a LCP of _. P )
. tion of a solutionz(t) = ¢(¢; to, xo, ) on the boundary®
the form0 < A(6, 6, v)+ B(6, u)As L A3 > 0. Consequently g
. . : . aszy(t) = ¢,(t; to, zo, u). Let us also denote the projection
the domain ofnconsisten{(d, 6) (see [12] or [34, Fig. 2]) de- of the trajectories on-Na (1) asan(t) = on(t: ¢ )
pends onu. Moreover, ifu depends on\s, then the LCP ma- e . %i”f%(j’; T Pnlti Yo, o, W)
trix B(6, 1) is modified also. This may have important conthen, if the MAPPING oo, (£: 70, 20, w) 'S surjective for any
sequences on the controllability of the system, since the states< 0%, the system is said to be normal controllable (N@).
which area priori reachable must belong @ In the latter case, ~ In other words, NC means that trajectories can be controlled
one might even imagine a boundeduch tha® = 0. in the normal direction t@®, see Fig. 4. The NC property im-
OP 6: Determine conditions offi(z, u, A), g(y, u, =, A),C  plies the existence of a viable input, and the work in [26] can be
such that® does not depend om. Start with ACS as in (13). used to characterize it. This notion is quite consistent with via-
Classify CS for whichu(z, t) does not modify the propertiesbility of sets in DI theory and is natural since the orbits evolve
of the CP to calculate, systems for which(\) is forbidden, in some admissible sets. The novelty is that the set of forbidden
systems for which(z, ) may modify the shape ab. m states may not be constant.

vx
.

L4

No(Xp)
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C. Complementarity Mechanical Systems Some preliminary answers have been given for juggling sys-

From the previous developments, it follows that solutions §¢M$ [581, [16], [17], [94], which are a subclass of m.echanical
CS possess the generic form (we drop all arguments for clarfty 25 In (3) that possess the following general form:
of writing) z21 = fi(z1, t, A)

2.,’2 = ‘](‘2(2127 u, )\)
_ ok k k=1 1 1 /
w=s,0F;0 Ys;_, oFi o0 Ps;,, 0" 9¥s, oFja

(20)
. 0<y=h(q,q)LA>0

~
possible finite accumulation

o F1ops, (19)

Collision rule

with zI' = (¢F, ¢F') € R™. Examples of mechanical jugglers
are running biped robots, hoppers, controlled structures, non-
each transitiors;_; — S; is a priori done through a state(-) prehensile manipulation systems, manipulators with dynamic

reinitialization mapping-;. The solution between two switchespaSSiVe environment, systems with dynamic backlash or liquid

in a modes; is denoted a5, = @(t;ttp m(ttl ) w), slosh phenom_enal [60], tethered satellites [52], gtc. Provided
. " i - J =0 the 2o dynamics is controllable, the unconstrained system
wheret;_;_; is the transitionS;_; — S; instant, and;_; ; < . ; . : .
’ . . o with A = 0 is therefore written in an uncontrollable canonical

t < t; j+1. In case of a finite accumulation of transitions, ONE m. The onlv way to contrat: is throuah the collisions. i.e
hask = +oo in (19). Notice that there may be several infini- y way ! 9 1

ties of events, even in simple systems (think of a bouncing ba@ usingA as an input. The basic idea in [16] and [17] is to

r o udy th trollabilit ties of tial i t Poi s
From (19) it follows that the controllability of (1) depends 8n Hey the controtaniiy properles of & parfial Impac’ Foincare
(what sequence?), the mappifs 1 < j (do they help, bother, ‘

map Py, with stateg; (k) 2 ¢1(t, ) and inputgs (k) 2 do(t;,)
or are not concerned? Does bijectivity of these mappings aII(S\‘?vee’ €.g., [16, Lemma 3]). Reachable sets and accessibility
one to ignore their effect on controllability?), the controllabilit

are defined accordingly. The Poincaré section is chosen as
properties in each modg; in S [recall theps;, 1 < j, in (19)

5 = {(g, ): hla) =0, Vh(g)Tq > 0}, ¢ = (4T, 4F). This
depend onu], and combination of all these ingredients. Som(éogtrrootl)llzkr)rl]“t{_ %ci)vbelﬁngqune:ijrt;eV;iﬁtiqraifogov(vqsn[l;]r.) and
peculiarities of controllability of systems in (1) have been highs "™ find {q1(k)}2i;<i, {q.l(k)}12<k<ny,{q21(}i;)}nl<k<n
lighted in the f_oregomg section. Let u; consider (3). Then pre"ﬂhd{q‘g(k)}2<k<n, sucﬁtﬁa(ql (1), & (_tf)) — (4!, vﬂ and
pact states Wlth(q) =0 andVhT(g)g < 0, are not reachable (q(t), 61(¢0)) = (a7, vi). =
sinceq(-) is right-continuous. More generally the work in [26] " |, other words. one looks for a sequence of impacts to

can be used to characterize reachable subséi¢of join the initial and end points. The locations, velocities, and
The work in [19] considers the controllability properties of & ymper of impacts, are unknown of the problem. Denote

where the DES pathi§ = (S;, S¥ ;,..., S} ;,..., S1)and

mechanical system in each mode and combines them in Orggff = (61 (2),..s i (n = 1)), 25 = (g5 (1), ..., a3 (n)),
to check the equilibrium controllability. However itis assumedr — (;7(2), ... ¢ (n — 1)), 21 = (4X(2), .... §¥(n)).

