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Abstract—The theory of fundamental design limitations is well
understood for the case that the performance variable is measured
for feedback. In the present paper, we extend the theory to sys-
tems for which the performance variable is not measured. We con-
sider only the special case for which the performance and mea-
sured outputs and the control and exogenous inputs are all scalar
signals. The results of the paper depend on the control architec-
ture, specifically, on the location of the sensor relative to the per-
formance output, and the actuator relative to the exogenous input.
We show that there may exist a tradeoff between disturbance at-
tenuation and stability robustness that is in addition to the trade-
offs that exist when the performance output is measured. We also
develop a set of interpolation constraints that must be satisfied by
the disturbance response at certain closed right half plane poles
and zeros, and translate these constraints into generalizations of
the Bode and Poisson sensitivity integrals. In the absence of prob-
lematic interpolation constraints we show that there exists a sta-
bilizing control law that achieves arbitrarily small disturbance re-
sponse. Depending on the system architecture, this control law will
either be high gain feedback or a finite gain controller that depends
explicitly on the plant model. We illustrate the results of this paper
with the problem of active noise control in an acoustic duct.

Index Terms—Disturbance response, fundamental design limi-
tations, nonminimum phase zeros, sensitivity.

I. INTRODUCTION

T HERE exists an extensive theory of fundamental design
limitations applicable to linear time invariant feedback

systems with a single input and a single output [1]. Much of
this theory is based on the Bodesensitivity function[2]. As
is well known, the sensitivity function describes the response
of the system output to disturbances and provides a measure
of stability robustness, in that its inverse is a measure of the
distance from the Nyquist plot to the critical point. In practice,
the sensitivity function must satisfy the Bode sensitivity inte-
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gral and, thus, exhibit a design tradeoff termed the “waterbed
effect.” In words, this tradeoff states that as sensitivity is made
small over one frequency range, it necessarily becomes large
at other frequencies. A meaningful tradeoff is obtained only in
the presence of bandwidth constraints, such as those required
to avoid exciting unmodeled high frequency dynamics (cf. [1,
Cor. 3.1.6]). The presence of open loop nonminimum phase
zeros implies a related waterbed effect that is described by the
Poisson sensitivity integral [3]. A thorough review of results on
fundamental design limitations is found in [1].

An assumption implicit in most work on fundamental design
limitations is that the system output measured for feedback is
also the performance variable. In many engineering applica-
tions, this assumption is not satisfied. Examples include the mil-
itary vehicle in [4] and the acoustic duct in [5]. The research de-
scribed in this paper is directly motivated by the experience of
the authors with these and other applications.

Suppose that the performance output differs from the mea-
sured output. Then, as we shall see, thesensitivity function

describes only the response of themeasuredoutput to exoge-
nous disturbances. This fact implies that the existing theory of
design limitations, which is based on the sensitivity function,
cannot be directly applied to study tradeoffs that must be sat-
isfied by the performance output.1 Furthermore, it may happen
that a controller designed to minimize the response of the perfor-
mance output to disturbances will possess poor stability robust-
ness, as quantified by the proximity of the Nyquist plot to the
critical point. In fact, there may exist tradeoffs between distur-
bance response and stability robustness that have no counterpart
in those cases for which the performance output is measured for
feedback. We study such problems by considering systems in
thegeneral control configurationdepicted in Fig. 1, where the
performance output is denoted by, the measured output by,
the control input by , and the exogenous input by. We shall
assume throughout the paper that , and are scalar; this
assumption allows us to focus on essential concepts without in-
troducing additional notation required to describe multivariable
systems.

If we partition the system as

1The authors thank Dr. V. Marcopoli of General Dynamics Land Systems,
Sterling Heights, MI, for emphasizing this point and encouraging us to extend
the theory.
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Fig. 1. General control configuration.

then the response ofto is given by the transfer function

(1)

As described in [6] and [7], any linear control problem can
be placed into the general control configuration, and various
optimization procedures can be applied to minimize . Un-
less is identically zero, the system in Fig. 1 will contain a
feedback loop and, thus, stability and stability robustness issues
must be addressed.For ease of reference we shall refer to as
theclosed loop disturbance response,even in those cases where

is an exogenous input other than a disturbance, and the feed-
back loop is not present. In the case, that is not identically
zero, it is useful to compare the closed-loop to the open-loop
response using thedisturbance response ratio

(2)

Our goal in this paper is to develop a theory of fundamental
design limitations applicable to the general disturbance atten-
uation problem of Fig. 1 under the assumption that all signals
are scalar. Following [8] and [9], these limitations will be clas-
sified as “algebraic” if they involve tradeoffs between system
properties at the same frequency, or “analytic” if they involve
tradeoffs between properties in different frequency ranges. We
shall investigate whether the disturbance response can be made
arbitrarily small, subject to the restriction that the controller is
stabilizing.

Definition I.1: The Ideal Disturbance Attenuation Problem
is solvable if, for each , there exists a stabilizing controller
such that

A controller that achieves ideal disturbance attenuation may
not be proper, and thus cannot be implemented. In this case, we
ask whether it is possible to achieve arbitrarily small disturbance
response over an arbitrarily wide frequency interval, and arbi-
trarily small disturbance amplification outside this interval.

Definition I.2: The Proper Disturbance Attenuation
Problemis solvable if, for each , and ,
there exists a proper stabilizing controller such that

Solutions to the previous problems are available for single
loop feedback systems, and may be found in the seminal work
on sensitivity minimization by Zameset al. [10]–[12].

The results of this paper are outlined as follows. In Section II,
we define terminology and state a list of standing assumptions.
In Section III, we define those feedback systems whose distur-
bance response is governed by the sensitivity function to be “re-
ducible to a feedback loop”. We characterize such systems in
Section III-A, and note that the property of reducibility depends
on thecontrol architecture, by which we mean the location of
the sensor relative to the performance output, and the actuator
relative to the exogenous input. We next consider systems that
are not reducible, and show in Sections III-B and III-C that they
face an algebraic tradeoff between disturbance response and
the feedback properties of stability robustness and sensitivity to
parameter variations.Although the existence of this tradeoff is
easy to demonstrate, it does not appear to be widely known. In
Section III-D, we show that if the system reduces to a feedback
loop, then the control law used to achieve disturbance attenua-
tion will consist of high gain feedback. Disturbance attenuation
for systems that do not reduce to a feedback loop is achieved
using a finite gain controller that depends explicitly on the plant
model. In Section IV we provide necessary and sufficient con-
ditions for solvability of the ideal and proper disturbance at-
tenuation problems stated in Definitions I.1 and I.2. We show
in Sections IV-A and IV-B that must satisfyinterpolation
constraintsat certain closed right-half plane zeros of and

