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Abstract—The theory of fundamental design limitations is well gral and, thus, exhibit a design tradeoff termed the “waterbed
understood for the case that the performance variable is measured effect.” In words, this tradeoff states that as sensitivity is made
for feedback. In the present paper, we extend the theory 10 Sys- gma gyer one frequency range, it necessarily becomes large
tems for which the performance variable is not measured. We con- . . - . .
sider only the special case for which the performance and mea- at other frequencies. A _meanlngful Fradeof‘f is obtained only !n
sured outputs and the control and exogenous inputs are all scalar the presence of bandwidth constraints, such as those required
signals. The results of the paper depend on the control architec- to avoid exciting unmodeled high frequency dynamics (cf. [1,
ture, specifically, on the location of the sensor relative to the per- Cor. 3.1.6]). The presence of open loop nonminimum phase
formance output, and the actuator relative to the exogenous input. zeros implies a related waterbed effect that is described by the

We show that there may exist a tradeoff between disturbance at- Poi itivity int 1131 A th h . f It
tenuation and stability robustness that is in addition to the trade- oisson sensitivity integral [3]. orougn review orresufts on

offs that exist when the performance output is measured. We also fundamental design limitations is found in [1].
develop a set of interpolation constraints that must be satisfied by ~ An assumption implicit in most work on fundamental design

the disturbance response at certain closed right half plane poles |imitations is that the system output measured for feedback is
and zeros, and translate these constraints into generalizations of also the performance variable. In many engineering applica-

the Bode and Poisson sensitivity integrals. In the absence of prob- fi thi tion i t satisfied. E les include th i
lematic interpolation constraints we show that there exists a sta- lons, this assumptlion 1S not satistied. Exampies inciude the mil-

bilizing control law that achieves arbitrarily small disturbance re-  itary vehicle in [4] and the acoustic duct in [5]. The research de-
sponse. Depending on the system architecture, this control law will scribed in this paper is directly motivated by the experience of
either be high gain feedback or a finite gain controller that depends  the authors with these and other applications.

explicitly on the plant model. We illustrate the results of this paper Suppose that the performance output differs from the mea-

with the problem of active noise control in an acoustic duct. s .
P sured output. Then, as we shall see,ghasitivity function
Index Terms—DPisturbance response, fundamental design limi-
tations, nonminimum phase zeros, sensitivity. = (1— GyuK)_l

describes only the response of timeasurecbutput to exoge-
nous disturbances. This fact implies that the existing theory of
HERE exists an extensive theory of fundamental desigtesign limitations, which is based on the sensitivity function,
limitations applicable to linear time invariant feedbackannot be directly applied to study tradeoffs that must be sat-
systems with a single input and a single output [1]. Much d$fied by the performance output-urthermore, it may happen
this theory is based on the Bodensitivity function2]. As thata controller designed to minimize the response of the perfor-
is well known, the sensitivity function describes the responseance output to disturbances will possess poor stability robust-
of the system output to disturbances and provides a measness, as quantified by the proximity of the Nyquist plot to the
of stability robustness, in that its inverse is a measure of thatical point. In fact, there may exist tradeoffs between distur-
distance from the Nyquist plot to the critical point. In practicdyance response and stability robustness that have no counterpart
the sensitivity function must satisfy the Bode sensitivity inten those cases for which the performance output is measured for
feedback. We study such problems by considering systems in
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w z Solutions to the previous problems are available for single
—_—P — loop feedback systems, and may be found in the seminal work
G on sensitivity minimization by Zamest al.[10]-[12].
C— The results of this paper are outlined as follows. In Section Il,
Y we define terminology and state a list of standing assumptions.

In Section Ill, we define those feedback systems whose distur-
bance response is governed by the sensitivity function to be “re-
ducible to a feedback loop”. We characterize such systems in
Section llI-A, and note that the property of reducibility depends
K [ on thecontrol architecture by which we mean the location of
the sensor relative to the performance output, and the actuator
relative to the exogenous input. We next consider systems that
are not reducible, and show in Sections IlI-B and 11I-C that they
face an algebraic tradeoff between disturbance response and
then the response ofto w is given by the transfer function  the feedback properties of stability robustness and sensitivity to
arameter variation#\lthough the existence of this tradeoff is
Tew = Gow + Gou K (1 = GpuK) 7' Gy @) gasy to demonstrate, it doegs not appear to be widely knbwn

As described in [6] and [7], any linear control problem Ca§ection I1I-D, we show that if the system reduces to a feedback

be placed into the general control configuration, and vario!&Op’ 'Fhen thg contr.ol Iawlused to achleye disturbance a“ef‘“a'
optimization procedures can be applied to mininiize,. Un- tion will consist of high gain feedback. Disturbance attenuation

lessGy, is identically zero, the system in Fig. 1 will contain a{or systems that do not reduce to a feedback loop is achieved

feedback loop and, thus, stability and stability robustness issigdd a finite gan controller that depends explicitly on t.he plant
must be addressefor ease of reference we shall referkog, as model. In Section IV we provide necessary and sufficient con-

theclosed loop disturbance responeeen in those cases whered't'ons for solvability of the ideal and proper disturbance at-

w is an exogenous input other than a disturbance, and the fedgnuation problemsdstated ;]n Definitions I':,L a!"d .2, I\Ne show
back loop is not presenin the case, that .., is not identically In Sections IV-A and IV-B thafl;.,, must satisfyinterpolation

zero, it is useful to compare the closed-loop to the open—Io%ﬁnStr"’“ms"’lt certain closed r_|ght-half plane zeros@f, and
response using thiisturbance response ratio 4w, and at certain closed right-half plane polestafThese
interpolation constraints imply that the value Bf,, is fixed,

R... A Tou /G- ) independently of any stabilizing controller, at these poles and
i zeros. We characterize those interpolation constraints that pre-
Our goa| in this paper is to deve|0p a theory of fundamentﬁﬁntthe disturbance response from being made arbitrarily small,
design limitations applicable to the general disturbance attedtd thus show that a necessary condition for solvability of the
uation problem of Fig. 1 under the assumption that all signdfeal disturbance attenuation problem is that no such interpola-
are scalar. F0||Owing [8] and [9]' these limitations will be C|astj0n constraints exist. In Section IV-C, we show that this condi-
sified as “a|gebraic" if they involve tradeoffs between systeﬁipn is also sufficient for the Solvability of the ideal disturbance
properties at the same frequency, or “analytic” if they involveesponse problem. The controller that does so will generally be
tradeoffs between properties in different frequency ranges. \@proper and thus, in Section IV-D, we present an approxima-
shall investigate whether the disturbance response can be mfiefethat solves the proper disturbance attenuation problem. In
arbitrarily small, subject to the restriction that the controller i§ection V, we translate the interpolation constraints derived in
stabilizing. Sections IV-A and IV-B into integral relations that impose an-
Definition I.1: Theldeal Disturbance Attenuation Problemalytic design tradeoffs upon the disturbance response. We show

is solvable if, for eacla > 0, there exists a stabilizing controllerin Section V-A thatR.,, must satisfy a generalized version of
such that the Bode sensitivity integral, and use this fact in Section V-B to

demonstrate the existence of analytic tradeoff between dis-
|R..,(Jw)| < € Vw. turbance response and feedback properties. In Sections V-C and
V-D we show thatl,,, andR.,, must satisfy Poisson integrals
A controller that achieves ideal disturbance attenuation méy each pole and zero that is responsible for a problematic in-
not be proper, and thus cannot be implemented. In this case,tesgolation constraint. Itis not generally possible to characterize
ask whether itis possible to achieve arbitrarily small disturbantiee zeros ofl,,, in the closed right-half plane, as they may de-
response over an arbitrarily wide frequency interval, and arlgend on the compensator, and thus we present compensator-in-
trarily small disturbance amplification outside this interval. dependent lower bounds on the various integrals. We illustrate
Definition 1.2: The Proper Disturbance Attenuation the results of the paper in Section VI by applying them to the
Problemis solvable if, for eack > 0, > 0, andw, > 0, problem of active noise control in an acoustic duct.