in [19] that at any state(¢), one can switch to any modg in- | et us denotez, as an input vectorw € R" !, and
stantaneously, i.e., there is a nonempty set of discrete contrgls— ;7 ;T 7). As shown in [17] when the vector fields
for the event times; ;. Consequently, the derived criterion ap+,(-), fo(-) andh(-) in (20) possess some linearity, finding a
plies to systems with clamping devices (bilateral constraints th&lution to problem 1 is equivalent to finding a solution to the
can be activated or deactivated at will), rather than to mechajpnstrained equation
ical systems as in (3), see Remark 2. The work in [38] is also 1
based on the controllability properties of a mechanical system M(w, ¢}, v7) <qi> + N(z, ¢, v) =0
in each mode. It applies to quasistatic systems (no drift, no colli- Un
sions, inputs are velocities). The interest of this study mainly lies P(w, qi, vi)gt + T (z1, w, ¢}, viF) >0
in the fact that it shows how to characterize the controll::xbilit\)(/here the matrices\, A/, P and 7 depend nonlinearly on
properties by switching between the mod&sof the associ- e jnitial state(¢!, v;) and onz. If (21) possesses a solution
ated automaton. The natural notpn of (?ontrollablllfcy restn.cteg’ then (g, v;') is reachable fronfg!, v;"). The example of
to constraint surfaces of the configuration space is also intrg, impacting pair (modeling dynamic backlash [60]) is treated
duced in [38]. The previous studies use the geometric struct%e{ﬂ]’ and some general results are given which make use of
of nonsmooth mechanical systems [24]. the particular structure of the constrained equation in (21) and
OP 8: Depending on the input matrik in (3), the uncon- of CP constructed from the Karush—Kuhn—Tucker conditions
strained system may not be controllable [e.g., underactuated]. Comparing the constrained equation in (21) with the linear
systems withi < n/2, or the structure in (20)]. Can the additionsystem of equations that characterizes the controllability of dis-
of complementarity conditions and state reinitialization improvgrete-time invariant linear systems [93, Sec. 3.2], shows how
its controllability properties? So what is the relation between th@nlinear jugglers are.
controllable subspaces of the dynamics in each mode, the statoP 9: Investigate the structure of the reachable sets. How
reinitialization rule and the set of admissible contidlsso that may one use tools from linear and nonlinear programming to
the CSis controllable? A path for local controllability study mayget a general criterion on accessibility of jugglers? Can local
be to use the linearization of the solution in (19) which incorp@ontrollability criteria be set up, and if so are they always rele-
rates the so-callesiltation matrix[27]. m vant? Indeed in certain casglobal criteria may be neededm

(21)
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It is particularly interesting to note that jugglers may nofull-columnrank and le'E = I,,, WE = O(n—m)xm- Then,
be locally accessible, but onlglobally accessible [17], [58]. one obtains
In other words, problem 1 may not possess any solution for . N T
(¢¢, vF) and all intermediate locations and velocities lying 0< -EN(-# +_Ax +Bute) L Crt Futd>0 (23)
in a neighborhood ofq{, vi"). This is the case of a planarwhereC'z + Fu+d = Cz + Fu+ DX +d and) is the solution
juggler (m1 = 4, no = 2) whose reachable sets have been fullyf the LCP:0 < y 1. A > 0, and
characterized in [58]. . B

OP 10: Characterize the controllability of (20) from The W(=i& + Az + Bu +¢) = 0. (24)

major ingredients are: the controllability of the-dynamics, How may one use the CP in (23) and the reduced-order dy-

the controllability of thez;-dynamics in the sense of problemnhamics in (24) (that may be a mixed or a simple LCR.jrfor

1, the invertibility of the collision mapping. Use the aforemencontrollability purpose? Can one formulate similar conditions as

tioned framework to study the influence of various characterisiig3) and (24) from a time-discretization of (14) and then deduce

physical of systemical constants (restitution coefficient, Dagome properties of the continuous-time system by studying the

boux—Keller shock dynamics [12, Sec. 4.2.5], [96], relative d@mit of the discrete-time solutions [59], [63]? What is the influ-

grees between, u, A, etc.) on the controllability. ence of the convergence (strong, weak, we#], [95], [90])

on such a study? Is it possible to formulate soreéfication

or feasibility criterion [6] that would allow the designer to test
1) General ConsiderationslLet us consider the ACS in numerically some approximate controllability properties from a