, and at certain closed right-half plane poles of. These
interpolation constraints imply that the value of is fixed,
independently of any stabilizing controller, at these poles and
zeros. We characterize those interpolation constraints that pre-
vent the disturbance response from being made arbitrarily small,
and thus show that a necessary condition for solvability of the
ideal disturbance attenuation problem is that no such interpola-
tion constraints exist. In Section IV-C, we show that this condi-
tion is also sufficient for the solvability of the ideal disturbance
response problem. The controller that does so will generally be
improper and thus, in Section IV-D, we present an approxima-
tion that solves the proper disturbance attenuation problem. In
Section V, we translate the interpolation constraints derived in
Sections IV-A and IV-B into integral relations that impose an-
alytic design tradeoffs upon the disturbance response. We show
in Section V-A that must satisfy a generalized version of
the Bode sensitivity integral, and use this fact in Section V-B to
demonstrate the existence of ananalytic tradeoff between dis-
turbance response and feedback properties. In Sections V-C and
V-D we show that and must satisfy Poisson integrals
for each pole and zero that is responsible for a problematic in-
terpolation constraint. It is not generally possible to characterize
the zeros of in the closed right-half plane, as they may de-
pend on the compensator, and thus we present compensator-in-
dependent lower bounds on the various integrals. We illustrate
the results of the paper in Section VI by applying them to the
problem of active noise control in an acoustic duct.

Design limitations due to nonminimum phase zeros for sys-
tems whose performance output is not measurable were studied
in [4], and applied to the problem of stabilizing the elevation
axis of a military tank. A partial version of our Proposition IV.6
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is found in [13], which also discusses the impact of sensor and
actuator placement upon the existence of design tradeoffs. We
carefully compare our results to those of [13] in Section VI-B.

Additional examples and details are found in the technical
report [14], which is a longer version of this paper. Proofs of
several results that are straightforward have been omitted from
the present paper, and may also be found in [14].

II. PRELIMINARIES

Denote the open and closed left and right halves of the com-
plex plane by OLHP, CLHP, ORHP, and CRHP, respectively.
We shall assume that all transfer functions are rational with real
coefficients. Such a transfer function isstable if all its poles
lie in the OLHP. A rational transfer function hasrelative de-
greeequal to if has precisely more poles than zeros, and
we denote the relative degree ofby . A matrix of ra-
tional functions is said to beproper if each element of the ma-
trix has relative degree at least zero, andstrictly properif each
element has relative degree at least one. Two polynomials are
coprime if they have no common zeros. Given a set of com-
plex numbers , where each
and may have multiplicity greater than one, we denote the com-
plex conjugate of by , and define [1] the Blaschke product

. We denote a rational function
that is identically zero by . A square transfer func-

tion matrix is nonsingularor invertible if , and
singularotherwise. A stable rational functionhas norm

.

A. Standing Assumptions

We invoke the following list of standing assumptions
throughout the paper to simplify the exposition and to avoid
trivial situations.

• The system is stabilizable by feedback from to .
See Section II-C for discussion of this obviously necessary
hypothesis.

• The transfer functions and are not identically
zero. Otherwise, , and no controller can influ-
ence the disturbance response.

• The signals , and are scalar valued. This assump-
tion simplifies the derivation of interpolation constraints
and integral relations.

• Whenever the disturbance response ratio (2) is dis-
cussed, we assume that .

B. Transmission Zeros

Consider a transfer function matrix, , and let
denote a minimal realization of with degree

equal to . The characteristic polynomialof is given by
, and the multiplicity of a given pole

of is equal to its multiplicity as a zero of . If has full
normal rank [7], then we say thatis a transmission zeroof
if the rank of the system matrix [7] evaluated atis less than

. Define thezero polynomialof by . If
has less than full normal rank, then . Otherwise, the

transmission zeros of are equal to the zeros of . If has

at least one transmission zero in the ORHP thenis said to
be nonminimum phase(NMP), and the zero is termed a NMP
zero. Otherwise, is said to beminimum phase.

C. Stabilizability and Stability

We define to bestabilizable[7] if there exists a proper con-
troller that internally stabilizes2 the system in Fig. 1. It fol-
lows from Lemma 12.1 of [7] that is stabilizable if and only
if all CRHP poles of are poles, with the same multiplicity, of

. Under the assumption of stabilizability [7], internally
stabilizes if and only if internally stabilizes . Recall the
sensitivity function , and define thecomplementary sensitivity

function . It may be shown [7, Lemma 5.3] that in-
ternally stabilizes if and only if the four transfer functions

, and are stable. When we say that the system
in Fig. 1 is stable, we mean that these four transfer functions
have no poles in the CRHP. The feedback system iswell-posedif
these four transfer functions are proper. Denotecoprime polyno-
mial factorizationsof the individual transfer functions in by

. Suppose that we factor
the controller as , where and are co-
prime polynomials. Then the four transfer functions ,
and are stable if and only if theclosed-loop characteristic
polynomial

(3)

has no CRHP zeros. We shall adopt the following notation.
Definition II.1: Consider a complex scalar. If ,

then let and denote the multiplicity of as a
zero and pole of . If , let and denote
the multiplicity of as a zero and pole of . Let denote
the multiplicity of as a pole of . If , let
denote the multiplicity of as a transmission zero of.

III. D ISTURBANCE ATTENUATION VERSUS

FEEDBACK PROPERTIES

A useful measure of robustness in a feedback system is the
stability radius, defined to be the minimum distance from the
critical point to the Nyquist plot of . The stability
radius is equal to the reciprocal of the peak in the Bode sensi-
tivity function, and thus any system for whichhas a large peak
will possess a poor stability margin. In this section, we show that
there may exist a tradeoff between the disturbance response and
the stability radius.

A. Systems Reducible to a Feedback Loop

The potential existence of a tradeoff between disturbance
response and stability robustness depends on thecontrol
architecture.

Proposition III.1: Assume that and that .
Then (1) and (2) reduce to and .

We say that the system in Fig. 1 is “reducible to a feedback
loop” if . For such systems, there is no conflict

2By internal stability, we mean that for given stabilizable and detectable state
space realizations ofG andK, the associated state equations for the system of
Fig. 1 have an “A” matrix with no eigenvalues in the CRHP.
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between making both the disturbance response and the sensi-
tivity function small, as they are governed by the same transfer
function. Two important classes of systems have the sensor or
actuator located so that they reduce to a feedback loop. First
suppose that the performance output is measured for feedback.
Then and . Alternately, suppose that
the control and disturbance actuate the system identically. Then,

and . In either case, .

B. An Algebraic Tradeoff

The disturbance response of a system for which
is no longer given by the sensitivity function, but by (1)–(2).
Hence, making the disturbance response small is no longer
equivalent to making the stability radius large. In fact, we now
show that these goals may be mutually exclusive, in that there
exists a tradeoff between the size ofand that of . The
severity of this tradeoff is determined by thedimensionless
quantity

The following result is an immediate consequence of the impor-
tant identity .