Fig. 1. General control configuration.

there exists a proper stabilizing controller such that Design limitations due to nonminimum phase zeros for sys-
‘ tems whose performance output is not measurable were studied
|Rew(jw)| <€ Yw < w. in [4], and applied to the problem of stabilizing the elevation

|R.(jw)| < 14 « Yw > we. axis of a military tank. A partial version of our Proposition 1V.6
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is found in [13], which also discusses the impact of sensor aatlleast one transmission zero in the ORHP tlieis said to
actuator placement upon the existence of design tradeoffs. Wenonminimum phaséNMP), and the zero is termed a NMP
carefully compare our results to those of [13] in Section VI-Bzero. OtherwisepP is said to beninimum phase

Additional examples and details are found in the technical
report [14], which is a longer version of this paper. Proofs ¢. Stabilizability and Stability

several results that are straightforward have been omitted frompse definec to bestabilizable[7] if there exists a proper con-

the present paper, and may also be found in [14]. troller K that internally stabilizessthe system in Fig. 1. It fol-
lows from Lemma 12.1 of [7] tha® is stabilizable if and only
[I. PRELIMINARIES if all CRHP poles ofG are poles, with the same multiplicity, of

Denote the open and closed left and right halves of the cofiz«- Under the assumption of stabilizability [7K internally
plex plane by OLHP, CLHP, ORHP, and CRHP, respectivel??ab'!'_zej'g if anq only |fK|nt_ernaIIy stabilizegr,,,. Recall_t_hg
We shall assume that all transfer functions are rational with re&gNsitivity fAunctmnS, and define theomplementary sensitivity
coefficients. Such a transfer function sgableif all its poles function?’ = 1—5. It may be shown [7, Lemma 5.3] thAt in-
lie in the OLHP. A rational transfer functiofi hasrelative de- ternally stabilizes,,, if and only if the four transfer functions
greeequal tor if f has precisely more poles than zeros, andS; T, SK, andG,, S are stable. When we say that the system
we denote the relative degree pfby §(f). A matrix of ra- in Fig. 1 is stable, we mean that these four transfer functions
tional functions is said to bproperif each element of the ma- have no poles in the CRHP. The feedback systemelsposedf
trix has relative degree at least zero, atictly properif each these four transfer functions are proper. Derojgrime polyno-
element has relative degree at least one. Two polynomials &l factorizationsof the individual transfer functions i& by
coprimeif they have no common zeros. Given a set of conf@as = Nap/Das, @ = z,y, 8 = w,u. Suppose that we factor
plex numbers{z; : i = 1,...,N,}, where each; ¢ ORHP the controller as’ = Nx /Dy, where Ny and Dy are co-
and may have multiplicity greater than one, we denote the coffime polynomials. Then the four transfer functiohsl’, SK,
plex conjugate of; by z;, and define [1] the Blaschke productandG,,,S are stable if and only if thelosed-loop characteristic
B.(s) 2 [, (2 — )/ (% + 5). We denote a rational function POlynomial
f that is identically zero byf = 0. A square transfer func- A
tion matrix M is nonsingularor invertibleif det M # 0, and ¢r = DgDyu = Nk Nyu @)

singular otherwise. A stable rational functiohhasH° norm . .
9 on has no CRHP zeros. We shall adopt the following notation.

A .
1 llee = sup,, [f(jw)l- Definition 11.1: Consider a complex scalar. If G5 # 0,
) ) then letm,s(o) andv,3(o) denote the multiplicity ot as a
A. Standing Assumptions zero and pole o7 5. If K # 0, letmg (o) andyx (o) denote

We invoke the following list of standing assumptions the multiplicity of o as a zero and pole df . Letys (o) denote
throughout the paper to simplify the exposition and to avoitie multiplicity of o as a pole ofG. If det G # 0, let mg (o)

trivial situations. denote the multiplicity ot as a transmission zero 6f.
» The systemG is stabilizable by feedback from to w.
See Section II-C for discussion of this obviously necessary ll. DISTURBANCE ATTENUATION VERSUS
hypothesis. FEEDBACK PROPERTIES

* The transfer functions:.,, and Gy, are notidentically A yseful measure of robustness in a feedback system is the
zero. Otherwisel’,, = G-, and no controller can influ- giapility radius defined to be the minimum distance from the
ence the disturbance response. _ critical point—1 to the Nyquist plot of-G,, K. The stability

. 'I_'he s!gna_ls_z, w, ¥, and_u are scal_ar valued_- This assUMPradius is equal to the reciprocal of the peak in the Bode sensi-
tion _S|mpI|f|es thg derivation of interpolation constralntqivity function, and thus any system for whighhas a large peak
and integral relations. will possess a poor stability margin. In this section, we show that

* Whenever the disturbance response rdiiq, (2) is dis-  here may exist a tradeoff between the disturbance response and
cussed, we assume that,, Z 0. the stability radius.

B. Transmission Zeros A. Systems Reducible to a Feedback Loop

Consider ap x p transfer function matrix,P, and let  The potential existence of a tradeoff between disturbance
(A,B,C, D) denote a minimal realization aP with degree response and stability robustness depends on cthtrol
equal ton. The characteristic polynomiabf P is given by architecture
¢p(s) = det(sI — A), and the multiplicity of a given pole  proposition I11.1: Assume thatlet G = 0 and that,,,, # 0.
of P is equal to its multiplicity as a zero afp. If P has full Then (1) and (2) reduce tB.,, = G..,S andR.,, = S.
normal rank [7], then we say thatis atransmission zerof P we say that the system in Fig. 1 is “reducible to a feedback
if the rank of the system matrix [7] evaluateddals less than |oop” if det G = 0. For such systems, there is no conflict

. . A
n + p. Define thezero polynomiabf P by Np = ¢p det P. If . . _ .
P has less than full normal rank. th — 0. Otherwise. the By internal stability, we mean that for given stabilizable and detectable state
as A , thévp = 0. ) space realizations @ and i, the associated state equations for the system of
transmission zeros dP are equal to the zeros &fp. If P has Fig. 1 have an 4" matrix with no eigenvalues in the CRHP.
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between making both the disturbance response and the sefidiewed in standard textbooks [15], wherein the differential
tivity function small, as they are governed by the same transtnsitivity of 7" with respect to plant and controller uncertainty
function. Two important classes of systems have the sensolishown to be equal t8. Indeed, for systems that are robustly
actuator located so that they reduce to a feedback loop. Fiestlucible to a feedback lodfi.,, = —T.

suppose that the performance output is measured for feedbaclRroposition Il1.4:

ThenGy, = G, andG., = Gy,. Alternately, suppose that  a) Assume that the system is robustly reducible to a feedback
the control and disturbance actuate the system identically. Then, |oop. Then the relative sensitivities &f. , with to uncer-

G.w =Gy andew = Gyu- In either casedet G = 0. talnty in Gyu and K SatiSfy

B. An Algebraic Tradeoff Gyu OHzw - K OH.u - S
: H., 0Gy, H., 0K
The disturbance response of a system for whiehG # 0 ) )
is no longer given by the sensitivity function, but by (1)—(2). b) Assume that the systeminotrobustly reducible to a feed-

Hence, making the disturbance response small is no longer Packloop. Then, the relative sensitivitiesigf,, with re-
equivalent to making the stability radius large. In fact, we now ~ SPect to uncertainty it7,,, and K satisfy

show that these goals may be mutually exclusive, in that there Gyu OH., K 0H., _ g
exists a tradeoff between the size $fand that ofR.,,. The H., 0G,, H,, 0K =~
Zi\;rt'g of this tradeoff is determined by tlmensioniess For systems that satisfy robustly reduce to a feedback loop, sen-
sitivity to uncertainty in both&,,, and K can be reduced by
A GGy requiring the sensitivity function to be small. Otherwise, the
r= GowGyu identity S 4 T' = 1 implies that the sensitivity t6r,, and the

) ) ) ) ~sensitivity toK cannot both be small at the same frequency.
The following result is an immediate consequence of the impor-

tant identityR.,, + I'T" = 1. D. Strategies for Disturbance Attenuation

Proposition I11.2: Consider the sensitivity functiof asso- A major difference between those systems that reduce to a

ciated With_the feedbacl_< loop in Fig. 1, and the disturbance re, ypack loopdet G = 0), and those that do not, lies in the con-
sponse_ ratld%z_w ), ‘?'e‘f'”eo' wherpve(r;zw # 0. trol strategy required to achieve disturbance attenuation. Sup-
a) Givenw, in the limit asR.., (jw) — 0 pose that?,, (jw) # 0. It follows easily from (1) that

S(jw) = 1= 1T(w),  T(w) —1/T(jw). (@) et Gljw)

lim T.,(jw) = :
b) Givenw, in the limit asS(jw) — 0, the disturbance re- [K(jw)|—oo Gyuljw)
sponse ratio satisfies and thus high-gain feedback may be used to achieve distur-
. . bance attenuation only at frequencies for whiehG(jw) = 0.
Rew(jw) = 1= T(jw). (®)  suppose thatlet G = 0. Then Proposition I11.1 shows that

If I = 1, thendet G = 0 and Proposition 111 implies f-w = S anditfollows from results in [10]-{12], [16], [17] that
there is no tradeoff between disturbance attenuation and felld=y. as no CRHP zeros then disturbance attenuation may be
back properties. Such a tradeoff does existeéif G # 0, and achieved through high gain feedback.

will be severe at any frequency for whigh(jw)| is either very ~ A disadvantage of feedback control is that it introduces

large or very small. stability robustness issues. Alternately, suppose that the distur-
bance were directly measurable, so #¥gf, = 1 andG,,, = 0.
C. Differential Sensitivity ThenT.,, = G.. + G.,K and, ifG is stable and~.,, has a
In order to compute sensitivity to uncertainty, we must distir§_table inverse, the ideal disturbance attenuation problem may be

solved using feedforward contrak = —G'G.,,. A disad-
vantage of this strategy is that it requires a perfect plant model.
As we shall see, the solution to the disturbance attenuation
tain, but known 1o lie in a sef € G. If det.G = 0,V ¢ g, PrOPIem for the general system shown in Fig. 1 suifers from
then we say that the system in Figislrobustly reducible to a € disadvantages of both feediorward and teedback control.
We now state conditions required for the existence of a con-
feedback loop ) -
t(rflller that sets the closed loop disturbance response in Fig. 1