(13). It is crucial to note that the slack variableis not an time-discretization? |

exogenous disturbance, so even when a matching conditiont is known that mere LCPs may be quite simple or almost un-

betweenu and ) is satisfied, one may not compensate for tractable problems [8], depending on the properties of the LCP

directly with . The switches between the mod6s play a matrix. This is expected to impose severe restrictions on the data

crucial role. If u(t) is a function, instantaneous switches ah (23) and (24) to get solutions of OP 12.

arbitrary timet are impossible in general. In other words, in OP 13: Sinceu and A can be seen as an exogenous and a

most CS the event times ; are not directly controllable. state (and:) dependent inputs, respectively, what is the role of
OP 11:1s it possible to include distributional inputs i, the pairs(4, B), (A, E) and(F, C) in the controllability of

whose action would be similar to a discrete control by taking@3)?

instantaneously the stat¢z) from one mode to another one?  The study of simple first-order examples as in (2), with the
As we shall see in Section V-D-2, in some cases of AC$put acting both iny and in the vector fieldf(-), might consti-

bounded discontinuous inpuig-) can act as discrete controlstute a good starting point.

and help invert some nonsmooth characteristics. The applicatioOP 14: Let us consider an ACS in (13) with= 0, d = 0,

of distributional inputsu(-) (e.g., Dirac measures and deriva; = —1I,,,, F = 0, D = 0. Then from (14) its DI formalism

tives) to a CS, certainly requires much care. Until now we haveads-i € { Az }+FEdvg+)m (Cx)+{Bu}. Mimicking linear

only considered state jumps which are ruled by a reinitializatiognvariant systems [93], its conjugate (or adjoint) system may be

mapping. Applying distributional inputs to ACS [even if soludefined as-¢ € G(¢), z = BTz, whereG(¢) is the conjugate

tions are AC for all bounded(-)] certainly is a delicate matter of Az+ Edy g+~ (Cx). Howis controllability of the: system

in general since they become complex MDE (see Section I\fglated to observability of the system?

The case where both reinitialization mapping and distributional 2) Inversion of Piecewise Linear Characteristic¥he in-

input coexist, is by far not yet well understood. Notice that sualersion of the operator PL), us = PL (1), whose graph is

guestions may be fundamental when dealing with optimal coas in Fig. 1 is certainly an important property for the controlla-

D. Affine Complementarity Systems

trol problems. bility of the overall system. The problem here is to find sauch
Remark 6: Consider example 8. The dynamicsin (11) can bat PL(u) = v, for some desired signal;. The deadzone of
rewritten as a first-order sweeping process [53] Fig. 3(b) witha = b > 0 is invertible onIR: let us denote its
i € O (2 + 1) = Oty 400y (). 22) outputas and letus consider(t) = (1/a)vq(t)+dsgn(va(t)),

sgn(-) = J| - |. Thenu(t) = vy(¢) forall t > to. Actually, one
The right-hand side of the inclusion in (22) is noncompact arsges that the graph of Pby — u is exactly the inverse graph
depends on both andz, whereas in (16) it is compact and de{86, p. 219] of the deadzone graph. The trick is that suclak
pends on the state only, and in (4) it is noncompact and depefmisgs the system to jump between modgsand.S3, avoiding
on the state only. Which are the consequences of these propertiesle S;: it acts as a discrete control. This is closely linked
on controllability? It is important to remark here that the natut® having F* # 0 in (13), see (7). One sees that the comple-
of u(t) (continuous, piecewise continuous, RCLBV functionjnentarity formalism clearly shows why some nonlinearities are
influences much the nature oft) in the sweeping process. Ifinvertible: u(-) directly acts inside the complementarity condi-
u(-) is Lipschitz, thenx(+) is Lipschitz. Ifu(-) is RCLBV then tions and allows one to impose switches\of
x(-) is RCLBV [53]. Therefore, controllability may be more dif- OP 15: Determine the conditions on the subsyst&r{s) in
ficult to study, since modifying the input space implies modiFig. 1 and/or the set of admissible inpltsuch that invertibility
fying the solutions as well (especially introducing jumps)m  of PL implies controllability of the overall system.

OP 12:The controllability of the ACS in (13) witllir = —1I,,, In conclusion, the controllability of CS as in (1) is a dif-
and AC solutions may be attacked as follows. Assumefihiat ficult problem because they possess no discrete control, and
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steering trajectoriesc(-) with the inputu(-) involves an in-  Generally, the fixed points of CS are the solutions of general-
terplay between the continuous dynamics and complementaityd equation® € F(z).
conditions.