Proposition III.2: Consider the sensitivity function asso-
ciated with the feedback loop in Fig. 1, and the disturbance re-
sponse ratio (2), defined whenever .

a) Given , in the limit as

(4)

b) Given , in the limit as , the disturbance re-
sponse ratio satisfies

(5)

If , then and Proposition III.1 implies
there is no tradeoff between disturbance attenuation and feed-
back properties. Such a tradeoff does exist if , and
will be severe at any frequency for which is either very
large or very small.

C. Differential Sensitivity

In order to compute sensitivity to uncertainty, we must distin-
guish between systems for which only at the nominal
value of , and those for which this property holds robustly.

Definition III.3: Suppose that the true value of is uncer-
tain, but known to lie in a set . If ,
then we say that the system in Fig. 1is robustly reducible to a
feedback loop.

The architecture of the systems discussed at the close of
Section III-A guarantees that each is robustly reducible to a
feedback loop, and thus Proposition III.1 will hold despite
uncertainty in the transfer functions and .

To study differential sensitivity, we decompose the distur-
bance response ratio (2) as , where

(6)

and compute the sensitivity of to plant and controller
uncertainty. Our approach is thus directly analogous to that

followed in standard textbooks [15], wherein the differential
sensitivity of with respect to plant and controller uncertainty
is shown to be equal to. Indeed, for systems that are robustly
reducible to a feedback loop .

Proposition III.4:

a) Assume that the system is robustly reducible to a feedback
loop. Then the relative sensitivities of with to uncer-
tainty in and satisfy

b) Assume that the systemis notrobustly reducible to a feed-
back loop. Then, the relative sensitivities of with re-
spect to uncertainty in and satisfy

For systems that satisfy robustly reduce to a feedback loop, sen-
sitivity to uncertainty in both and can be reduced by
requiring the sensitivity function to be small. Otherwise, the
identity implies that the sensitivity to and the
sensitivity to cannot both be small at the same frequency.

D. Strategies for Disturbance Attenuation

A major difference between those systems that reduce to a
feedback loop , and those that do not, lies in the con-
trol strategy required to achieve disturbance attenuation. Sup-
pose that . It follows easily from (1) that

and thus high-gain feedback may be used to achieve distur-
bance attenuation only at frequencies for which .
Suppose that . Then Proposition III.1 shows that

and it follows from results in [10]–[12], [16], [17] that
if has no CRHP zeros then disturbance attenuation may be
achieved through high gain feedback.

A disadvantage of feedback control is that it introduces
stability robustness issues. Alternately, suppose that the distur-
bance were directly measurable, so that and .
Then and, if is stable and has a
stable inverse, the ideal disturbance attenuation problem may be
solved using feedforward control: . A disad-
vantage of this strategy is that it requires a perfect plant model.
As we shall see, the solution to the disturbance attenuation
problem for the general system shown in Fig. 1 suffers from
the disadvantages of both feedforward and feedback control.

We now state conditions required for the existence of a con-
troller that sets the closed loop disturbance response in Fig. 1
identically to zero, thus providing a solution to the ideal distur-
bance attenuation problem posed in Definition I.1.

Lemma III.5: Assume that: i) , ii) , and
iii) . Then, the controller

(7)

yields . Furthermore, suppose that . Then, if
any of the hypotheses i)–iii) is violated, it is impossible to find
a finite gain controller that achieves .
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Setting in Fig. 1 results in the uncompensated path
from to being exactly cancelled by the path fromto
through the compensator, and hence we refer to (7) as a “can-
cellation controller.” Such controllers have previously been dis-
cussed in the literature [13], [18]. Conditions under which
is stabilizing are given in Section IV-C, and a proper approxi-
mation to is presented in Section IV-D.

The controller depends explicitly on the plant model, and
thus the resulting system will be sensitive to model uncertainty.
Furthermore, unless , the compensated system will
contain a feedback loop with attendant stability robustness is-
sues. Hence, use of such a controller incurs the potential draw-
backs of both feedback and feedforward control. Furthermore,
the sensitivity and complementary functions resulting from
must satisfy

(8)

It follows that the cancellation controller, which nominally
solves the ideal disturbance attenuation problem, will possess
both poor stability robustness and poor differential sensitivity
at frequencies for which the ratio is small. Note finally that
if , then necessarily . Hence
any control design that forces to be small over some
frequency range will require a controller that approximates

at these frequencies, and result in sensitivity and
complementary sensitivity functions that approximate (8).

IV. A RBITRARILY SMALL DISTURBANCE RESPONSE

The requirement of internal stability implies that and
must satisfyinterpolation constraintsat certain points of

the CRHP. By an interpolation constraint, we mean that the
values of and are fixed independently of the choice
of stabilizing controller. The points at which interpolation con-
straints must be satisfied are located at a subset of the CRHP
zeros of and and a subset of the CRHP poles of.

A. CRHP Zeros of and

Suppose that is a CRHP zero of or that is not a
pole of . We shall state conditions under which the presence
of prevents from being made arbitrarily close to zero.

Proposition IV.1: Suppose that the system in Fig. 1 is stable.
Let be a CRHP zero of or , and assume thatis not
a pole of .

a) Under these conditions . It follows that
if and only if .

b) Assume in addition that and that the multiplici-
ties of as a zero of , and satisfy the bound

(9)

Then, we may factor , and
, where and have

no poles at , and .
c) Assume that inequality (9) holds. Then the disturbance

response ratio satisfies .
The interpolation constraint at a NMP zero may be used to

obtain a nonzero lower bound on the achievable level of distur-
bance attenuation.

Corollary IV.2: Assume that is a NMP zero that satisfies
the hypotheses of Proposition IV.1 (b). Factor ,
where is a Blaschke product with zeros at and,
if is complex, at its complex conjugate. Then

.
It is well known that a CRHP zero of constrains the

sensitivity function [1]. Corollary IV.2 shows that such a zero
constrains the disturbance response only if Proposition III.1 is
applicable, so that the system is reducible to a feedback loop.
We shall illustrate this point with the acoustic duct example in
Section VI.

B. Unstable Poles of

The requirement that the system be stabilizable implies that
interpolation constraints due to unstable controller poles are
more complicated to analyze than are those due to CRHP zeros.
Thus, we begin our analysis by considering the simpler case of
an unstable pole of the controller.

Proposition IV.3: Suppose that the system in Fig. 1 is stable.
Let be a CRHP pole of that is not a pole of . Then

and thus if and only if .
Next, we consider a CRHP pole,, of in the special case

that Proposition III.1 is applicable. If , then it
follows immediately that the value of depends on the
controller. If , then .

We now state the general result, which is applicable to an
unstable pole of that may also be a zero of or .

Proposition IV.4: Assume that the system in Fig. 1 is stable,
and that . Let denote a CRHP pole of with mul-
tiplicity .

a) Suppose that . Then, the value of
depends on the controller .

b) Suppose that . Then

(10)

Furthermore, if and only if is a transmission
zero of .

c) Suppose that and that is a transmission
zero of with multiplicity . Assume that
either , or that

(11)

Then we may factor ,
where has no pole at , and

.
d) Suppose that is a CRHP pole of . Then

. If is also either: i) a
transmission zero of with , or ii) a
pole of , then .