The architecture of the systems discussed at the close, tically t th idi lution to the ideal dist
Section IlI-A guarantees that each is robustly reducible to'genucally to ero, thus providing a solution fo the ideal distur-

feedback loop, and thus Proposition 111.1 will hold despitgance attenua‘Flon problem p_o_sed n Def'?‘_'“on I.1.
uncertainty in the transfer functiords,,, andG...,. _ Lemmall.5: Assume that: If7-, # 0, 11) Gy # 0, and
To study differential sensitivity, we decompose the distuf"—') GawGyu = GzuGyw # 0. Then, the controller

bance response ratio (2) &, = 1 + H.,,, where KC A Gw )
sz Gyu - qu Gyw

yieldsT.,, = 0. Furthermore, suppose th@t.,, #Z 0. Then, if

and compute the sensitivity off.,, to plant and controller any of the hypotheses i)—iii) is violated, it is impossible to find

uncertainty. Our approach is thus directly analogous to thafinite gain controller that achievds,, = 0.

guish between systems for whidht G = 0 only at the nominal
value ofG, and those for which this property holds robustly.
Definition 111.3: Suppose that the true value Gfis uncer-

H.., g Gz_i GZUK<I - GZI’UK)_lew (6)
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SettingK = K¢ in Fig. 1 results in the uncompensated path Corollary IV.2: Assume that is a NMP zero that satisfies
from w to z being exactly cancelled by the path framto = the hypotheses of Proposition IV.1 (b). Factér, = G2, B,
through the compensator, and hence we refer to (7) as a “caere B; is a Blaschke product with.,,({) zeros at( and,
cellation controller.” Such controllers have previously been dif- ( is complex, at its complex conjugate. Theé®, || >
cussed in the literature [13], [18]. Conditions under which  |G2,,(¢)] > 0.
is stabilizing are given in Section IV-C, and a proper approxi- It is well known that a CRHP zero ofr,,, constrains the
mation toK ¢ is presented in Section IV-D. sensitivity function [1]. Corollary 1V.2 shows that such a zero

The controllerk © depends explicitly on the plant model, andonstrains the disturbance response only if Proposition I11.1 is
thus the resulting system will be sensitive to model uncertaingpplicable, so that the system is reducible to a feedback loop.
Furthermore, unlesé&/,,, = 0, the compensated system willWe shall illustrate this point with the acoustic duct example in
contain a feedback loop with attendant stability robustness Bection VI.
sues. Hence, use of such a controller incurs the potential draw-
backs of both feedback and feedforward control. Furthermoi, Unstable Poles of

the sensitivity and complementary functions resulting fl§f  The requirement that the system be stabilizable implies that
must satisfy interpolation constraints due to unstable controller poles are

g & c A more complicated to analyze than are those due to CRHP zeros.

=1-1/T, T = 1/T. (8) . . I )
Thus, we begin our analysis by considering the simpler case of
It follows that the cancellation controller, which nominallyan unstable pole of the controller.
solves the ideal disturbance attenuation problem, will posses$roposition IV.3: Suppose that the system in Fig. 1 is stable.
both poor stability robustness and poor differential sensitivityet p be a CRHP pole ok that is not a pole ofs. Then
at frequencies for which the ratio is small. Note finally that
if 7., — 0, then necessarilys (jw) — K¢(jw). Hence Tow(p) = det G(p)/Gyu(p)
any control design that forces,,,(jw) to be small over some gnq thusz,,,(p) = 0 if and only if det G(p) = 0.
frequency range will require a controller that approximates Next, we consider a CRHP polg, of G in the special case
KC(jw) at these frequencies, and result in sensitivity anfat Proposition 1111 is applicable. g (p) = 7.u(p), then it
complementary sensitivity functions that approximate (8).  follows immediately that the value GF..,(p) depends on the
controller. Ifya(p) > v-w(p), thenT,,(p) = 0.
IV. ARBITRARILY SMALL DISTURBANCE RESPONSE We now state the general result, which is applicable to an
The requirement of internal stability implies th@t,, and unstable pole o/ that may also be a zero 6f.,, or G..

R.., must satisfyinterpolation constraintst certain points of ~ Proposition IV.4: Assume that the system in Fig. 1 is stable,
the CRHP. By an interpolation constraint, we mean that ti@@d thatdet G # 0. Let p denote a CRHP pole @ with mul-
values ofT.,, and R.,, are fixed independently of the choicetiplicity va(p) > 1.
of stabilizing controller. The points at which interpolation con- a) Suppose thai:(p) = 7..,(p). Then, the value dI..,(p)
straints must be satisfied are located at a subset of the CRHP depends on the controlléf.

zeros ofG.,, andG,,, and a subset of the CRHP poles@f b) Suppose thais(p) > v..(p). Then
A. CRHP Zeros ofi., and G ., Tou(p) = lim SLE0E). (10)
b Gyuls)

Suppose thaf is a CRHP zero of7..,, or G, that is not a
pole of G. We shall state conditions under which the presence  FurthermoreZ.,,(p) = Oifand only if p is a transmission

of ¢ preventsl’,, from being made arbitrarily close to zero. zero of Q.

Proposition IV.1: Suppose that the system in Fig. 1 is stable. ¢) Suppose thaiz(p) > 7v..(p) and thap is a transmission
Let ¢ be a CRHP zero off.,, or G,,,, and assume thatis not zero of G with multiplicity ma(p) > 0. Assume that
a pole ofG. eitherG.,, = 0, or that

a) Under these conditiors,,({) = G..,(¢). It follows that .

T..(C) = 0 if and only if c(:zf,«o ) m6(p) < mew(p) +6(P) = V20 (P)- (11)

b) Assume in addition tha®.,, # 0 and that the multiplici- Then we may factofl,,(s) = T, (s)(s — p)™e®),

ties of asazeroofs.,,, G.,, andG,,, satisfy the bound where T, has no pole ats = p, and T}, (p) =
lim,_,, det G(8)/Gyu(s)(s — p)™c®) # 0.
mw(C) < meu(€) + myw Q). ©) d) Suppopse thagl(i i)s/aJci?l)—fP polza of7. ThenR..,(p) =
Then, we may factof’,,(s) = T2, (s)(s — ()™=, and lim,_,, det G(s)/Gyu(s)G.w(s). If pis also either: i) a
G.w(s) = GL,(s)(s — )™=+, wherel, andG., have transmission zero off with mg(p) > m..(p), orii) a
no poles at;, andT?, (¢) = G1,(¢) # 0. pole of G, thenR,,,(p) = 0.

c) Assume that inequality (9) holds. Then the disturbance Proof: See Appendix A. ]

response ratio satisfigsn, ¢ 12..,(s) = 1. The interpolation constraint at an ORHP pole may be used to

The interpolation constraint at a NMP zero may be used ¢dtain a nonzero lower bound on the achievable level of distur-
obtain a nonzero lower bound on the achievable level of disturance attenuation. The following is a counterpart to Corollary
bance attenuation. V.2,
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Corollary IV.5: Assume thatp is an ORHP pole of a) G..,B/G..G,. is strictly proper;
G that satisfies the hypotheses of Proposition IV.4 (c). b) |1 — B(jw)| < €,Vw < wg;
Let B, denote a Blaschke product withug(p) zeros at  c) |1 — B(jw)| < 1+ a,Vw > we;
p and, if p is complex, at its complex conjugate. Then d) 1— B has CRHP zeros precisely at the CRHP pole& of
[Tewlloe > limg_, |det G(s)B; ' (s)/Gyu(s)|, where the including multiplicities.
limit is finite and nonzero. Let K¢’ denote the cancellation controller obtained by replacing