B. Dissipative Systems

V1. STABILIZATION AND FEEDBACK CONTROL 1) Lagrange-Dirichlet Theoremit is crucial to develop

Consider for instance an ACS = Az + CT), 0 < y = a stability analysis framework for systems as in (1). For
Cxz +d L X > 0. As shown in [75, ex. 3.2], the stability of Lagrangian mechanical systems as in (3), the mathematical
the systemi: = Az does not imply that of this ACS [which is results of [95] and [5] provide a nice ground. In summary, they
an evolution variational inequality (EVI1)]. Stabilization of CS igmply (under some conditions which are not recalled here) the
therefore a subject that requires full attention. The characterizalowing.
tion of invariant sets is a prerequisite to stabilization. The first a) ¢ € AC, ¢ € RCLBV (hence any quadratic function of
section provides some insights on fixed points calculation for ¢ is RCLBV as well [63]).

CS. Then we discuss stability, dissipativity, and optimal control. b) Therefore, the distributional derivativé can be decom-
Finally the tracking control of two classes of CS (Lagrangian posed as the sum of three terms: an atomic meagurea

systems and jugglers) is briefly reviewed. Lebesgue integrable functidri }, and a nonatomic mea-
sure singular with respect to the Lebesgue meaguye.
A. Existence of Fixed Points c) The set of impact timest;,} >0 is countable, and there
Let us consider the system in (4) with= 0. Then the point exist possible left-accumulationing .1« = too <
(q(t), q(tT)) = (qo, 0) is a fixed point of this MDI if and only +o0.
if the generalized equation (see Appendix B) These very specific features are at the core of the develop-
oU ments in [12], [13], [11], [18], and [101]. Item b) is crucial,
0 € OYa(qo) + 6_q (qo) (25) since it means that despite the time derivative of a Lyapunov

functionV € RC LBV isnota function, itis aneasure. Conse-
holds. The functiori/(q) is the potential energy of the systemuently, characterizing the sign @7 makes perfect sense, and
andF(q, ¢) = C(q, )¢ + (0U/9q), whereC(q, ¢)¢ denotes if the measuredV < 0, thefunctionV is decreasing [29] (in
Coriolis and centripetal torques. We also used the fact thether words, RCLBV functions are the primitive of their distri-
(4(t;) = 0) = (§(t{) = 0) in the impact law, sincé € V(q). butional derivative). Such conclusions would not have been pos-
Let us notice that the condition (25) does not imply at aflible if § had been proved to be measurable only. Item ¢) secures
the uniqueness of the fixed point (for instance systems withat the sef{t; }1>¢ is an admissible event times set [21, Def.
clearance in which there is an infinity of fixed points [60]).  3.3.4]. The measuréy in (5) can be chosen al = dt + dp,,.
Example 10: Let us consider the simple example We note that without Coulomb friction and if all data are piece-
. . o wise analytic, themu.,,, = 0 [5]. It is noteworthy that the fact
mq=—mg, ¢28>0 () =—ei(ty).  (26) {hat velocities are RCLBV does not preclude some very com-
Obviously(g, §(t)) = (8, 0) is the unique fixed point and Plicated phenomena like accumulations or accumulations of im-

one can check that condition (25) is satisfied. The same djcts (concretely, lefi; } and{t}} be two sequences of impacts
namics withg < 0 no longer possesses any fixed point. m  With limits £, and2_, respectively, and lef,, tend toward?,

Lemma 1: Assume that in (3) one hag € R", h(q) = SO that both accumulations are merged into a single one). So
Cq, C € R™™, m < n, F(q, ) = Clq, §)i — Q + Kq, far, it has not been prov_ed thgt such phenom_ena do not occur in
Q € R" andK € R™*" constant, and is full row rank. mechanical systems with unilateral constraints and nonpurely
elastic collisions.

Then equilibrium pointg, satisfy the Extended LGR): 0 < _ ' .

CH(Kq—Q—Eu) L Cq>0andW(Q — Kq+ Eu) = 0, Lemma 2: Consider a _mechan_lcal system as in (5_) where

whereCt = (CCT)~'C € R™™ andWCT = 0, W ¢ F(q, ¢) consists of Coriolis, centripetal and conservative gen-

RM—m)xn m eralized forces with a smooth potentld(g), v = 0. Then, if
The proof proceeds as follows. The equilibrivgy ¢) = %e(¢)+ U(q) has a strict minimum af, the equilibrium point

(g0, 0) has to satisfy the generalized equatipr- K¢+ Eu € (4o, 0) satisfying (25) is stable in the sense of Lyapunov.m

CT gy (Cq), sinced < Cq L A > 0. Hence, multi- Items a) and b) are in force here. The proof [18] is based on

plying both sides of this generalized equation @{ and W the use of the nonsmooth Lyapunov candidate function
one getsCT(Q + Eu — Kq) € d¢r+)-(Cq) andW(Q — N .