Proof: See Appendix A.
The interpolation constraint at an ORHP pole may be used to

obtain a nonzero lower bound on the achievable level of distur-
bance attenuation. The following is a counterpart to Corollary
IV.2.
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Corollary IV.5: Assume that is an ORHP pole of
that satisfies the hypotheses of Proposition IV.4 (c).

Let denote a Blaschke product with zeros at
and, if is complex, at its complex conjugate. Then

, where the
limit is finite and nonzero.

C. Ideal Disturbance Attenuation

The results of Sections IV-A and IV-B yieldnecessarycon-
ditions for the solvability of the ideal disturbance attenuation
problem: and can have no CRHP zeros that satisfy
the inequality (9), and can have no CRHP poles that satisfy
the inequality (11). If either of these conditions is violated, then
Corollary IV.2 or IV.5 shows that there is a nonzero lower bound
on achievable disturbance attenuation. We now show that these
conditions are alsosufficientto guarantee solvability of the ideal
disturbance attenuation problem. To do so, we show that in the
absence of such zeros and poles the cancellation controller (7)
stabilizes the system.

The expression for given by (7) may contain CRHP
pole zero cancellations that must be removed before assessing
closed-loop stability. Hence, we factor

(12)

where and have no common CRHP zeros. Denote the
resulting closed-loop characteristic polynomial (3) by

(13)

Proposition IV.6: Assume that , that a) each
CRHP zero of or that is not a pole of satisfies
the bound

(14)

and that b) each CRHP poleof satisfies the bound

(15)

Then the closed-loop characteristic polynomial (13) has no
zeros in the CRHP and (12) is stabilizing.

Proof: See Appendix B.
It follows immediately that if the hypotheses of Proposition

IV.6 are satisfied, then the ideal disturbance attenuation problem
is solvable. The controller (12) both stabilizes the system and
sets the closed-loop disturbance response identically equal to
zero.

D. Proper Disturbance Attenuation

In general, need not be proper, and the resulting feed-
back system need not be well posed. In such cases, the con-
troller cannot be implemented. We now show how to find a con-
troller that solves the proper disturbance attenuation problem
described in Definition I.2. In fact, our procedure will guar-
antee that is strictly proper. Note that if is proper,
then a sufficient condition for to be strictly proper is that

is strictly proper.
Proposition IV.7: Assume that the hypotheses of Proposition

IV.6 are satisfied, that is proper, and that is not strictly
proper. For given values of , and , choose a
stable rational function such that

a) is strictly proper;
b) ;
c) ;
d) has CRHP zeros precisely at the CRHP poles of,

including multiplicities.
Let denote the cancellation controller obtained by replacing

with

(16)

Then is strictly proper and stabilizing, ,
and .

Proof: See Appendix C.
To construct the function required for Proposition IV.7, let
be a rational function such that has no CRHP zeros, has

CRHP poles precisely at the CRHP poles of, including mul-
tiplicities, and is strictly proper. Let us view
as a plant to be stabilized with a controller, and denote the re-

sulting sensitivity function by . Then, [10,
Th. 2] may be used to show that, for any specified, and ,
there exists a that is stable, proper, and stabilizing, and that
yields , and

. Furthermore, the fact that is stabilizing implies that has
no zeros at the CRHP poles of and, thus, has zeros at
these poles. Finally, since is proper the relative degree of

will be at least that of . It follows that satisfies
requirements a)–d) of Proposition IV.7.

Example IV.8: Let

It is easy to see that ,
and and, thus, (15) is satisfied. The cancellation
controller that solves the ideal disturbance attenuation problem
is improper and the resulting feedback system is not well posed:

and . It is easy to verify that
simply adding filtering to does not result in closed loop
stability: fails to stabilize for
any values of and .

We now apply the procedure outlined following Proposition
IV.7. Choose , and

, where . Then it is not hard to
show that satisfies properties a)–d) of
Proposition IV.7 for sufficiently large values of and . It
is interesting to note that the resulting controller (16) is itself
unstable.

V. INTEGRAL RELATIONS

We now state several integral relations that describe design
tradeoffs between disturbance response properties in different
frequency ranges. To do so requires some technical lemmas con-
cerning the CRHP zeros of .

Definition V.1: Denote the set of all NMP zeros of by
, and separate these into a set

of zeros that are shared with and a set of addi-
tional zeros . Then, we may factor

, where , and are Blaschke
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products. Denote the set of NMP zeros of that are not
shared with by , and the set of all
ORHP poles of by . Then may
be factored as , where and are
Blaschke products.

Except in special cases, such as those noted in Lemma V.2
below, it is not possible to characterize the CRHP zeros of,
and their existence and location must be determined after the
compensator is designed (cf. [4, Ex. 2.3]).

Lemma V.2:

i) Suppose that . Then, the CRHP zeros of
consist of the union of the CRHP zeros of , the CRHP
poles of that are not shared with , and the CRHP
poles of .

ii) Suppose that the controller is given by (16). Then
the CRHP zeros of consist of the union of the CRHP
zeros of , and the CRHP poles of that are not
shared with .

In those cases for which it is not possible to characterize
the zeros of , we will state compensator-independent lower
bounds on the various integral relations. To do so requires, as
in Definition V.1, that we separate the NMP zeros of into
those that are shared with and those that are not.

Lemma V.3:Assume that the closed loop system is stable, let
be a NMP zero of with multiplicity , and define

to be the multiplicity of as a zero of .

i) Suppose that is not a pole of . Then

ii) Suppose that is a pole of . Then

In either case, if , then , with
multiplicity , and , with multiplicity

. If , then , with multiplicity
.

A. Generalized Bode Sensitivity Integral

We now show that the disturbance response ratio must
satisfy an integral constraint analogous to the Bode sensitivity
integral [1]. Write the disturbance response ratio (2) as

, where is given by (6).
Proposition V.4: Suppose that the system in Fig. 1 is stable,

and assume that the relative degree of satisfies
. Then

(17)

Suppose first that has no ORHP poles and that and
have no NMP zeros. Then, (17) evaluates to zero and the

area of disturbance attenuation must neces-
sarily be balanced by an equal area of disturbance amplification

. This tradeoff is precisely the same as that
described by the usual Bode sensitivity integral in the case that

the plant and controller have no ORHP poles [1], [3]. Indeed,
for systems that are reducible to a feedback loop, Lemma V.2
1) may be used to derive the following corollary to Proposition
V.4, which shows that the integral (17) reduces to the Bode sen-
sitivity integral.