: . G, With G, B:
C. ldeal Disturbance Attenuation

. . C szB

The results of Sections IV-A and IV-B yieldecessargon- K, = G BG. -GG (16)
ditions for the solvability of the ideal disturbance attenuation S sy
problem:G.,, andG,,, can have no CRHP zeros that satisfyhean is strictly proper and stabilizing,.., = G..(1—B),
the inequality (9), and+ can have no CRHP poles that satishandR,,, = 1 — B.
the inequality (11). If either of these conditions is violated, then  Proof: See Appendix C. ]
Corollary IV.2 or IV.5 shows that there is a nonzero lower bound To construct the functio® required for Proposition IV.7, let
on achievable disturbance attenuation. We now show that thg3ée a rational function such th& has no CRHP zero$; has
conditions are alssufficientto guarantee solvability of the ideal CRHP poles precisely at the CRHP poleghfincluding mul-
disturbance attenuation problem. To do so, we show that in thgicities, andG..., P/G...G . is strictly proper. Let us view’
absence of such zeros and poles the cancellation controller4g)a plant to be stabilized with a controligér and denote the re-

stabilizes the system. sulting sensitivity function by§pc 2 1/(1 — PC). Then, [10,
The expression for“ given by (7) may contain CRHP Th_ 2] may be used to show that, for any specified, andw,,
pole zero cancellations that must be removed before assessifige exists & that is stable, proper, and stabilizing, and that
closed-loop stability. Hence, we factor yields|Spe(jw)| < €,Yw < we, and|Spe(jw)| < 1+a, Yw >
KC — N,%‘/Dg (12) we.. Furthermore, the fact that is stabilizing implies tha€’ has
no zeros at the CRHP poles &f and, thus,Spc has zeros at
fhese poles. Finally, sincg is proper the relative degree BIC

will be at least that ofP. It follows thatB 2 1 — Spc satisfies

where N and D¢ have no common CRHP zeros. Denote th
resulting closed-loop characteristic polynomial (3) by

¢r = DEDyu = NNy, (13) requirements a)—d) of Proposition IV.7.
Proposition IV.6: Assume thatdet G # 0, that a) each ~EXample IV.8:Let
CRHP zero( of G, or G, that is not a pole of7 satisfies 05(s+1) 1
the bound G(s) = [ s sI1:| )
s—1 s—1
Mz () 2 Mzu(C) + Myw(C) (14) 1tis easy to see thaig(1) = 0,m.,(1) = 0,7¢(1) = 1,

- and~..,(1) = 1 and, thus, (15) is satisfied. The cancellation
and that b) each CRHP pojeof &+ satisfies the bound controller that solves the ideal disturbance attenuation problem
ma(p) > Maw(P) + Ya(P) — You (D). (15) isimproper and the resulting feedback system is not well posed:

C _ — |4 i i
Then the closed-loop characteristic polynomial (13) has r{S (5) = s+ 1_ano_IS N 0'2(1 — ). Itis easy_to verify that
zeros in the CRHP and (12) is stabilizing. simply adding filtering toK“ does not result in closed loop

Proof: See Appendix B stability: K5 = (s + 1)/(s + 1)(os + 1) fails to stabilize for

]
It follows immediately that if the hypotheses of Propositior"ilny values ofr |> %anda >d0. lined followi »
IV.6 are satisfied, then the ideal disturbance attenuation problemWe r;]ow apply the procedure out |r21e g owing Proposition
is solvable. The controller (12) both stabilizes the system ah¥l,’: © ooseP(s) =1/(s = 1)(s + 1), andC(s) = —k(s +

o o
sets the closed-loop disturbance response identically equall}o/(” + 1)%, wherek > 0,7 > Q' '_I'hen Itis r.IOt hard to
zero. show thatB = —PC/(1 — PC) satisfies properties a)—d) of

Proposition 1V.7 for sufficiently large values éf and1/7. It
D. Proper Disturbance Attenuation is interesting to note that the resulting controller (16) is itself

In general, K€ need not be proper, and the resulting fee&l—nStable'

back system need not be well posed. In such cases, the con-
troller cannot be implemented. We now show how to find a con-
troller that solves the proper disturbance attenuation problemWe now state several integral relations that describe design
described in Definition 1.2. In fact, our procedure will guariradeoffs between disturbance response properties in different
antee thatk© is strictly proper. Note that if7,, is proper, frequency ranges. To do so requires some technical lemmas con-
then a sufficient condition foiX¢ to be strictly proper is that cerning the CRHP zeros 6f.,,,.
Gow/G Gy is strictly proper. Definition V.1: Denote the set of all NMP zeros @t., by
Proposition IV.7: Assume that the hypotheses of Propositiofi;: ¢« = 1,...,N¢}, and separate these into a $&: i =
IV.6 are satisfied, thatr,,, is proper, and thak' © is not strictly  1,..., Ng} of zeros that are shared wigh.,, and a set of addi-
proper. For given values ef> 0, « > 0, andw. > 0, choose a tional zeros{~v;: ¢ = 1,..., N, }. Then, we may factor,, =
stable rational functiods such that T.wBe = T..BsB.,, where Be, By, and B., are Blaschke

V. INTEGRAL RELATIONS
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products. Denote the set of NMP zeros@f,, that are not the plant and controller have no ORHP poles [1], [3]. Indeed,
shared withT,, by {a;: i = 1,...,N,}, and the set of all for systems that are reducible to a feedback loop, Lemma V.2
ORHP poles ofG.,, by {p;: ¢ = 1,...,N,}. ThenG.,, may 1) may be used to derive the following corollary to Proposition
be factored as7..,, = észaB@Bp—l, whereB, and B, are V.4, which shows that the integral (17) reduces to the Bode sen-
Blaschke products. sitivity integral.

Except in special cases, such as those noted in Lemma V.Zorollary V.5: Assume thatdet G = 0. Then,{«;} =
below, it is not possible to characterize the CRHP zerd&.9f (), {3;} consists of all NMP zeros d¥..,,, and{~;} consists of
and their existence and location must be determined after these ORHP poles dof,,, that are not shared wit&',,, plus
compensator is designed (cf. [4, Ex. 2.3]). the ORHP poles ok . Furthermore$(H.,,) > 1 if and only if

Lemma V.2: 0(GyuK) > 1.

i) Suppose thaflet G = 0. Then, the CRHP zeros @f.,, By Lemma V.3, itis possible to characterize those NMP zeros
consist of the union of the CRHP zeros®f,,, the CRHP 0f 7, that are shared wittv,,, and thus to determine the set
poles ofG,,,, that are not shared with.,, and the CRHP {«;}. The following bound, which is a corollary to Proposition
poles of K. V.4, imposes a waterbed tradeoff upon the closed-loop distur-

i) Suppose that the controller is given Wz? (16). Then bance response that will only be worsened by the presence of
the CRHP zeros df’.,, consist of the union of the CRHP additional NMP zeros of .,
zeros ofG ,,, and the CRHP poles af,, that are not o N, Na
shared withG'.,,. / log |R.w(jw)| dw > 7 ZRe pi — T Z Re ;. (18)

In those cases for which it is not possible to characterize '° i=1 i=1
the zeros ofl,,,, we will state compensator-independent loweyithout additional information, it is a mistake to suppose that
bounds on the various integral relations. To do so requires,the NMP zeros of7.,, that are not shared with, , will signif-
in Definition V.1, that we separate the NMP zeros®f,, into icantly lessen the design tradeoff imposed by the Bode integral.
those that are shared wiffy,, and those that are not. The fact thallimg ¢ 1%, = G.., implies that ifG.,, has a

Lemma V.3: Assume that the closed loop system is stable, IBBMP zero outside the control bandwidth, th&h,, will tend
n be a NMP zero of7.,, with multiplicity m..,(n), and define to have a nearby NMP zero. Hence, the contributions of these

mq(n) to be the multiplicity of as a zero of+., K SG .. zeros to the first and third terms on the right-hand side of (17)
i) Suppose that is not a pole of&. Then will approximately cancel.
m(n) = mzu(n) + myw(n) + me(n). B. Analytic Tradeoff Between Disturbance Response and

i) Suppose that is a pole ofG. Then Stability Robustness

B We now use the generalized Bode sensitivity integral (17) to
ma(n) = meu(n) = Veu() + g0 (1) = Yo (M) +99u(0)- ghow that an analytic tradeoff also exists between disturbance

In either case, ifn..,(n) > mi(n), theny € {3}, with response and feedback properties. The requirement of stability

multiplicity m; (n), andn € {o;}, with multiplicity m.., () — robustne.ss.agains.t unmodeled high frequenpy dynqmics and the

ma(n). f m..(n) < mi(n), thenn € {8}, with multiplicity need to limit the size _qf .the cont.rol signal WI||. require that Fhe

M (7). complementary sensitivity function must satisfy a bandwidth
constraint of the formT'(jw)| < My (w), whereMr(w) —

A. Generalized Bode Sensitivity Integral 0 at high frequencies. It is bandwidth constraints of this sort

that preclude solvability of the proper disturbance attenuation

gpblem for single loop feedback systems (cf. [1, Sec. 3.1.3]).
ur next result shows that a similar limitation applies to systems

that do not reduce to a feedback loop.

Proposition V.6: Assume that the hypotheses of Proposition

4 are satisfied, and that

We now show that the disturbance response r&tip must
satisfy an integral constraint analogous to the Bode sensitiv!
integral [1]. Write the disturbance response ratio (2)tas =
1+ H.,,whereH_,, is given by (6).