Kq + Eu) = 0. The first generalized equation is a LAP< Vg, ) =35d M(q)qi+va(q) +U(q) —U(q)  (27)
Cq L —CT(Q— Kq+ Eu) > 0, and the second condition is the

. . . and on basic nonsmooth and convex analysis. Sjicee ¢
equalityW Q+W Eu = W K q. This can be written as the ELCP, -
(see Appendix B)Adq — d > 0, B — e, E;-n:l Hiedy (Aq — forall ¢t > 7, it follows thatV'(¢) € RCLBV and one has along

. . ) xn  lrajectories of (5)
d); =0, ¢ = {j.m + j}, with A = (.§) € R,

d = (CT ’ ) ER™", B=WK,e=WQ+WEu. dV o T dv . . .p dt 0Udg
(Q+Eu) . . — = ) — —+

Algorithms to solve ELCPs exist [92]. The results in [36] maydu [q(t )+t )] M{a(t)) du +a(t™) Zdu + dq du

also be used to study and solve (25)Kif= KT > 0 then this 19 . .7 oy g

ELCP has one solution from [36, Th. 2.2]). n XT ()" M (q(t))g(t™)) n <0 (28)
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wherez € v (q(t)) and Moreau’s rule for differentiation of Lemma 3 [18]: The solutionsz(-) of (30) satisfying
guadratic function of RCLBV functions [63] has been used. Th8x(0) € domdy are AC and uniqueness holds. The fixed
advantage of using the MDI formalism, is that it might be a powpoint z = 0 of the system in (30) is unique and is globally
erful tool in studying systems such that the measlurés more asymptotically stable. [ |
complex [e.g., stochastic friction models inherently containing The stability proof relies on a quadratic Lyapunov func-
nonzero measure,,, as in item b), or such that the supportion V(z) = (1/2)zT Pz with P the solution of the
of du, is not contained if{t|q(t) € 0®}]. Itis of primary im- Kalman—Yakubovic—Popov lemma conditions [57]. Related
portance to note that the mappigg™) — ay;‘,,(q(t»(q(ﬁ)) in results can be found in [20] (passive LCS) and in [75, Ch. 3]
(5) is monotone, sinc& (q) anddyy (4(+))(+) are polar cones. (evolution VI). Passive LCS have the property that the transfer
Lemma 2 brings an answer to whether or not the system  function A — y is positive real. Passifiability by pole shifting
is an interesting result for stabilization by feedback [20]. The

Mi+Fi+Kq+G=CT\ well-posedness proof of Lemma 3 requires some manipulations

Cq>0, A>0 MCg=0 (29) and the fixed point is the solution of the generalized equation
0 € Az — Boyp(Cz). It seems that Brézis’ theorem on global
existence and uniqueness of solutions [10] to-Bll € A(z),
where M, C, K, G, F are constant, has bounded solutiongd (z) a maximal monotone operator, is central in the study of
for all ¢ > 0. The reader may check its application on simplmterconnections as in (30). The PR condition (oh B, C)

Collision mapping

systems like one degree of freedom jugglers [16], impactimgn be relaxed whep(-) = | - | [83], at the price of restricting
pair modeling backlash [60], with collocated PD feedback cothe set of solutions to piecewise differentiable functions. Let us
trollers. notice that (30) is a particular DI. Many extensions exist, e.g.,

OP 16: Extend Lemma 2 to systems with unilateral coneonsideringz = C(z(t)), whereC(-) is @ monotone operator.
straints and Coulomb friction, wit nonconvex andn > 2. When A = 0 and B the identity, (30) corresponds to the DI
Extend it to all mechanical systems subject to set valued forstidied in [50]. Therefore, infinite dimensional generalizations
laws that derive from a superpotential. of lemma 3 should be possible.

It is likely that solving OP 16 requires first modeling investi- OP 17: A next step is also to extend Lemmas 2 and 3 toward
gations [33], [35]. ACS as in (13). Then, extend toward dissipative nonlinear dy-

2) Absolute Stability:Let us now turn our attention to a classnamics: = f(z) + g(z)w, z = h(x). ]
of ACS. The absolute stability problem (see, e.g., [57]) consistsActually, Lemma 3 readily extends to nonlinear systems of
of studying the stability of a the negative feedback interconnettie formz = — fozo 2R o, 2 = 1, —w € Op(2),
tion of H(s) (a positive real transfer function — y) with a z € IR, with storage functiorV/(z) = z?/2. The operator
sector static nonlinearity(t, y) with slope in[0, +00). Usu- w +— z is strictly passive with dissipation functiofi(z) =
ally, ¢(-, -) is required to be piecewise continuoustiand lo- — E;:;O 22k+2 [57].
cally Lipschitz iny. It is of interest to extend this result to the Remark 7: The following is an issue [12], [20]: Since the
case where the feedback nonlinearity is a maximal monotosepply rateW (u, y) = y© A may be meaningless in the sense
multivalued mapping. of Schwarz’ distributions at timeg, how to extend the dissipa-