Corollary V.5: Assume that . Then,
consists of all NMP zeros of , and consists of

those ORHP poles of that are not shared with , plus
the ORHP poles of . Furthermore, if and only if

.
By Lemma V.3, it is possible to characterize those NMP zeros

of that are shared with , and thus to determine the set
. The following bound, which is a corollary to Proposition

V.4, imposes a waterbed tradeoff upon the closed-loop distur-
bance response that will only be worsened by the presence of
additional NMP zeros of :

(18)

Without additional information, it is a mistake to suppose that
the NMP zeros of that are not shared with will signif-
icantly lessen the design tradeoff imposed by the Bode integral.
The fact that implies that if has a
NMP zero outside the control bandwidth, then will tend
to have a nearby NMP zero. Hence, the contributions of these
zeros to the first and third terms on the right-hand side of (17)
will approximately cancel.

B. Analytic Tradeoff Between Disturbance Response and
Stability Robustness

We now use the generalized Bode sensitivity integral (17) to
show that an analytic tradeoff also exists between disturbance
response and feedback properties. The requirement of stability
robustness against unmodeled high frequency dynamics and the
need to limit the size of the control signal will require that the
complementary sensitivity function must satisfy a bandwidth
constraint of the form , where

at high frequencies. It is bandwidth constraints of this sort
that preclude solvability of the proper disturbance attenuation
problem for single loop feedback systems (cf. [1, Sec. 3.1.3]).
Our next result shows that a similar limitation applies to systems
that do not reduce to a feedback loop.

Proposition V.6: Assume that the hypotheses of Proposition
V.4 are satisfied, and that

Then, necessarily

(19)



1362 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 8, AUGUST 2003

The analytic tradeoff implied by Proposition V.6 states that
requiring low frequency disturbance attenuation together with a
high frequency bandwidth constraint implies that a peak in dis-
turbance response will exist at intermediate frequencies. If the
system reduces to a feedback loop, then this peak also corre-
sponds to a small stability margin.

C. Poisson Integral for NMP Zeros of and

The interpolation constraints due to CRHP zeros of and
that were derived in Section IV-A will now be used to

state Poisson integral relations that must be satisfied byand
. The Poisson integral for was used in [4] to analyze the

problem of elevation control for a military tank. It was shown
that the problems of command tracking, pitch disturbance atten-
uation, and heave disturbance attenuation face different design
limitations due to the presence or absence of NMP zeros in dif-
ferent elements of .

Proposition V.7: Assume that the system in Fig. 1 is stable.
Let denote a NMP zero of or that is not
also a pole of .

a) Assume that . Then

where .
b) Assume that , that , and that the

inequality (9) is satisfied. Then the integrals in (a) hold,
where the limit

is finite and nonzero.

Proof: See Appendix D.
The values of the Poisson integrals in Proposition V.7 depend

upon the ORHP zeros of . In general, it is not possible to
characterize these zeros because their existence and location
depend upon the compensator. Nevertheless, it is possible to
statelower boundson the Poisson integral that may be evalu-
ated without knowing all the NMP zeros of .

Corollary V.8: Assume that the hypotheses of Proposition
V.7 are satisfied. Then

where , and are defined in Definition V.1.
To apply the bounds in Corollary V.8, one uses the character-

ization of the set from Lemma V.3.

D. Poisson Integral for ORHP Poles of

In Proposition IV.4 we saw that will satisfy nonzero in-
terpolation constraints at certain ORHP poles of. We now use
these constraints to state Poisson integral relations that must be
satisfied by and .

Proposition V.9: Assume that and that the system
in Fig. 1 is stable. Let denote an ORHP pole of.

a) Assume that , and that is not a trans-
mission zero of . Then

where is the nonzero compensator-independent
limit given by (10).

b) Assume that , that is a transmission
zero of with multiplicity , and that in-
equality (11) is satisfied. Then, the integrals in a) hold,
where the limit

is finite and nonzero.
c) Assume that i) if is a transmission zero of , then its

multiplicity as a zero of is strictly greater than its mul-
tiplicity as a zero of , and that ii) is not a pole of

. Then

where is thenonzero compensator-independent
limit given Proposition IV.4 d).

The bounds in Proposition V.9 depend on all the zeros of.
To obtain integral inequalities analogous to those in Corollary
V.8, one may replace with in a) and b), and remove the
term due to in c).

E. Feedback Properties With a Cancellation Controller

It is well known that and must satisfy interpolation con-
straints at the CRHP zeros and poles of and [1], [3]. We
now characterize the CRHP zeros and poles of the cancellation
controller (7). A weaker version of the next result, appli-
cable to stable systems, is found in [18].

Proposition V.10: Assume that and that is
stabilizing.

a) The cancellation controller has a CRHP pole if and
only if has a transmission zerothat satisfies the in-
equality

(20)

and .
b) The cancellation controller has a CRHP zero if and

only if has a transmission zerothat satisfies the
inequality

(21)

Proof: See Appendix E.
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Using Proposition V.10, we have the following catalog of in-
terpolation constraints for the sensitivity and complementary
sensitivity functions and (8) that result from use of a
cancellation controller (7).

Proposition V.11: Assume that and that the hy-
potheses of Proposition IV.6 are satisfied.

a) Suppose that is either: i) a CRHP pole of or ii)
a CRHP transmission zero of that satisfies inequality
(20). Then and .

b) Suppose that is either: i) a CRHP zero of or ii) a
CRHP zero of that satisfies (21). Then,
and .

The interpolation constraints due to the CRHP poles and
zeros of will be present for any stabilizing controller
[1], [3]. Those due to the CRHP transmission zeros ofand
the CRHP zeros of are present due to the cancellation
controller.

The results of [1], [3], together with the interpolation con-
straints from Proposition V.11, yield Bode and Poisson integrals
that must be satisfied by and . We refer to the following
integral in Section VI.

Corollary V.12: Assume that the hypotheses of Proposition
V.11 are satisfied. Let denote the union of
the sets of ORHP poles of and the NMP transmission zeros
of that satisfy (20), and let denote the associated Blaschke
product. Then, if is either a NMP zero of or a NMP zero
of that satisfies inequality (21), the sensitivity function (8)
must satisfy

(22)

VI. A CTIVE NOISECONTROL IN AN ACOUSTICDUCT

We illustrate the theory developed in this paper by applying
it to the problem of active noise control in an acoustic duct, cau-
tioning the reader that our results are not intended to be a thor-
ough study of such problems. In Section VI-A we show that
the closed loop disturbance response must satisfy the general-
ized Bode sensitivity integral (17), and thus exhibits “waterbed
effect” design tradeoffs. We also explain why the cancellation
controller (7) violates the hypotheses of Proposition V.10 and,
thus, does not stabilize the noise control system. We instead pro-
pose an approximation to (7) that is stabilizing. The resulting
sensitivity function exhibits large peaks that are due to the lim-
iting behavior (4) and the lightly damped zeros of the plant. In
Section VI-B, we relate our conclusions to those found in [13]
and [19], which also study design limitations for the active noise
control problem.