Proposition V.4: Suppose that the system in Fig. 1 is stabl%
and assume that the relative degreédof, satisfiess(H..,) > '
1. Then |R.w(jw)| £ Mg(w) Yw < wp

oo Ny |T(jw)| < Mr(w) Yw > wi > wy.
log |R.w(jw)| dw = Re y; .
/0 og| ()] dew W; e Then, necessarily
No Na sup (w1 —wo)log | R (jw)| >
—|—7rZRe pi —WZRG ;. (17) w€(wo,w1)
i=1 i=1

— log M, d
Suppose first thafr ., has no ORHP poles and tHas,, and /0 08 Mp(w) dw

G .., have no NMP zeros. Then, (17) evaluates to zero and the °°1 1+ DG M i
area of disturbance attenuatiofi..,(jw)| < 1) must neces- ~ L. 0g(1 + [P (jw)| Mr (w)) dw
sarily be balanced by an equal area of disturbance amplification N, N,

No
(|R-w(jw)| > 1). This tradeoff is precisely the same as that + ZRG vi + ”ZR" pi— T ZRe ai. (19)
described by the usual Bode sensitivity integral in the case that = P =
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The analytic tradeoff implied by Proposition V.6 states thdd. Poisson Integral for ORHP Poles 6f
requiring low frequency disturbance attenuation together with a, Proposition IV.4 we saw thak.,,, will satisfy nonzero in-

high frequency bandwidth constraint implies that a peak in diﬁe‘rpolation constraints at certain ORHP polegiofie now use

turbance response will exist at intermediate frequencies. If theyse constraints to state Poisson integral relations that must be
system reduces to a feedback loop, then this peak also colgssfieq byl andR
zZw zZw

sponds to a small stability margin. Proposition V.9: Assume thatlet G # 0 and that the system
in Fig. 1 is stable. Lep = z + jy denote an ORHP pole @F.

C. Poisson Integral for NMP Zeros 6f.,, and G, a) Assume that(p) > - (p), and thap is not a trans-

The interpolation constraints due to CRHP zero&/of and mission zero of7. Then
Gy, that were derived in Section 1V-A will now be used to o ) 1
state Poisson integral relations that must be satisfietl hyand log |T-w (jw)|W (p, w) dw = mlog | T.w(p) B¢~ (p)

R..,. The Poisson integral fdf., was used in [4] to analyze the
problem of elevation control for a military tank. It was shown
that the problems of command tracking, pitch disturbance atten-
uation, and heave disturbance attenuation face different desig
limitations due to the presence or absence of NMP zeros in dif-
ferent elements of7.

Proposition V.7: Assume that the system in Fig. 1 is stable.
Let¢ = z + jy denote a NMP zero df'.,, or G,,, that is not A . detG(s)B M (s)
also a pole of5. Tow(p)Be *(p) = lim T Gyls)

S—p
a) Assume thaf..,(¢) # 0. Then

whereT.,,(p) is the nonzero compensator-independent
limit given by (10).

) Assume thatyc(p) > .. (p), thatp is a transmission
zero of G with multiplicity mg(p) > 0, and that in-
equality (11) is satisfied. Then, the integrals in a) hold,
where the limit

is finite and nonzero.
c) Assume that i) ifp is a transmission zero a¥, then its

/ log [1sw (jw)|W((,w) dw = mlog ‘sz(C)Bgl(C)’ multiplicity as a zero of7 is strictly greater than its mul-
0 J tiplicity as a zero ofG.,,, and that ii)p is not a pole of
an G... Then

[ 1o Ren ()W () do = wlog | BaOBTOB; Q)] g
Jo | tog e W . 0) o
whereW (¢, w) 2 2/(22+(y—w)?) +2/ (22 + (y+w)?). = mlog |R.w(p)Ba(p) B (9)B, " (p)|
b) Assume that.,, # 0, thatG,,,(¢) = 0, and that the
inequality (9) is satisfied. Then the integrals in (a) hold,
where the limit

whereR..,(p) is thenonzero compensator-independent
limit given Proposition 1V.4 d).

The bounds in Proposition V.9 depend on all the zerds pf

G.u(C) B 2y G.o(s) B To obtain integral inequalities analogous to those in Corollary
(©) 3 (©) st (s) £ () V.8, one may replac&, with Bg in a) and b), and remove the

e term due toB, in c).
is finite and nonzero.

Proof: See Appendix D. m E. Feedback Properties With a Cancellation Controller

The values of the Poisson integrals in Erqposition V._7 dependyt is well known thatS and7 must satisfy interpolation con-
upon the .ORHP zeros df.,,. In generall, it is not possible to straints at the CRHP zeros and poleif, andK [1], [3]. We
characterize these zeros because their existence and I0C{Q characterize the CRHP zeros and poles of the cancellation
depend upon the compensator. Nevertheless, it is possiblgidoller k€ (7). A weaker version of the next result, appli-
statelower boundson the Poisson integral that may be evalysgpe to stable systems, is found in [18].
ated without knowing all the NMP zeros @t,,. _ Proposition V.10: Assume that7.,, # 0 and thatK¢ is

Corollary V.8: Assume that the hypotheses of PrOpOS't'OQtabilizing.

V.7 are satisfied. Then a) The cancellation controllgk© has a CRHP polg if and

oo ) only if G has a transmission zejothat satisfies the in-

/ log [T (jw) W (¢, w) dw equality

0

> rlog ’ézw(C)Ba(C)B;I(()‘ ma(p) + Yw(p) > Mew(p) + 76(p) (20)
L B andG,(p) # 0.

/0 log | Rz (jw) IW(C,w) dw b) The cancellation controllg“ has a CRHP zere if and
> 7log |Ba(C)B;1(C)| _only if _Gz“, has a transmission zerothat satisfies the

inequality
whereG..,, B, andB, are defined in Definition V.1. Mzw(2) +76(2) > ma(2) + Vzuw(2)- (21)

To apply the bounds in Corollary V.8, one uses the character-
ization of the sef{«;} from Lemma V.3. Proof: See Appendix E. [
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Using Proposition V.10, we have the following catalog of in- ¥
terpolation constraints for the sensitivity and complementan
sensitivity functionsS¢ andT¢ (8) that result from use of a
cancellation controller (7).
Proposition V.11: Assume that7,,, # 0 and that the hy-
potheses of Proposition IV.6 are satisfied.
a) Suppose that is either: i) a CRHP pole oy, or ii)
a CRHP transmission zero ¢f that satisfies inequality
(20). ThenS“(p) = 0 and7(p) = 1. _ _ o

b) Suppose that is either: i) a CRHP zero Of}yu orii) a Fig. 2. Acoustic duct for active noise control.
CRHP zero ofG.,,, that satisfies (21). Ther§¢(z) = 1

and7(z) = 0. and open-ended terminations. We consider a 0.85 meter long

The interpolation constraints due to the CRHP poles agict with speaker-microphone pairs located 0.15 meters from
zeros of Gy, will be present for any stabilizing controller the ends and model the speaker dynamics as in [20] with a 67 Hz
[1], [3]. Those due to the CRHP transmission zeros-oénd |ow-frequency cutoff. To obtain a finite-dimensional approxi-
the CRHP zeros oty.,, are present due to the cancellatiomation to these dynamics we truncate the modal expansion of
controller. this wave equation at its fifth modal frequeRcymmetry im-

The results of [1], [3], together with the interpolation Conplies thatG.,, = G, andG., = G,.,. These transfer func-
straints from Proposition V.11, yield Bode and Poisson integralgns possess identical poles, but the lightly damped zeros of
that must be satisfied by“ and7“. We refer to the following ¢, and G, differ from those ofG.,, andG,,,. In addition,

integral in Section VI. _ the transfer functions'., andG,,, possess three nonminimum
Corollary V.12: Assume that the hypotheses of Propositiophase zeros. The model of the acoustic duct includes speaker dy-
V.11 are satisfied. Lefp;: i = 1,..., N, } denote the union of namics thatintroduce two zeros at the origin into all four transfer

the sets of ORHP poles 6f,,, and the NMP transmission zerosunctions, and all four transfer functions have relative degree
of G that satisfy (20), and €8, denote the associated Blaschkequal to two.

product. Then, it is either a NMP zero of7,,, or a NMP zero | et us evaluate the tradeoff between disturbance attenuation
of G, that satisfies inequality (21), the sensitivity function (8hnd stability robustness described by Proposition 111.2. As
must satisfy T.w(jw) — 0,8(jw) andT'(jw) converge to the limits (4).
.00 These limits are plotted in Fig. 3, and reveal tl§aand 7" will
/ log |S© (jw)|W (z,w) dw = wlog |B, ' (2)] . (22) have large peaks located at the dipslirthat are due to the
70 lightly damped zeros irG.,, and G, not shared withG.,,
and G,,. Any system that achieves disturbance attenuation

VI. AcTIVE NoISE CONTROL IN AN AcousTicDucCT in the vicinity of these dips will exhibit poor sensitivity and

. L . robustness.
We illustrate the theory developed in this paper by applying It is important to note thathe NMP zeros of?,. do not

it to the problem of active noise control in an acoustic duct, Cacl:jéuse the large peaks in sensitivity that appeaFio. 3. Al-
tioning the reader that our results are not intended to be a thgr- gep y PP 9. o

ough study of such problems. In Section VI-A we show th ough Corollary V.12 shows that these zeros do prevent sensi-