A multivalued mapping”(-) is monotone ifz — 2’)”(y — tion equality (integrated or infinitesimal forms) to CS? Possible
y') > 0 for any couplegz, y) and(z’, 3’) in its graph. Mono- paths have been pointed out in [12, Sec. 1.2.2].
tone mappings correspond to completely nondecreasing curveg&inally, a natural extension of lemmas 2 and 3 is:
in IR2. Maximality of multivalued monotone operators refersto OP 18: Characterize classes of CS such that the
graph inclusion (i.e., the gaps are filled in). The relay functioirakovskii—LaSalle invariance lemma applies. [ |
defined asu; = RL(z1),u2 € {—1, 1} if 21 = 0, isnot max-  Theinvariance lemma relies on properties of the positive limit
imal. However, the graphs in Fig. 3(e), (f), and (h) are maximalets (compactness, invariance) which in turn are a consequence

monotone. of properties of solutions like uniqueness, continuous depen-
The considered state-space equations are dence in the initial data, as well as properties of the Lyapunov
function itself. By far, not all CS meet all these requirements.
. a.e.
T = Ax + Bw
Y= Cr (30) C. Optimal Control
—w € dp(2) Let us focus on mechanical systems as in (3), to which items

a), b), and c) apply. As pointed out in [12, Sec. 3.5.4] the fol-
where a.e. is almost everywhere because solutions are lexving problem remains unsolved.
pected to be AC. The link with CS is clear (choose, e.g., OP 19: Find »* that is critical for some action integral
©(-) = Pmw+y~ (), dim(z) = m). The system in (16) fits I(u) = [ L(q, ¢, t)dt + B(«x(T), T), under the dynamics
within (30) withz = gandyp(-) = |-|,aswellagS;) in(2)with §=u+ X, 0<gq L X >0, §(tf) = —eq(t, ). How do the
a = 0, see (17). The fixed points of (30) can be characterizedimber of impacts and the restitution influeride)? In which
as in Section VI-A. Let us assume thd{s) = C(s] — A)~'B  space/ should one consider? Then generalize to higher order

is a strictly positive real transfer function [57], thaf-) is Isc  systems. [ |
and convex, so thalp(-) is a maximal monotone multivalued Applications are in the optimal control of all mechanical sys-
mapping [86], and that the graph @p(+) contains(0, 0). tems subject to impacts and unilateral constraints. It is note-
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worthy that the optimal control of MDE (see, e.g., [91]), does A2a(t) (normal direction to 6%)
not solveOP 19. The optimal control of a time invariant linear
system with virtual state constrainta: > 0 yields optimality
conditions [87]

(31) 8%

{z’:Zz%—F)\
0<CzLA>0

for somez and matricest, BB, C. Notice the striking similarity
between (31) and (6), though both systems represent quite dif-
ferent prOblemS. If (§(7), (7)) = (0, 0) then tangential contact.
A prerequisite to a better understanding of optimal control for Otherwise —aV/(r) < 0 = bouncing-ball dynamics.
the aforemen_tioned classes of systems, isa bettgr understangdiflG  Transition phase trajectory.
of the dynamics of CS. The optimal control of a simple ACS has
beensolvedin[23, Sec. 5.3] and extensions toward more general = | ] )
ACS may be an objective. Applications are in optimal contrélynamics is decoupled, the control problem is much easier [12,

of electrical networks with diodes and/or MOS transistors. S€C- 8.6.3]. ltem iii) means that it is often more convenient to
think of the dynamics during the transition phase, in terms of an

D. Tracking Control for Lagrangian Systems impaCt Poincaré maﬁz with Poincaré sectiol as in prOblem

This problem has been studied in [13], [11], and [62], forsysl-' Item c) secures that such a discrete-time system can be con-

tems as in (3), with a single constraint, afidhe identity matrix. strugt_ed. Then s_tab|||ty may be chgractenzed gs_the Lyapunov
g . ) : tability of Ps; with Lyapunov function the restriction df to

In [62], planar systems inside a disc are considered, with elastic . o

: : : . .. Item iv) means that the dynamics in (26) and

impacts. PD inputs are shown to asymptotically stabilize partic-

ular impacting trajectories. The objective in [13] and [11]isto . } ‘

design a controller that assures stable tracking of some referenéed + 714 + 724 € —9¢¥r+(q), q(t)>0  Vt>0

trajectoryqq(t), relying on a suitable stability framework that (32)