A. Design Limitations for an Acoustic Duct

We consider a finite-dimensional model of the acoustic duct
shown in Fig. 2. The design goal is to use the control speaker,

, and the measurement microphone,, to attenuate the effect
of the disturbance (or noise) speaker,, upon the performance
microphone, . For the duct dynamics we assume a one-di-
mensional wave equation description, such as the one devel-
oped in [20], that is valid for small diameter-to-length ratios

Fig. 2. Acoustic duct for active noise control.

and open-ended terminations. We consider a 0.85 meter long
duct with speaker-microphone pairs located 0.15 meters from
the ends and model the speaker dynamics as in [20] with a 67 Hz
low-frequency cutoff. To obtain a finite-dimensional approxi-
mation to these dynamics we truncate the modal expansion of
this wave equation at its fifth modal frequency3 . Symmetry im-
plies that and . These transfer func-
tions possess identical poles, but the lightly damped zeros of

and differ from those of and . In addition,
the transfer functions and possess three nonminimum
phase zeros. The model of the acoustic duct includes speaker dy-
namics that introduce two zeros at the origin into all four transfer
functions, and all four transfer functions have relative degree
equal to two.

Let us evaluate the tradeoff between disturbance attenuation
and stability robustness described by Proposition III.2. As

and converge to the limits (4).
These limits are plotted in Fig. 3, and reveal thatand will
have large peaks located at the dips inthat are due to the
lightly damped zeros in and not shared with
and . Any system that achieves disturbance attenuation
in the vicinity of these dips will exhibit poor sensitivity and
robustness.

It is important to note thatthe NMP zeros of do not
cause the large peaks in sensitivity that appear inFig. 3. Al-
though Corollary V.12 shows that these zeros do prevent sensi-
tivity from being made arbitrarily small, it is possible to obtain
a sensitivity function with a smaller peak by using a controller
that does not force the disturbance response to be small.

We now consider the proper disturbance attenuation problem,
which is solvable if the cancellation controller is stabilizing. The
zeros at the origin introduced by the speaker dynamics imply
that , and thus condition (14) of
Proposition IV.6 is violated and the cancellation controller (7)
does not stabilize the system. (It is easy to show that (7) will
posses two integrators that cancel the two zeros at the origin
of .) We thus select an approximation to the cancella-
tion controller that is stabilizing. To do so, we modify the duct
model by shifting the zeros at the origin slightly into the OLHP
(at Hz), and let be the cancellation controller
for the modified duct. We further modify to obtain a strictly
proper controller. Since is stable, the construction of Propo-
sition IV.7 is unnecessary, and we simply add filtering to ob-
tain and sec. Bode
plots of (7) and of show that the approximation is very good

3Details of our model are found in [14].
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Fig. 3. Sensitivity and complementary sensitivity in the limit asT (j!)!
0.

Fig. 4. Ideal cancellation controller (7) and the stabilizing and strictly proper
approximationK̂ .

over a wide frequency range (Fig. 4). The Nyquist plot in Fig. 5
shows that the feedback system is nominally stable, albeit with
poor stability margins. The resulting closed-loop disturbance re-
sponse is plotted in Fig. 6. Note that , which should be iden-
tically zero with a cancellation controller, instead has peaks that
exceed 0 db. This fact is consistent with the extreme sensitivity
to the controller indicated by Proposition III.4 (b) and the peaks
in displayed in Fig. 3.

We close by discussing waterbed effect tradeoffs imposed on
the disturbance response ratio. The plant has relative de-
gree two, and thus with a proper controller the hypotheses of
Proposition V.4 are satisfied and must satisfy the gener-
alized Bode sensitivity integral (17) and the compensator inde-
pendent lower bound (18). It follows immediately that the ideal
disturbance attenuation problem is not solvable. Furthermore,
with the strictly proper approximation or (16), it follows

Fig. 5. Nyquist plot with the stabilizing and proper approximationK̂ to the
cancellation controller.

Fig. 6. Disturbance response with a stabilizing and proper approximation to
the cancellation controller.

from part (ii) of Lemma V.2 that the NMP zeros of will be
shared with and, thus

(23)

As predicted by (23), the plot of in Fig. 6 exhibits a peak
exceeding 0 db. Although this peak is relatively small (db),
it occurs at a relatively high frequency ( Hz). Realistic
bandwidth limitations would require the controller gain to roll
off at a lower frequency, resulting in a larger peak in ,
and precluding solvability of the proper disturbance attenuation
problem. Additional insight into the severity of these tradeoffs
may be obtained from bounds such as that in Proposition V.6.

B. Discussion of Previous Work

We now discuss a previous application of the theory of fun-
damental limitations to the problem of active noise control [13],
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[19]. The results of these papers appear to be inconsistent with
those of Section VI.A, and it is thus necessary to examine the
reasons for the apparent discrepancy.

In [13] and [19], “spillover” is defined4 to exist at any fre-
quency for which . Three different control ar-
chitectures are considered. These include one for which the con-
trol speaker is collocated with the disturbance speaker (
collocation), and one for which the measurement microphone
and the performance microphone are collocated ( colloca-
tion). The third geometry is depicted in Fig. 2, and referred to
in [13] as the “standard feedforward setup.” It is stated in [13]
that “the geometric arrangement of speakers and microphones
in the standard feedforward setup allows the control designer to
effectively circumvent the inherent performance limitations of
the Bode [sensitivity] integral”. It is also stated in [13] that if
both and collocation are avoided, as in Fig. 2, then
“it is possible to overcome the Bode constraint in the sense that
arbitrary attenuation of the open-loop transfer function can be
achieved.” It is these statements that appear to be inconsistent
with our conclusion in Section VI-A.

The disturbance response ratio (2) of a system with either
or collocation is shown in [13] to reduce to the

sensitivity function, to satisfy the Bode sensitivity integral, and
to exhibit spillover. These conclusions are consistent with ours,
because such systems must satisfy , and Corollary
V.5 thus implies that (17) reduces to the usual Bode integral. In
[13, Sec. III], it is noted that the area of disturbance amplifica-
tion guaranteed to exist by the Bode integral can potentially be
obtained by letting the sensitivity function exceed one by a very
small amount spread over a very wide frequency range. It is then
noted that “the ability to do this is subject to bandwidth and sat-
uration limitations of the control actuator and electronics”. In
practice, bandwidth limitations would also be imposed by the
need to avoid exciting higher frequency dynamics not included
in the finite-dimensional plant model used for design.

Next discussed in [13] are systems, such as that in Fig. 2,
which possess neither nor collocation. It is shown
in [13] that the disturbance response of such a system can po-
tentially be set equal to zero by using the cancellation controller
(7), which is referred to in [13] as the “zero spillover controller”
(ZSC). A procedure is also given for obtaining an “approxi-
mate zero spillover controller” (AZSC) that is strictly proper
and, under appropriate hypotheses, stabilizing.