?lv'ty from being made arbitrarily small, it is possible to obtain
the closed loop disturbance response must satisfy the genera'l- o . . ’ )
ized Bode sensitivity integral (17), and thus exhibits “Waterb%aﬂsensnwny function with a smaller peak by using a controller

effect” design tradeoffs. We also explain why the cancellation

controller (7) violates the hypotheses of Proposition V.10 and, . . : . o
- . . Wwhich is solvable if the cancellation controller is stabilizing. The
thus, does not stabilize the noise control system. We instead pro- L 2
ose an approximation to (7) that is stabilizing. The result zeros at the origin introduced by the speaker dynamics imply
P pproximatl ' 1zing. Ut %atmzw(o) < M2y (0) 4+ my,(0), and thus condition (14) of

sensitivity function exhibits large peaks that are due to the li o L .
iting behavior (4) and the lightly damped zeros of the plant.groposnmn IV.6 is violated and the cancellation controller (7)

at does not force the disturbance response to be small.
We now consider the proper disturbance attenuation problem,

Section VI-B, we relate our conclusions to those found in [1 oes not stabilize the system. (It is easy to show that (7) wil

. SR . . posses two integrators that cancel the two zeros at the origin
and [19], which also study design limitations for the active noi &G We th | natidrC h I
control problem. of G..) We thus select an approximati to the cancella-

tion controller that is stabilizing. To do so, we modify the duct
model by shifting the zeros at the origin slightly into the OLHP
(ats = —10~* Hz), and letk© be the cancellation controller
We consider a finite-dimensional model of the acoustic dugr the modified duct. We further modif§( € to obtain a strictly
shown in Fig. 2. The design goal is to use the control speakgfoper controller. Sincé is stable, the construction of Propo-
u, and the measurement microphopegto attenuate the effect sition V.7 is unnecessary, and we simply add filtering to ob-
of the disturbance (or noise) speaker,upon the performance tgjn KpC - [%C/(TS +1)",n = 3 andT = 1077 sec. Bode
microphone,z. For the duct dynamics we assume a one-diots of (7) and ofC’ show that the approximation is very good
mensional wave equation description, such as the one devel-
oped in [20], that is valid for small diameter-to-length ratios 2Details of our model are found in [14].

A. Design Limitations for an Acoustic Duct
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Fig. 4. Ideal cancellation controller (7) and the stabilizing and strictly proper
approximationk’¢ . N )
from part (ii) of Lemma V.2 that the NMP zeros 6f,,, will be

) ) . ~_ shared withl’,,, and, thus
over a wide frequency range (Fig. 4). The Nyquist plotin Fig. 5

shows that the feedback system is nominally stable, albeit with /°°1 R (il dw > 0 23
poor stability margins. The resulting closed-loop disturbance re- Jo 0 | Bz (juw)] dw 2 0. (23)

sponse is plotted in Fig. 6. Note tHAt,,, which should be iden-

tically zero with a cancellation controller, instead has peaks tHat predd_icted dbg (Zl:?' thehplhqt dﬁzwkip Fi?' 6 ei(hibit;s é)l:? ak
exceed 0 db. This fact is consistent with the extreme sensitivfif©<¢N9 0 db. 'IM' Olljgh_t t:sfpea ISTe atl;/e y sm (I' )

to the controller indicated by Proposition 111.4 (b) and the peaﬂts oceurs at_ are _at|ve y g requencyu(O Hz). Reg Istic

in S displayed in Fig. 3. bandwidth limitations would require the controller gain to roll

We close by discussing waterbed effect tradeoffs imposed 8 at @ lower frequency, resulting in a larger peak/,,,
the disturbance response ratio. The plaht, has relative de- and precluding solvability of the proper disturbance attenuation

gree two, and thus with a proper controller the hypotheses Q{]oblem. Additional insight into the severity of these tradeoffs

Proposition V.4 are satisfied and.,, must satisfy the gener- may be obtained from bounds such as that in Proposition V.6.
alized Bode sensitivity integral (17) and the compensator inde- . )

pendent lower bound (18). It follows immediately that the idedd- Discussion of Previous Work

disturbance attenuation problem is not solvable. Furthermore\We now discuss a previous application of the theory of fun-
with the strictly proper approximatiof(pc or (16), it follows damental limitations to the problem of active noise control [13],
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[19]. The results of these papers appear to be inconsistentw 1% ! ' ‘ ' *
those of Section VI.A, and it is thus necessary to examine t '
reasons for the apparent discrepancy.

In [13] and [19], “spillover” is defined to exist at any fre-
quency for which|R..,(jw)| > 1. Three different control ar-
chitectures are considered. These include one for which the ¢
trol speaker is collocated with the disturbance speaker (v
collocation), and one for which the measurement micropho
and the performance microphone are collocated £ colloca-
tion). The third geometry is depicted in Fig. 2, and referred 1
in [13] as the “standard feedforward setup.” It is stated in [1:
that “the geometric arrangement of speakers and microphol
in the standard feedforward setup allows the control designet
effectively circumvent the inherent performance limitations ¢
the Bode [sensitivity] integral”. It is also stated in [13] that il o ; ; , ; ;
bothu — w andy — z collocation are avoided, as in Fig. 2, ther 10 10 10* 10
“it is possible to overcome the Bode constraint in the sense tl frequency, rad/sec
arbitrary attenuation of the open-loop transfer function can be
achieved.” It is these statements that appear to be inconsis@%ﬂ' Open- and closed-loop disturbance response for the example from [13].
with our conclusion in Section VI-A.

The disturbance response ratio (2) of a system with eith  ,x10
u — w Or y — z collocation is shown in [13] to reduce to the
sensitivity function, to satisfy the Bode sensitivity integral, an
to exhibit spillover. These conclusions are consistent with oul spillover
because such systems must satisfyG = 0, and Corollary
V.5 thus implies that (17) reduces to the usual Bode integral. 4
[13, Sec. 1], it is noted that the area of disturbance amplifice g
tion guaranteed to exist by the Bode integral can potentially | ¢
obtained by letting the sensitivity function exceed one by a ve ‘é
small amount spread over a very wide frequency range. Itis th £
noted that “the ability to do this is subject to bandwidth and sa  of
uration limitations of the control actuator and electronics”. i
practice, bandwidth limitations would also be imposed by tr
need to avoid exciting higher frequency dynamics not include
in the finite-dimensional plant model used for design. _ : v

Next discussed in [13] are systems, such as that in Fig. = - L 1;),, 156 - ot
which possess neither— w nory — z collocation. It is shown frequency, radisec
in [13] that the disturbance response of such a system can po-
tentially be set equal to zero by using the cancellation controllgp. 8. Disturbance response ratio exhibits spillover [13] at low and high
(7), which is referred to in [13] as the “zero spillover controllerfrequencies.

(ZSC). A procedure is also given for obtaining an “approxi-
mate zero spillover controller” (AZSC) that is strictly propeghe statement in [19] that— = and/oru — w collocation “causes
and, under appropriate hypotheses, stabilizing. spillover”. Spillover will be present for all three control archi-

Although the AZSC can be made to approximate the ZSC agctures considered in [13], provided only that reasonable band-
bitrarily closely, under the mild hypotheses of Proposition V.hidth constraints are enforced. The amount of spillover will
the disturbance responsg,, must satisfy the generalized Bodejepend on the severity of the bandwidth constraint, which may
sensitivity integral (17) and the compensator independent lowggeed vary with the control architecture, and should be a matter
bound (18). Hence, the ideal disturbance attenuation probleffurther investigation.
is not solvable and it is impossible to achieve “arbitrary atten- |t is instructive to consider the duct model treated in [13],
uation” of the disturbance. Furthermore, it is easy to show th@ which the AZSC (with parameter valuds, = 0.1 and
the AZSC will possess zeros at the zerogiof, [14] and thus £, = 2000) is stabilizing. The Bode plots in Fig. &ppearto
that each NMP zero af.,, must also be a zero dF,,,. Itfol-  show that the resulting closed loop disturbance response is never
lows that the disturbance response ratio of a system with t§&ater than that of the open loop. Closer inspection (Fig. 8) re-
AZSC must satisfy the integral inequality (23), and thus exhibjieals the existence of two small peakdin, that exceed unity,
spillover as defined in [13]. This conclusion is inconsistent Witand which |mp|y that Spi”over is present. In particuﬁ;ﬂw has

a peak of approximately.4 x 10~* db at5 x 107 rad/sec. This

4Other definitions [21] state that spillover occurs when an actuator excit@gght.d'smrb.anqe amplification '.S.'tself mconseguenual; how-
unmodeled plant dynamics, or when a sensor responds to such dynamics. ever, it does indicate control activity at a very high frequency.