encompasses both unconstrained, persistently constrained, g different natures. In (26), the invariant setis the solution of
impacting orbits. Features a), b), and c) enumerated in the intfRa generalized equation (25) and is, therefore, characterized by
duction of Section VI-B hold, and the goal is to extend lemmgy the ingredients of the dynamics (including the impact law). In
2 Fo the case of tracking control. There are four main features(@)’ the invariance is simply that of the continuous dynamics,
this extension. since i+ (qa(-)) = {0}. The stability framework and the
i) Impacts have to be included in any stability analysis, angbntroller proposed in [11] and [13] take these peculiar features
the designer should take advantage that impacts implyrao account. The proposed controller is based on the Paden and
loss of kinetic energy in the stabilization. Panja controller [57, Sec. 6.2.5] for unconstrained systems. In
ii) There are two antagonist facts: robustness of the stapiarticular the transition phase uses a signél) as depicted in
lization process oW requires that a “bouncing-ball’- Fig. 5, with a closed-loop dynamics similar to (32) in the normal
like dynamics be realized in closed loop [notice that direction tod®, to cope with item ii). The design af;(-) during
in (26) needs not to be known to get stabilization], buithe stabilization phase o is a crucial step. The use of the
asymptoticstability implies that velocity jumps vanish (fixed parameter) Slotine and Li controller might be of interest
asymptotically. too in this context [101], since it possesses the advantage over
iii) Requiring that{V'} < 0 forall ¢ > 0 [see item b)] is the Paden and Panja’s one of assufifig) < —yV (t),y > 0,
too stringent in most cases, especially during transitiagsh free motion phases. However, the functiof) is less close

—aV{r)

~ phases including rebounds. _ to the mechanical energy for this controller. In fact, Moreau’s
iv) The underlying nature of the evolution process and thapl in (5) has not yet been fully exploited in this setting.
trajectories has to be taken into account. The tracking problem for fully actuated complementarity La-

Item i) leads to the choice of a Lyapunov function which igrangian systems is not a simple extension of the unconstrained
as close as DOSSibE to the process total energy. The funci¢e’e. The design of a suitable desired trajectory during transi-
V(t,q, 4 = (1/2)§ M(q)§ + va(q) + U(G) — U(do) is a tion phases, is a crucial step.
suitable onej = ¢ — qq4. Item ii) implies a specific transi-  The aforementioned results apply to the case= 1, i.e., a
tion phase in order to stabilize the systemi@n The dynamics unique constraint withh(q) in (3) continuously differentiable.
should be similar to (26) during the transient, whereas a tdmet 3; = {q|h:(q) = 0}.
gent approach should be asymptotically guaranteed. AttainingOP 20: Study control strategies that stabilize the system on
the constraint tangentially, and without incorporating impactie codimensio < p < m surface¥, = ¥; N¥sN---NY,,
in the stability analysis, cannot work neither theoretically nawith any initial conditions. In particular, the transition phase
in practice. The main source of difficulty for stability lies in thecontroller should be robust with respect to all types of uncertain-
coupling between normal and tangential directiongdg i.e., ties that may modify some dynamical properties. Then extend
the M (¢) generally cannot be transformed in a block-diagon#the tracking controllers of [11] and [13] which concern (3), to
matrix via a suitable generalized coordinate change. When the casen > 2. ]
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The impact with the surfacg, is called a multiple impact. [61], [76], [82]. Complementarity dynamical systems do rep-
Let us recall that Lyapunov stability is equivalent to some contiesent a very specific class of hybrid systems for which many
nuity of solutions with respect to initial data, on an infinite timgroblems heavily rely on the use of complementarity problems
interval. Multiple impacts may destroy this property, see [424nd convex analysis. This peculiar structure is very useful since
[90], [12]. This depends a lot on the domaingeometry, the it allows one to deeply investigate their properties, and at the
mass matrix\ (¢) and the impact law. Therefore uncertaintiesame time is not restrictive in terms of potential applications
on these physical data may drastically modify the trajectori@gich are numerous. The possible relationships with other types
which collide in the neighborhood &f,. OnceOP 20has been of nonsmooth evolution problems are pointed out. Some open

solved, proceed to the following. problems are proposed; clearly many others exist and will hope-
OP 21: Extend the results in [13] and [11] to the case of joinfully be given solutions. Finally, it is worth noting that the nu-
flexibilities. B merical simulation of complementarity systems is also a hard

Both OP 20 and21 have important practical consequencegroblem and that most available software packages do not allow
Indeed in most mechanical systems> 2. Concerning flexi- to treat correctly neither complementarity problems nor finite
bilities, it is expected that the effect of vibrations in the strucaccumulation of events [15].
ture due to the impacts, may be modeled this way. The conse-
quences on stabilization may be crucial. The control of biped
robots in a walking motion seems quite particular and its link
with OP 20 needs to be clarified. Indeed the basic stability of
a walking biped requires that at each instant the state and thd he classical equation of dynamics is an equality of func-
input satisfy inequalitiest(q)u + B(q, ¢) > 0 outside impacts tions, like m(d*q/dt*)(t) = f(t). Imagine now that the ve-
andA(q(tx))q(t; ) > 0 atimpacts [46], for some matrices andocity has jumps at times;. Then, the left- and right-hand sides
vectorsA, B and 4. Designing such a feedback control is affeé measures instead of mere functions, and one may rewrite
open problem. The extension toward higher order C&asin  such dynamics as an equality of measures; = f(t) dt +
(2) is challenging as well. dR, wheredR is an atomic measure with atomstat In this