Although the AZSC can be made to approximate the ZSC ar-
bitrarily closely, under the mild hypotheses of Proposition V.4
the disturbance response must satisfy the generalized Bode
sensitivity integral (17) and the compensator independent lower
bound (18). Hence, the ideal disturbance attenuation problem
is not solvable and it is impossible to achieve “arbitrary atten-
uation” of the disturbance. Furthermore, it is easy to show that
the AZSC will possess zeros at the zeros of [14] and thus
that each NMP zero of must also be a zero of . It fol-
lows that the disturbance response ratio of a system with the
AZSC must satisfy the integral inequality (23), and thus exhibit
spillover as defined in [13]. This conclusion is inconsistent with

4Other definitions [21] state that spillover occurs when an actuator excites
unmodeled plant dynamics, or when a sensor responds to such dynamics.

Fig. 7. Open- and closed-loop disturbance response for the example from [13].

Fig. 8. Disturbance response ratio exhibits spillover [13] at low and high
frequencies.

the statement in [19] that and/or collocation “causes
spillover”. Spillover will be present for all three control archi-
tectures considered in [13], provided only that reasonable band-
width constraints are enforced. The amount of spillover will
depend on the severity of the bandwidth constraint, which may
indeed vary with the control architecture, and should be a matter
of further investigation.

It is instructive to consider the duct model treated in [13],
for which the AZSC (with parameter values and

) is stabilizing. The Bode plots in Fig. 7appearto
show that the resulting closed loop disturbance response is never
greater than that of the open loop. Closer inspection (Fig. 8) re-
veals the existence of two small peaks in that exceed unity,
and which imply that spillover is present. In particular, has
a peak of approximately db at rad/sec. This
slight disturbance amplification is itself inconsequential; how-
ever, it does indicate control activity at a very high frequency.
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Fig. 9. Zero spillover and approximate zero spillover controllers.

Indeed, the Bode plots in Fig. 9 show that, although the AZSC
is strictly proper, its gain does not begin to decrease until

rad/s. Hence, we see that the design tradeoff imposed by
the Bode sensitivity integral is accomplished by allowing
to exceed one by a very small amount spread over a very wide
frequency interval. This high frequency control activity may
lead to robustness difficulties due to parameter uncertainty and
unmodeled dynamics. In addition, as noted in the quote from
[13] cited above, the ability to implement such a controller will
be subject to actuator bandwidth and saturation limits.

To summarize, all the speaker/microphone configurations
considered in [13] must satisfy the design limitations imposed
by the Bode sensitivity integral, and will thus exhibit spillover
as defined in [13]. In addition, the speaker and microphone con-
figuration depicted in Fig. 2 will display the tradeoff between
disturbance attenuation and feedback properties described by
Proposition III.2. It is noted in [13] that the “poor form of the
sensitivity” function resulting from use of the zero spillover
controller is consistent with the fact that is nonminimum
phase. Although the latter statement is correct, it misses the
point made in Section VI-A, that the shape of the sensitivity
function with the cancellation controller is determined by the
limit (4), independently of whether or not has NMP zeros.

We close with a comparison of our Proposition IV.6 with [13,
Prop. 4.1]. The latter presents a sufficient condition for the can-
cellation controller (or ZSC) to be stabilizing, and may be re-
stated5 as: “Assume that has no CRHP poles, that and

have no CRHP zeros, and that . Then, the con-
troller (7) results in the sensitivity function having no CRHP
poles.” Although internal stability is not explicitly considered
in [13], it is straightforward to show that the hypotheses of [13]
are sufficient to guarantee internal stability. Specifically, use of
the cancellation controller (7) will result in the the closed-loop
characteristic polynomial , and it fol-
lows that these hypotheses guarantee internal stability. We note
that the noise control example in [13] does not satisfy these hy-

5It may be inferred from their Proposition 4.1 that the term “nonminimum
phase zero” is used in [13] to refer to a zero in the CRHP. In the present paper
we use this term to refer to a zero in the ORHP.

potheses because and each possess a zero at ,
thus violating the condition that these transfer functions have no
CRHP zeros. Although the sensitivity function resulting from
the ZSC controller has no poles in the CRHP, it is easy to see that
this controller will contain an integrator that cancels the zero of

at the origin. As a result, the closed-loop transfer function
will have a pole at , and is thus unstable.

VII. CONCLUSION

In this paper, we have developed a theory of fundamental de-
sign limitations for systems in the general feedback configura-
tion of Fig. 1 under the assumption that all signals are scalar.
We have shown that the nature of these limitations depends
on the architecture of the control system. For those systems
whose disturbance response is not described by the sensitivity
function, there exists a potential tradeoff between disturbance
response and feedback properties that tends to be severe for
systems with lightly damped poles and zeros. We also derived
interpolation constraints and integral relations that must be sat-
isfied by the closed-loop disturbance response. The latter gen-
eralize the Bode and Poisson sensitivity integrals. We have used
the problem of active noise control in an acoustic duct to illus-
trate the concepts of this paper. Additional work is required to
determine the best choice of control architecture for a specific
design problem, and our results should prove useful in assessing
the limitations associated with a particular architecture. Theo-
retical research is needed to remove the assumption that the sig-
nals are scalar valued.

APPENDIX A
PROOF OFPROPOSITIONIV.4

Let denote a coprime polynomial factoriza-
tion of . Substituting this factorization and coprime factoriza-
tions for the into (1) yields

(24)

where and are the zero polynomial of and the
closed loop characteristic polynomial. Our assumption of
closed loop stability implies that can have no CRHP zeros
and, thus, . Note next that we can factor

, where . Hence, we have

(25)

and thus

(26)

a) Suppose that the multiplicity ofas a pole of is equal to
its multiplicity as a zero of . Then,
, and the value of (26) is compensator dependent.

b) Suppose that the multiplicity ofas a pole of is strictly
greater than its multiplicity as a zero of . Then (26)
yields

(27)
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Hence, if and only if is also a zero of .
If , then substituting the zero polynomial of

into (27), using the fact that , and
rearranging shows that (10) holds.

c) Suppose first that . Then and (25)
reduces to . The assumption of
internal stability precludes and from having a zero
at , and thus has precisely zeros at . Hence
as has the stated factorization, where is stable, and the
limit follows. Suppose next that . Then
both terms in the numerator of (25) have a factor of

, and has the stated factorization, where
is stable. The hypothesis (11) implies that has a
factor of with multiplicity greater than ,
and the limit follows.

d) It follows from (24) that

(28)

If is a pole of , then

(29)

If either condition i) or ii) holds, then . If not, then
rearranging shows that has the stated value.

APPENDIX B
PROOF OFPROPOSITIONIV.6

Using coprime polynomial factorizations for the , the
controller (7) may be written

(30)

Note that the factorization defined in (30) need not
be coprime. Hence, if and have a common CRHP zero,
this zero will appear as a zero of the characteristic polynomial

. Hence, we work with the factoriza-
tion (12), and assess stability using the characteristic polynomial
(13).

We first consider the special case for whichis stable.
Lemma B.1:Assume that is stable, and that the controller

is given by (12). Then, the system in Fig. 1 is internally
stable if and only if the inequality (14) is satisfied for each
CRHP zero of or .