tude, db

magni

_4

spillover

©
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40 W ‘ X4 ; potheses because.,, andG,,, each possess a zerosat= 0,
N j /" ‘ thus violating the condition that these transfer functions have no
g O 1 CRHP zeros. Although the sensitivity function resulting from
2 \\' It the ZSC controller has no polesinthe CRHP, itis easy to see that
g -sor- NOA L e——— 1 this controller will contain an integrator that cancels the zero of
\ G, atthe origin. As a result, the closed-loop transfer function
-100 " i ry iy » K S will have a pole at = 0, and is thus unstable.
10 10 10 10 10
200 : ; : . VIl. CONCLUSION
2 Of_'_f_'""f““ffff' fffff - 'ff"f»‘"f_'u'ff'“"'_'b‘_’»‘_‘j _ In t_his_ paper, we have dev_eloped a theory of fundamen_tal de-
f;.’, v _ , sign limitations for systems in the general feedback configura-
& _200F v : : | tion of Fig. 1 under the assumption that all signals are scalar.
é \\ z : We have shown that the nature of these limitations depends
—400F 4 on the architecture of the control system. For those systems
- vl L = » Whose disturbance response is not described by the sensitivity
10 10 10 10 10 . . . .
frequency, radisec function, there exists a potential tradeoff between disturbance
_ _ _ _ response and feedback properties that tends to be severe for
Fig. 9. Zero spillover and approximate zero spillover controllers. systems with lightly damped poles and zeros. We also derived

o interpolation constraints and integral relations that must be sat-
Indeed, the Bode plots in Fig. 9 show that, although the AZSfieq py the closed-loop disturbance response. The latter gen-
is strictly proper, its gain does not begin to decrease uniifsjize the Bode and Poisson sensitivity integrals. We have used
~10° rad/s. Hence, we see that the design tradeoff imposedfi¥ problem of active noise control in an acoustic duct to illus-
the Bode sensitivity integral is accomplished by allowiig,  trate the concepts of this paper. Additional work is required to
to exceed one by a very small amount spread over a very Wiggermine the best choice of control architecture for a specific
frequency interval. This high frequency control activity mayesign problem, and our results should prove useful in assessing
lead to robustness difficulties due to parameter uncertainty &g |imitations associated with a particular architecture. Theo-

unmodeled dynamics. In addition, as noted in the quote froRgical research is needed to remove the assumption that the sig-
[13] cited above, the ability to implement such a controller wilha|s are scalar valued.
be subject to actuator bandwidth and saturation limits.

To_ summ_arize, all the s_peaker/micr_oph_on_e (_:onfig_urations APPENDIX A
considered in [13]_ !'n.ust_ satisfy the de§|gn I|m|tat|.or_1$ mposed PROOF OFPROPOSITIONIV.4
by the Bode sensitivity integral, and will thus exhibit spillover _ ) )
as defined in [13]. In addition, the speaker and microphone con-Let K = Nk /D denote a coprime polynomial factoriza-
figuration depicted in Fig. 2 will display the tradeoff betweeﬁ!O” of K. Subsutytlng thls_factonzatlon and coprime factoriza-
disturbance attenuation and feedback properties describediBys for theG. s into (1) yields
Proposition 111.2. It is noted in [13] that the “poor form of the T (NowDr Dyudc — Nk NaD 2w Dy ) 24
sensitivity” function resulting from use of the zero spillover 2w = b1 Dswdc (24)
controller is consistent with the fact that,, is nonminimum . N and ¢p are the zero polynomial off and the

phase. Although the latter statement is correct, it misses 8sed loop characteristic polynomial. Our assumption of

?omi_ mad_etr:rthectlon \IfItA that thelISh?‘Pz (:f th? Sznsm\t/r':é(losed loop stability implies thaty can have no CRHP zeros
unction wi e cancellation controller is determined by thg, thus,Nx (p)N,(p) # 0. Note next that we can factor

limit (4), independently of whether or nét,,, has NMP zeros. T S T

We close with a comparison of our Propj)osition IV.6 with [13], ¢ — P Dzw = dGDyu, Wherepg (p) # 0. Hence, we have
Prop. 4.1]. The latter presents a sufficient condition for the can- p — (VewDid — NiNe) 25)
cellation controller (or ZSC) to be stabilizing, and may be re- e ¢T¢TG
stated as: “Assume thats has no CRHP poles, thét., and
Gy have no CRHP zeros, and thitt G # 0. Then, the con- .
troller (7) results in the sensitivity function having no CRHP  T.,,(p) = (New(P) Dic (p) b () — NK(p)NG(p)). (26)
poles.” Although internal stability is not explicitly considered —Ng (p) Nyu(p) b5 (p)
in [13], itis straightforward to show that the hypotheses of [13] a) Suppose that the multiplicity pfas a pole of is equal to
are sufficient to guarantee internal stability. Specifically, use of 5 multiplicity as a zero of)..,. Then,N.., ()t (p) #
the cancellation controller (7) will result in the the closed-loop and the value of (26) is compensator dependent.

characteristic polynomiady = —N.u Nyw Dz Dy, and it fol- b) Suppose that the multiplicity gfas a pole of is strictly

lows that these hypotheses guarantee internal stability. We note greater than its multiplicity as a zero &f..,. Then (26)
that the noise control example in [13] does not satisfy these hy- yields

and thus

SIt may be inferred from their Proposition 4.1 that the term “nonminimum Ng (p)
phase zero” is used in [13] to refer to a zero in the CRHP. In the present paper T.w (p) =

= —" 27
we use this term to refer to a zero in the ORHP. Nyu(p)oe(p) @7)
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HenceT.,(p) = 0 if and only if p is also a zero oNg. CRHP zeros ofV., N, are also zeros, with at least the same
If Na(p) # 0, then substituting the zero polynomial ofmultiplicity, of V..,, and have thus been removed fram, Ny.,
@ into (27), using the fact that,.¢c = N,.dk, and with the factorF,. n
rearranging shows that (10) holds. We now complete the proof of Proposition 1V.6. To do so
¢) Suppose first tha€&.,, = 0. ThenN_,, = 0 and (25) requires us to perform two tasks. The first is to determine any
reduces tdl.,, = —NKNG/ngng- The assumption of CRHP zeros common to the polynomid‘Vﬁ andDg defined
internal stability precludegr andNg from havinga zero in (30). The second task is to compute the zeros of the resulting
atp, and thugl’,, has preciselyng zeros ap. HenceT,,, closed-loop characteristic polynomial, and show that none of
as has the stated factorization, whétg is stable, and the these lies in the CRHP.
limit 7%, (p) follows. Suppose next that.,, # 0. Then Recall that a possibly noncoprime factorization A
both terms in the numerator of (25) have a factofof is given by (30). It follows from the definition of the zero
p)™c(®) andT,, has the stated factorization, whéfg,  polynomial that
is stable. The hypothesis (11) implies tt¥,, ¢7; has a DS = NowNyuDowDyw — NowNywDewDye  (32)
factor of (s — p) with multiplicity greater thammg(p), N-D DD D
and the limit7 (p) follows. = G zwTu yw Ty (33)
d) It follows from (24) that o - ¢ | s isar f
By definition, the characteristic polynomidl; is a factor o
R.., = (NowDx Dyuda — N NGDZ"”Dy“). (28) D.,D.,DyyD,,, and the assumption of closed-loop stability

_ ¢rNzwhc implies that the CRHP zeros ¢f; are also zeros, with at least
If p is a pole ofG, then the same multiplicity, oD,,,. This fact and (33) imply that the
Na(p)  D.o(p) CRHP zeros oD¢. are equal to the union of the CRHP zeros of

R.w(p) Nyu(P) Now(p) b () (29) Ng,-DZ‘u../ _Dz,w, andD,,,. Let mg (o) andyx (o) denpte the
TG multiplicities of o as a zero ofN§ and DY, respectively. It

If either condition i) or ii) holds, thei®.,(p) = 0. If not, then  follows that if p is a zero ofNg with multiplicity mq(p), then

rearranging shows thdt..,(p) has the stated value. p is also a zero oD with multiplicity
APPENDIX B ’YK(p) = mG(p) + ’Yzw(p) + 7zu(p) + ’V'yw(p)' (34)
PROOF OFPROPOSITIONIV.6 Define
: : . o A
Using coprime ponnqmlaI factorizations for th&, s, the BD) 2 Yau (D) + Yy (p) + Mzw(p). (35)
controller (7) may be written
KC N_,C; ~ N.wD:uDyuwDye 30 We now show that
B DIC( B Nzu)NyuDzuDyw - NzuNy'tzwDyu . ﬂ(p) Z ’yG(p) + mzu<p) + myw(p) + ’Yzw(p) (36)
Note that the factorizatioV{, DS ) defined in (30) need not To show (36), we first note that (32) implies
i wC C
be_ coprime. Hence, iV;; andD% have a common C_:RHP zero, DS(s) | Ny (8) Ny () D () Dyus (5)
this zero will appear as a zero of the characteristic polynomﬂéf; (s—p)f®) — e TEED)
¢S = D$ D, — N N,.,. Hence, we work with the factoriza- N (5)Nyao () Dors (5) Dy (5)
tion (12), and assess stability using the characteristic polynomial - = v - v ) . (37
We first consider the special case for whiGhs stable. If (36) fails to hold, then the second term on the right hand side