Control of Jugglers: Quite interesting stabilization resultscase, writing the dynamics as(dg/dt)(t) = - -- is meaning-
have been obtained in [58] for a planar juggler, using ideas l§s because at a jump tirdg has no density with respect to
control recurrence. A framework for the control design of méhe Lebesgue measud (it has a density with respect to the
chanical systems as in (20) has been proposed in [16], and Bieac measure;, which in turn is singular teit). Now if the
control of an impacting pair modeling dynamic backlash hdight-hand side is a multivalued functiah(z), one may write
been studied in [60]. A feedback stabilization technique usifige dynamics asuj(t) € F'(t). The concept of MDI merges
the linearization of (19) is used in [27]. An interesting problerRoth equality of measures and inclusion and has been coined by
is in the control of buildings subject to earthquake excitationjoreau [70] and Schatzman [90]. This is an evolution problem
modeled with the rocking block approach [12]; where shoulef the form(da/dp) + g(«(t1), t1)(dt/dp) € F(z(tt), t1),
the actuators be placed so as to avoid overturning, and minimy¢@ere. is a positive measure ard(z, t) is a coneg(z(t), t)
the angular motion magnitude? This is thought to be a touighLebesgue integrable, and the inclusion hqldalmost ev-
problem (including multiple impact and friction). erywhere. The notatiodz /du. generalizes that of a derivative,

OP 22: Characterize classes of tasks in terms of tHer measures. For instancedf: = ¢, and if z(-) jumps at
closed-loop invariant sets to be stabilized, and derive a generat tx, then(dz/du)(ty) = () — x(t;). The fact thadu

APPENDIX A
MEASURE DIFFERENTIAL INCLUSIONS

stability and controller design framework. can be any positive measure comes from the fact fat ¢)
is a cone. IfF(z, t) is merely convex this no longer holds.
VIl. CONCLUSION If ¢ is discontinuous andg is continuous at;, k& > 0, one

may choosely = dt + 3 ;-4 6, and write the dynamics
(dq/du) ( ) (dt/dp) € F(g,t). Att = t;, one has
— ¢(t;)] for somea > 0 whereasit/dy =
d = 0 Out3|de impactglt/dp = 1 anddq/du = §(t).
aIIy the functions are evaluated at their right limits because
solutions of Moreau’s MDI are right continuous.

The class of nonlinear nonsmooth controlled dynamical Y5
tems considered in this paper (namely CS) is quite mterestl
since it still offers many challenges to various scientific com-
munities (including systems and control) and at the same tII‘E
finds many applications. Such systems may be recastin the Clﬁﬁe
of hybrid dynamical systems, but can also be seen as measure
differential inclusions. The adopted formalism depends on the
objective of the study. The goal of this paper is to expose the
difficulties and main problems associated to such complex dy-
namics. Several notions which are peculiar to complementaritySolving the quadratic programin(1/2)z7 Dz + Cz, D =
dynamical systems are introduced, such as sets of admissibfé > 0, subjecttaFz+ F > 0, is equivalent [74, Sec. 9.3.1] to
states and inputs, normal controllability, viability of controlssolvinga LCPwithd = ED~'ET, B = —~F+ED~1CT.This
One interesting question is whether it is possible to classifias important practical consequences, e.g., for numerical calcu-
complementarity dynamical systems into subclasses with spations [15], [21], [72]. An ELCP is a complementarity problem
cific control properties, or not. Until now, the studies have fdhat can be written 8.} Tlicy; (A2 —¢); = 0, Az — ¢ > 0,
cused on linear CS [20], [21], [40]-[42], [89], nonlinear CS [883z = d, for some matricest € IR?*™, B € R?*", vectors
and mechanical systems [11]-[13], [16], [45], [56], [58], [62]¢ € R”,d € IRY, andm subset®,; of {1, 2, ..., p}; z; denotes

APPENDIX B
COMPLEMENTARY PROBLEMS (CONTINUED)
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theith component of the vectar Many other types of comple- [18]
mentarity problems exist [92] which cannot be described here
for the sake of briefness of the presentatiogeheralized equa- (19
tion is an equation of the form € F(x), whereF'(z) is a mul-
tivalued mapping [79] [i.e.F'(z) = y; andF(z) = y» does not (20]
imply y1 = y2; the mappings whose graphs are in Fig. 3(d), (e),
(M, (g) and (h) are multivalued]. In particular the complemen-
tarity condition0 < z L y > 0 can equivalently be rewritten
as the generalized equatione = + Jv g+~ (y), which also
shows the link between complementarity and convex analysig2]
[86, p. 226]. This will also be useful to transform complemen-
tarity systems into various sorts of differential inclusions. [23]

— Therefore, one sees that there are strong links between
generalized equations, convex analysis, and complementari@fl]
problems.

(21]

(25]
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