Proof: Let denote a polynomial whose zeros consist
precisely of the common CRHP zeros of and ,
including multiplicities, and factor and

. Then, (30) may be written

(31)

To analyze nominal stability, it suffices to determine whether
the characteristic polynomial (13) has any CRHP zeros. Sub-
stituting and defined in (31) into (13) and simplifying
yields . Our assumption that is stable
implies that and can have no CRHP zeros. Hence, the
system will be stable if and only if the polynomial has
no CRHP zeros. This condition will hold precisely when any

CRHP zeros of are also zeros, with at least the same
multiplicity, of , and have thus been removed from
with the factor .

We now complete the proof of Proposition IV.6. To do so
requires us to perform two tasks. The first is to determine any
CRHP zeros common to the polynomials and defined
in (30). The second task is to compute the zeros of the resulting
closed-loop characteristic polynomial, and show that none of
these lies in the CRHP.

Recall that a possibly noncoprime factorization of
is given by (30). It follows from the definition of the zero
polynomial that

(32)

(33)

By definition, the characteristic polynomial is a factor of
, and the assumption of closed-loop stability

implies that the CRHP zeros of are also zeros, with at least
the same multiplicity, of . This fact and (33) imply that the
CRHP zeros of are equal to the union of the CRHP zeros of

, and . Let and denote the
multiplicities of as a zero of and , respectively. It
follows that if is a zero of with multiplicity , then

is also a zero of with multiplicity

(34)

Define

(35)

We now show that

(36)

To show (36), we first note that (32) implies

(37)

If (36) fails to hold, then the second term on the right hand side
of (37) is equal to zero. By definition of , the first term is
finite and nonzero, and thusis a zero of with multiplicity

. Equating (35) with (34), we see that
. Because , this contradicts (15),

and thus (36) must hold.
It follows that if (15) holds, then this fact, together with the

intermediate inequality (36), imply that

(38)

(39)

Note next that is a zero of with multiplicity

(40)

It follows from (38) and (40) that . Hence if is
an unstable pole of , then must be a zero of both and

with multiplicity . As a result, and must
have a common factor that has zeros equal to the unstable
poles of , and the multiplicity the zero at the unstable pole



1368 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 8, AUGUST 2003

is equal to . Moreover, as we saw in Lemma B.1, (14)
implies that and have a common factor whose zeros
are equal to those zeros of and that are not also poles
of . We have thus shown that the polynomials and
in (12) are given by and . It
remains to compute the closed loop characteristic polynomial
(13)

It follows from (38)–(40) that is a zero of with multiplicity
at least equal to the right hand side of (39). Hence any CRHP
zeros of that are poles of will be removed
by dividing by , and any CRHP zeros of that are not
poles of will be removed by dividing by . The controller
(12) thus yields internal stability.

APPENDIX C
PROOF OFPROPOSITIONIV.7

We show that , and are stable. Stability of
the first three follows from the facts that is nominally stabi-
lizing and is stable. Stability of follows by rearranging

(41)

where is given by (8). The first term on the right-hand side
of (41) is stable because has zeros at the CRHP poles
of . Proposition IV.6 shows that stabilizes and,
hence, the resulting sensitivity function must have zeros at
the CRHP poles of . Hence, the second term on the right
hand side of (41) is stable.

APPENDIX D
PROOF OFPROPOSITIONV.7

a) It may be verified that defined in Definition V.1 satis-
fies the hypotheses of Corollary [1, Cor. A.6.3], and thus

(42)

Proposition IV.1 a) implies that .
The hypothesis that is not a zero of implies
that , and the integral for

follows. Next, it follows from the factorization
and Proposition IV.1 c) that the

integral for follows.
b) We must evaluate the term on the right hand side

of the Poisson integral (42). Inequality (9) implies that the
Blaschke product must contain precisely zeros
at and that . Hence, the second term on the
right-hand side of

is equal to zero at , which implies that
, and the integral for follows.

Similar arguments yield the integral for .

APPENDIX E
PROOF OFPROPOSITIONV.10

We first characterize the CRHP poles and zeros of the can-
cellation controller (7) without assuming that the controller is
stabilizing.

Lemma E.1:Assume that the hypotheses of Lemma III.5 are
satisfied, and that .

a) The cancellation controller has a CRHP pole if and
only if has a CRHP transmission zerosatisfying the
inequality (20).

b) The cancellation controller has a CRHP zero if and
only if i) has a CRHP pole, or ii) has a CRHP
zero , satisfying (21).

Proof: Using the zero polynomial of and co-
prime factorizations for the , we may rewrite (7) as

.

a) By definition of the characteristic polynomial, all zeros of
must also be zeros of . It follows that any CRHP

pole of must be due to a CRHP zero of that
satisfies (20).

b) It is clear that any CRHP zero of must either be a
CRHP zero of or a CRHP pole of that satisfies
(21).

In Lemma E.1, we did not require that be stabilizing, and
thus did not rule out unstable pole/zero cancellations between

and . We now characterize the CRHP poles and zeros
of a stabilizing . Before stating the result, we require a tech-
nical lemma.

Lemma E.2:Let be a complex scalar that is not a pole of
.

a) Define

(43)

Then, .
b) Assume that

(44)

Then, .
c) A necessarycondition for the inequality

to hold is that .

Proof: We may factor , where
is finite. Then, a) follows immediately. If (44) is satisfied,

then and b) and c) follow.
We now use Lemmas E.1–E.2 to complete the proof of Propo-

sition V.10. The CRHP poles and zeros of astabilizing are
equal to the subset of the poles and zeros described in Lemma
E.1 that also satisfy the hypotheses of Proposition IV.6.

a) Suppose is a pole of as described in Lemma E.1. If
is also a pole of , then inequality (15) is automatically

satisfied. Hence we must consider only the case for which
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is a CRHP zero of or and is not also a pole of
. In this case, (20) reduces to

(45)

Assume first that . Then, the neces-
sary condition in Lemma E.2 c) is equivalent to

, and (14) follows. Assume
next that . Then ,
and inequalities (45) and (14) are mutually exclusive.
Finally, assume that , but is not identically
zero. Then, (45) holdsonly if the necessary condition
in Lemma E.2 c) is satisfied, and since , it
follows that (14) is violated.

b) Suppose that is a zero of that is a pole of . Then
(15) and (21) are mutually incompatible. Suppose next
that is a zero of that is not a pole of , and that
satisfies (21), which simplifies to

(46)

It follows from Lemma E.2 (a) that either (i)
or (ii) . In case

(i), it follows immediately that , which
contradicts (46) and hence cannot occur. Now consider
case (ii), and suppose that (14) is false, so that

. Because we are considering case (ii),
it follows that , which contradicts (46).
Hence if is a zero of that is not a pole of , and that
satisfies (21), then the condition (14) must be satisfied,
and hence all such zeros will be present in a stabilizing

.
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