Lemma B.1: Assume that is stable, and that the controllerof (37) is equal to zero. By definition g¥(p), the first term is
K€ is given by (12). Then, the system in Fig. 1 is internallfinite and nonzero, and thysis a zero ofDE with multiplicity
stable if and only if the inequality (14) is satisfied for eachyx (p) = B(p). Equating (35) with (34), we see thatg (p) +

CRHP zerc( of G.,, or Gy, Vzw(p) = mw(p). Becauseyg(p) > 1, this contradicts (15),
Proof: Let F, denote a polynomial whose zeros consigtnd thus (36) must hold.
precisely of the common CRHP zeros @f,, and G, G, It follows that if (15) holds, then this fact, together with the
including multiplicities, and factorN.,, = N.,F; and intermediate inequality (36), imply that
Neulw = N P TN, (30) may be wiritien 1 (P) 2 96 (P) + 72(p) + Ayu®) + me(p)  (38)
ke - N _ NewDzuDywDyu . (31) 2> 296/(P) + Mzu(p) + Myw (p) + V2w(p).  (39)

Di  NewNyuD:uDyw = NowlywDew Dyu Note next thap is a zero of N with multiplicity
To analyze nominal stability, it suffices to determine whether
the characteristic polynomial (13) has any CRHP zeros. Sub- mx (p) =16(P) + Vup) + vy (p) + maw(p).  (40)
stituting N§ and D$ defined in (31) into (13) and simplifying It follows from (38) and (40) thatx (p) > mx (p). Henceifpis
yields¢r = NzuNy“,Dz“/.Dj”. Our assumption th&t is stable an unstable pole af,.,, thenp must be a zero of botV§ and
implies thatD.,, andD,,,, can have no CRHP zeros. Hence, th&¢, with multiplicity mx (p). As a result, N and D§ must
system will be stable if and only if the polynomial,, N,,, has have a common factaF,, that has zeros equal to the unstable

no CRHP zeros. This condition will hold precisely when anpoles ofG,,,, and the multiplicity the zero at the unstable pole
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p is equal tom i (p). Moreover, as we saw in Lemma B.1, (14) APPENDIX E
implies thatV§; andD$ have a common factdr, whose zeros PROOF OFPROPOSITIONV.10

are equal to those zeros Gf,, andG,,, that are not also poles

of G. We have thus shown that the polynomidl§ and Df; \I?I? first ch?ricter;ze t:ﬁ CFHP po!es ?r?dt fre]:ros Oft th”e can-
in (12) are given byVS — NCF.F, and DS — DCFp,. jt  cellation contro er (7) without assuming that the controller is

remains to compute the closed loop characteristic polynomﬂﬁb'l'z'ng'

(13) Lemma E.1: Assume that the hypotheses of Lemmallll.5 are
satisfied, and that7.,, # 0.
or = NzuNwazw-Dgu/ F.F,. a) The cancellation controllér © has a CRHP polg if and
only if G has a CRHP transmission zer@atisfying the

It follows from (38)—(40) thap is a zero ofF}, with multiplicity inequality (20).
at least equal to the right hand side of (39). Hence any CRHPb) The cancellation controlldk © has a CRHP zere if and
Zeros oszuNy,tzwD,gu that are poles of7 will be removed only if i) G has a CRHP pole, or ii) G.., has a CRHP
by dividing by F;,, and any CRHP zeros of.,, N,,, that are not zeroz, satisfying (21).

poles of G will be removed by dividing byF. The controller

Proof: Using the zero polynomial ofG and co-
(12) thus yields internal stability. d poly

prime factorizations for theG,.s, we may rewrite (7) as
KC = Nzw(;bG/DszG-
a) By definition of the characteristic polynomial, all zeros of
D.,, must also be zeros @f. It follows that any CRHP
We show thats, T, Kfs, andSG,,, are stable. Stability of pole of K¢ must be due to a CRHP zero df that
the first three follows from the facts th&i® is nominally stabi- satisfies (20).
lizing andB is stable. Stability o5 G, follows by rearranging  b) It is clear that any CRHP zero df € must either be a

o CRHP zero ofN.,, or a CRHP pole of7 that satisfies
SGyy = (1 - B)Gy, + S“GyuB (41) 1).

APPENDIX C
PROOF OFPROPOSITIONIV.7

whereS¢ is given by (8). The first term on the right-hand side ) ) o -

of (41) is stable becauge — B) has zeros at the CRHP poles nLemmaE.1, we did notrequire that™ be stabilizing, and

of G,,. Proposition V.6 shows thakC stabilizesG,,, and, thus did not rule out unstable pole/zero cancellations between
hence, the resulting sensitivity functistf’ must have zeros at K< andG,. We now characterize the CRHP poles and zeros
the CRHP poles of7,,. Hence, the second term on the righpfastabilizingKC. Before stating the result, we require a tech-

hand side of (41) is stable. nical lemma.
Lemma E.2:Let o be a complex scalar that is not a pole of
APPENDIX D G.
PROOF OFPROPOSITIONV.7 a) Define

a) It may be verified that’.,, defined in Definition V.1 satis- A
fies the hypotheses of Corollary [1, Cor. A.6.3], and thus(0) = min{m.., (o) + myu (), meu(o) + myw(o)}. (43)

/ " log [T ()W (¢, ) dor = 7 log | P (). (42) Then,mg (o) > p(o).
0 b) Assume that

Proposition IV.1 a) implies tha¥ ., (¢) = T (¢)Be(€).

The hypothesis that is not a zero ofG.,, implies Mew(0) + Myu(0) # Mzu(0) + myw(0). (44)
that 7.,,(¢) = G-.(¢)B;'(¢), and the integral for

T.. follows. Next, it follows from the factorization Then,ma (o) = p(o).

R.., = R.,B,B,B,* and Proposition IV.1 c) that the ¢) A necessargondition for the inequalityng () > (o)
integral for R.,, follows. to hold is thatm. . (o) + myu(0) = Mau(0) + 1My ().

b) We must evaluate the terify,, (¢) on the right hand side Proof: We may factorlet G(s) = f(s)(s— o)), where

gfl therf’k"issor(‘ji”tggra' (4?- '”fq_“a”ty (9) ilmp"es thatthe ) is finite. Then, a) follows immediately. If (44) is satisfied,
aschnke proauc. 8 must contain preciselyh .., Zeros thenf(cr) 7£ 0 and b) and C) follow. -

:;ifﬁgntgasﬁgg(g? 7 0. Hence, the second term on the We now use Lemmas E.1-E.2 to complete the proof of Propo-
sition V.10. The CRHP poles and zeros dftabilizing K¢ are

T.w=C.oBoB-'B-' + G.,KSG,,,B= B~ equal to the subset of the poles and zeros described in Lemma
) ) P e E.1 that also satisfy the hypotheses of Proposition IV.6.

is equal to zero at, which implies thatTw(C) = a) Suppose is a pole ofK“ as described in Lemma E.1. If

lim,_,¢ Gw(s)Bgl(s), and the integral fo¥’,,, follows. pis also a pole o7, then inequality (15) is automatically

Similar arguments yield the integral fét. . satisfied. Hence we must consider only the case for which
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b)

(1]
(2]

pis a CRHP zero ofy.,, or G, and is not also a pole of  [9]
G. In this case, (20) reduces to

[10]

me(p) > mzw(p)- (45)

[11]
Assume first thatG,,(p) # 0. Then, the neces- 12
sary condition in Lemma E.2 c¢) is equivalent to
Mzw(P) = M2u(p) + myw(p), and (14) follows. Assume
next thatG,,, = 0. Thenmg(p) = m..(p) + myw(p), 1
and inequalities (45) and (14) are mutually exclusive.
Finally, assume that,,(p) = 0, but is not identically  [14]
zero. Then, (45) holdsnly if the necessary condition
in Lemma E.2 c) is satisfied, and singg,,(p) > 0,it  [15)
follows that (14) is violated.
Suppose that is a zero ofK“ that is a pole of7. Then |
(15) and (21) are mutually incompatible. Suppose nex{
that z is a zero ofG ., that is not a pole of7, and that
satisfies (21), which simplifies to (7]

[18]

Maw(2) > ma(z). (46)

[19]

It follows from Lemma E.2 (a) that either (i (z) > [20]

Mw + My (2) OF (i) mg(2) > M.y, + myw(2). In case

(i), it follows immediately thatng(z) > m..,(z), which
contradicts (46) and hence cannot occur. Now conside[r21]
case (ii), and suppose that (14) is false, so that(z) +
myw(2) > m..(2). Because we are considering case (i),

it follows thatme (z) > m..(2), which contradicts (46).
Hence ifz is a zero of7 ., that is not a pole of7, and that
satisfies (21), then the condition (14) must be satisfied,
and hence all such zeros will be present in a stabilizing
K¢,
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